organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Amino-3-methyl-5-sulfanyl­­idene-4,5-di­hydro-1H-1,2,4-triazol-1-yl)-3-(2-fur­yl)-1-phenyl­propan-1-one

aSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China, bCollege of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China, and cCollege of Chemistry and Applied Chemistry, Huanggang Normal University, Huanggang 438000, People's Republic of China
*Correspondence e-mail: zhao_submit@yahoo.com.cn

(Received 30 April 2011; accepted 31 May 2011; online 11 June 2011)

In the title mol­ecule, C16H16N4O2S, the plane of the 1,2,4-triazole ring forms dihedral angles of 77.9 (2) and 30.0 (2)° with the planes of the furyl and phenyl rings, respectively. Weak inter­molecular N—H⋯S and C—H⋯O hydrogen bonds consolidate the crystal packing.

Related literature

For the crystal structures of related 1,2,4-triazole-5(4H)-thione derivates, see: Al-Tamimi et al. (2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.]); Fun et al. (2009[Fun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o495-o496.]); Tan et al. (2010[Tan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o2224.]); Wang et al. (2011[Wang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N4O2S

  • Mr = 328.39

  • Monoclinic, P 21 /n

  • a = 7.3702 (8) Å

  • b = 24.131 (2) Å

  • c = 9.240 (1) Å

  • β = 106.745 (5)°

  • V = 1573.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.957, Tmax = 0.974

  • 15993 measured reflections

  • 3746 independent reflections

  • 2835 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.119

  • S = 1.06

  • 3746 reflections

  • 217 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯S1i 0.95 (3) 2.64 (3) 3.475 (2) 148 (2)
C4—H4D⋯O1ii 0.99 2.45 3.346 (2) 151
C14—H14⋯O1iii 0.95 2.55 3.490 (2) 169
Symmetry codes: (i) -x+1, -y, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of structural study of 1,2,4-triazole-5(4H)-thione derivatives in our group (Wang et al., 2011), we present here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable with those reported for the related 1,2,4-triazole-5(4H)- thione derivatives (Al-Tamimi et al., 2010; Fun et al., 2009; Tan et al., 2010; Wang et al., 2011). The 1,2,4-triazole ring makes the dihedral angles of 30.2 (2) and 77.9 (2)° with the phenyl ring and the furanyl ring, respectively. The phenyl and furanyl rings form a dihedral angle of 71.1 (2) °.

Intermolecular N—H···S hydrogen bond (Table 1) links the adjacent molecule into centrosymmetric dimers, which are further linked by the weak C—H···O interactions (Table 1) into three-dimensional structure.

Related literature top

For the crystal structures of related 1,2,4-triazole-5(4H)-thione derivates, see: Al-Tamimi et al. (2010); Fun et al. (2009); Tan et al. (2010); Wang et al. (2011).

Experimental top

The title compound was synthesized by the reaction of the 3-(furan-2-yl)-1- phenyl-2-propen-1-one (2.0 mmol) with 4-amino-3-methyl-4H-1,2,4-triazole-5- thiol (2.0 mmol) in ethanol. The reaction progress was monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as colorless solid in 84% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

Refinement top

N-bound H atoms were located in a difference map and isotropically refined. C-bound H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 55% probability level.
3-(4-Amino-3-methyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol-1-yl)- 3-(2-furyl)-1-phenylpropan-1-one top
Crystal data top
C16H16N4O2SF(000) = 688
Mr = 328.39Dx = 1.386 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4962 reflections
a = 7.3702 (8) Åθ = 1.7–27.9°
b = 24.131 (2) ŵ = 0.22 mm1
c = 9.240 (1) ÅT = 113 K
β = 106.745 (5)°Prism, colorless
V = 1573.7 (3) Å30.20 × 0.18 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3746 independent reflections
Radiation source: rotating anode2835 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.053
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 1.7°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 3131
Tmin = 0.957, Tmax = 0.974l = 1210
15993 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0574P)2]
where P = (Fo2 + 2Fc2)/3
3746 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H16N4O2SV = 1573.7 (3) Å3
Mr = 328.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3702 (8) ŵ = 0.22 mm1
b = 24.131 (2) ÅT = 113 K
c = 9.240 (1) Å0.20 × 0.18 × 0.12 mm
β = 106.745 (5)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3746 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2835 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.974Rint = 0.053
15993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.37 e Å3
3746 reflectionsΔρmin = 0.23 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32564 (7)0.044074 (19)0.12279 (6)0.03395 (17)
O10.44017 (17)0.24184 (5)0.30582 (14)0.0252 (3)
O20.76075 (17)0.12393 (5)0.14479 (15)0.0302 (3)
N10.3805 (2)0.13261 (6)0.04619 (17)0.0216 (3)
N20.3656 (2)0.14722 (6)0.19396 (18)0.0266 (4)
N30.2807 (2)0.06078 (6)0.17722 (18)0.0298 (4)
N40.2143 (3)0.00728 (7)0.2257 (2)0.0447 (6)
H4A0.312 (4)0.0188 (10)0.184 (3)0.065 (8)*
H4B0.120 (4)0.0015 (10)0.184 (3)0.054 (8)*
C10.3301 (2)0.07965 (7)0.0317 (2)0.0256 (4)
C20.3022 (3)0.10221 (8)0.2710 (2)0.0304 (5)
C30.4564 (2)0.17151 (6)0.0778 (2)0.0196 (4)
H30.42130.15740.16790.023*
C40.3677 (2)0.22862 (6)0.0401 (2)0.0219 (4)
H4C0.42910.24810.02770.026*
H4D0.23150.22440.01440.026*
C50.3886 (2)0.26319 (7)0.1805 (2)0.0204 (4)
C60.3390 (2)0.32323 (7)0.1632 (2)0.0199 (4)
C70.3636 (3)0.35495 (7)0.2932 (2)0.0255 (4)
H70.40960.33800.38970.031*
C80.3215 (3)0.41086 (7)0.2828 (2)0.0298 (5)
H80.33910.43240.37180.036*
C90.2533 (3)0.43531 (7)0.1412 (2)0.0297 (5)
H90.22600.47380.13380.036*
C100.2250 (3)0.40402 (7)0.0111 (2)0.0289 (4)
H100.17650.42090.08520.035*
C110.2673 (3)0.34799 (7)0.0217 (2)0.0251 (4)
H110.24750.32640.06750.030*
C120.6687 (2)0.17414 (7)0.1194 (2)0.0222 (4)
C130.7944 (3)0.21587 (8)0.1527 (2)0.0310 (5)
H130.76730.25440.14470.037*
C140.9781 (3)0.19038 (10)0.2031 (2)0.0388 (5)
H141.09660.20890.23560.047*
C150.9504 (3)0.13569 (10)0.1956 (2)0.0384 (5)
H151.04830.10870.22190.046*
C160.2566 (3)0.09657 (10)0.4376 (2)0.0435 (6)
H16A0.28830.13110.48060.065*
H16B0.12110.08890.48010.065*
H16C0.33030.06600.46200.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0401 (3)0.0202 (2)0.0366 (3)0.00212 (19)0.0030 (2)0.0041 (2)
O10.0304 (7)0.0238 (6)0.0186 (7)0.0022 (5)0.0025 (5)0.0014 (5)
O20.0255 (7)0.0342 (7)0.0290 (8)0.0083 (5)0.0051 (6)0.0028 (6)
N10.0240 (8)0.0204 (7)0.0175 (9)0.0025 (6)0.0014 (6)0.0010 (6)
N20.0261 (8)0.0324 (8)0.0186 (9)0.0048 (6)0.0019 (7)0.0012 (7)
N30.0307 (9)0.0222 (7)0.0295 (10)0.0064 (6)0.0028 (7)0.0095 (7)
N40.0461 (12)0.0232 (8)0.0509 (14)0.0068 (8)0.0081 (11)0.0183 (9)
C10.0226 (9)0.0205 (8)0.0280 (11)0.0051 (7)0.0017 (8)0.0039 (8)
C20.0243 (10)0.0376 (10)0.0247 (11)0.0106 (8)0.0003 (8)0.0070 (9)
C30.0227 (9)0.0179 (8)0.0162 (10)0.0002 (7)0.0027 (7)0.0023 (7)
C40.0260 (9)0.0190 (8)0.0180 (10)0.0021 (7)0.0021 (7)0.0004 (7)
C50.0182 (8)0.0217 (8)0.0191 (10)0.0022 (7)0.0015 (7)0.0008 (7)
C60.0184 (8)0.0192 (8)0.0212 (10)0.0006 (6)0.0043 (7)0.0018 (7)
C70.0279 (10)0.0268 (9)0.0199 (10)0.0026 (7)0.0036 (8)0.0013 (8)
C80.0361 (11)0.0248 (9)0.0272 (11)0.0018 (8)0.0070 (9)0.0055 (8)
C90.0374 (11)0.0202 (9)0.0320 (12)0.0033 (8)0.0106 (9)0.0013 (8)
C100.0366 (11)0.0262 (9)0.0238 (11)0.0046 (8)0.0087 (8)0.0060 (8)
C110.0302 (10)0.0235 (8)0.0205 (11)0.0014 (7)0.0056 (8)0.0026 (7)
C120.0232 (9)0.0259 (9)0.0168 (10)0.0034 (7)0.0045 (7)0.0011 (7)
C130.0342 (11)0.0360 (10)0.0243 (11)0.0091 (8)0.0105 (9)0.0037 (8)
C140.0229 (10)0.0715 (15)0.0229 (11)0.0114 (10)0.0079 (8)0.0037 (11)
C150.0207 (10)0.0649 (15)0.0277 (12)0.0103 (10)0.0038 (8)0.0039 (11)
C160.0357 (12)0.0648 (14)0.0250 (13)0.0099 (10)0.0008 (9)0.0121 (11)
Geometric parameters (Å, º) top
S1—C11.674 (2)C6—C71.391 (2)
O1—C51.223 (2)C6—C111.396 (2)
O2—C151.370 (2)C7—C81.381 (2)
O2—C121.3755 (19)C7—H70.9500
N1—C11.348 (2)C8—C91.390 (3)
N1—N21.383 (2)C8—H80.9500
N1—C31.462 (2)C9—C101.383 (3)
N2—C21.309 (2)C9—H90.9500
N3—C21.362 (3)C10—C111.385 (2)
N3—C11.366 (2)C10—H100.9500
N3—N41.407 (2)C11—H110.9500
N4—H4A0.95 (3)C12—C131.343 (2)
N4—H4B0.89 (2)C13—C141.437 (3)
C2—C161.484 (3)C13—H130.9500
C3—C121.501 (2)C14—C151.334 (3)
C3—C41.522 (2)C14—H140.9500
C3—H31.0000C15—H150.9500
C4—C51.513 (2)C16—H16A0.9800
C4—H4C0.9900C16—H16B0.9800
C4—H4D0.9900C16—H16C0.9800
C5—C61.491 (2)
C15—O2—C12106.30 (14)C11—C6—C5122.09 (16)
C1—N1—N2113.18 (14)C8—C7—C6120.44 (17)
C1—N1—C3125.81 (15)C8—C7—H7119.8
N2—N1—C3120.89 (14)C6—C7—H7119.8
C2—N2—N1103.86 (15)C7—C8—C9119.52 (18)
C2—N3—C1109.54 (15)C7—C8—H8120.2
C2—N3—N4124.36 (17)C9—C8—H8120.2
C1—N3—N4126.09 (18)C10—C9—C8120.61 (16)
N3—N4—H4A109.0 (14)C10—C9—H9119.7
N3—N4—H4B104.4 (16)C8—C9—H9119.7
H4A—N4—H4B108 (2)C9—C10—C11119.81 (17)
N1—C1—N3102.79 (16)C9—C10—H10120.1
N1—C1—S1130.11 (14)C11—C10—H10120.1
N3—C1—S1127.09 (14)C10—C11—C6120.04 (17)
N2—C2—N3110.62 (17)C10—C11—H11120.0
N2—C2—C16125.36 (19)C6—C11—H11120.0
N3—C2—C16124.02 (17)C13—C12—O2110.33 (16)
N1—C3—C12111.29 (14)C13—C12—C3133.62 (16)
N1—C3—C4111.10 (13)O2—C12—C3115.67 (14)
C12—C3—C4111.56 (13)C12—C13—C14106.08 (18)
N1—C3—H3107.6C12—C13—H13127.0
C12—C3—H3107.6C14—C13—H13127.0
C4—C3—H3107.6C15—C14—C13106.89 (18)
C5—C4—C3111.85 (14)C15—C14—H14126.6
C5—C4—H4C109.2C13—C14—H14126.6
C3—C4—H4C109.2C14—C15—O2110.40 (17)
C5—C4—H4D109.2C14—C15—H15124.8
C3—C4—H4D109.2O2—C15—H15124.8
H4C—C4—H4D107.9C2—C16—H16A109.5
O1—C5—C6120.69 (16)C2—C16—H16B109.5
O1—C5—C4120.43 (15)H16A—C16—H16B109.5
C6—C5—C4118.85 (15)C2—C16—H16C109.5
C7—C6—C11119.55 (15)H16A—C16—H16C109.5
C7—C6—C5118.35 (16)H16B—C16—H16C109.5
C1—N1—N2—C20.83 (19)O1—C5—C6—C73.7 (2)
C3—N1—N2—C2177.05 (14)C4—C5—C6—C7178.26 (15)
N2—N1—C1—N30.38 (19)O1—C5—C6—C11175.51 (16)
C3—N1—C1—N3176.37 (15)C4—C5—C6—C112.5 (2)
N2—N1—C1—S1179.91 (13)C11—C6—C7—C81.4 (3)
C3—N1—C1—S13.9 (3)C5—C6—C7—C8179.31 (16)
C2—N3—C1—N10.21 (19)C6—C7—C8—C90.3 (3)
N4—N3—C1—N1179.21 (17)C7—C8—C9—C100.9 (3)
C2—N3—C1—S1179.51 (14)C8—C9—C10—C110.9 (3)
N4—N3—C1—S10.5 (3)C9—C10—C11—C60.2 (3)
N1—N2—C2—N30.94 (19)C7—C6—C11—C101.4 (3)
N1—N2—C2—C16178.24 (17)C5—C6—C11—C10179.39 (16)
C1—N3—C2—N20.8 (2)C15—O2—C12—C130.0 (2)
N4—N3—C2—N2179.78 (17)C15—O2—C12—C3173.96 (16)
C1—N3—C2—C16178.42 (17)N1—C3—C12—C13137.1 (2)
N4—N3—C2—C160.6 (3)C4—C3—C12—C1312.4 (3)
C1—N1—C3—C1297.51 (19)N1—C3—C12—O250.8 (2)
N2—N1—C3—C1278.20 (18)C4—C3—C12—O2175.52 (15)
C1—N1—C3—C4137.52 (17)O2—C12—C13—C140.2 (2)
N2—N1—C3—C446.8 (2)C3—C12—C13—C14172.20 (19)
N1—C3—C4—C5159.98 (14)C12—C13—C14—C150.4 (2)
C12—C3—C4—C575.20 (19)C13—C14—C15—O20.4 (2)
C3—C4—C5—O112.1 (2)C12—O2—C15—C140.3 (2)
C3—C4—C5—C6169.87 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···S1i0.95 (3)2.64 (3)3.475 (2)148 (2)
C4—H4D···O1ii0.992.453.346 (2)151
C14—H14···O1iii0.952.553.490 (2)169
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H16N4O2S
Mr328.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)7.3702 (8), 24.131 (2), 9.240 (1)
β (°) 106.745 (5)
V3)1573.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.957, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
15993, 3746, 2835
Rint0.053
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.119, 1.06
No. of reflections3746
No. of parameters217
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.23

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···S1i0.95 (3)2.64 (3)3.475 (2)148 (2)
C4—H4D···O1ii0.992.453.346 (2)151
C14—H14···O1iii0.952.553.490 (2)169
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z.
 

References

First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o495–o496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o2224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds