organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[(2-Chloro-4-nitro­phenyl­imino)­meth­yl]naphthalen-2-ol

aCollege of Chemistry and Materials Science, Huaibei Normal University, Xiangshan, Huaibei 235000, People's Republic of China
*Correspondence e-mail: 363019204@qq.com

(Received 16 May 2011; accepted 2 June 2011; online 11 June 2011)

In the title compound, C17H11ClN2O3, an intra­molecular O—H⋯N hydrogen bond influences the mol­ecular conformation; the naphthol system and the substituted benzene ring form a dihedral angle of 3.5 (1)°. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into chains in the [010] direction The crystal packing exhibits ππ inter­actions between the aromatic rings from the neighbouring mol­ecules, with a centroid–centroid distance of 3.566 (7) Å.

Related literature

For general background to Schiff bases, see: Caligaris et al. (1972[Caligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.]); Salman et al. (1990[Salman, S. R., Shawkat, S. H. & Al-Obaidi, G. M. (1990). Can. J. Spectrosc. 35, 25-27.]); Popovic et al. (2001[Popovic, Z., Roje, V., Pavlovic, G., Matkovic-Calogovic, D. & Giester, G. (2001). J. Mol. Struct. 597, 39-47.]); Garnovskii et al. (1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Pyrz et al. (1985[Pyrz, J. W., Roe, A. L., Stern, L. J. & Que, L. Jr (1985). J. Am. Chem. Soc. 107, 614-620.]). For related structures, see: Burgess et al. (1999[Burgess, J., Fawcett, J., Russell, D. R., Gilani, S. R. & Palma, V. (1999). Acta Cryst. C55, 1707-1710.]); Gayathri et al. (2007[Gayathri, D., Velmurugan, D., Ravikumar, K., Saravanakumar, D. & Kandaswamy, M. (2007). Acta Cryst. E63, o2324-o2326.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11ClN2O3

  • Mr = 326.73

  • Monoclinic, P 21 /c

  • a = 7.0530 (8) Å

  • b = 12.8699 (13) Å

  • c = 15.7701 (17) Å

  • β = 98.180 (1)°

  • V = 1416.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.38 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.899, Tmax = 0.972

  • 7115 measured reflections

  • 2506 independent reflections

  • 826 reflections with I > 2σ(I)

  • Rint = 0.195

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.185

  • S = 0.92

  • 2506 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.81 2.547 (5) 149
C8—H8⋯O3i 0.93 2.50 3.392 (5) 160
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{7\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Schiff base ligands play a vital role in coordination chemistry due to their metal binding ability (Garnovskii et al., 1993). In addition, Schiff bases and their metal complexes have wide applications in biological systems (Pyrz et al., 1985). 2-Hydroxy Schiff bases are formed by reactions of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with various amines (Caligaris et al., 1972). In contrast to salicylaldimine derivatives, the Schiff bases of 2-hydroxy-1-naphthaldehyde have been rarely investigated (Salman et al., 1990; Popovic et al., 2001). Herewith we present the title compound (I), derived from 2-hydroxy-1-naphthaldehyde.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable with those observed for unsubstituted analogues (Burgess et al., 1999; Gayathri et al., 2007). Due to intramolecular O—H···N hydrogen bond (Table 1), the C—N=C—C torsion angle (between the phenol and benzene rings) is close to 180° with the value of 178.4 (7)°. In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into chains in [010]. The crystal packing exhibits π-π interactions between the aromatic rings from the neighbouring molecules with centroid-centroid distance of 3.566 (7) Å.

Related literature top

For general background to Schiff bases, see: Caligaris et al. (1972); Salman et al. (1990); Popovic et al. (2001); Garnovskii et al. (1993); Pyrz et al. (1985). For related structures, see: Burgess et al. (1999); Gayathri et al. (2007).

Experimental top

20 ml of methanol, 2-hydroxy-1-naphthaldehyde (0.172 g, 1 mmol), 2-chloro-4-nitrobenzenamine (0.172 g, 1 mmol) and four drops of acetic acid were added to a 50 ml round bottom flask with a magnetic stir bar. The solution was refluxed for 1.5 h until it was a bright orange color. The solution was then gravity filtered hot and allowed to slowly cool, yielding 0.268 g (78% yield) of bright orange-yellow needle-like crystals.

Refinement top

H atoms were placed in idealized positions (C—H 0.95 - 0.98 Å, O—H 0.82 Å), and thereafter treated as riding , with Uiso (H) = 1.2-1.5 Ueq of the parent atom. In view of poor quality of the single-crystal sample selected for data collection (though it was the best one), the relatively high values of Rint and R(F2) were obtained.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids shown at 30% probability level.
(E)-1-[(2-Chloro-4-nitrophenylimino)methyl]naphthalen-2-ol top
Crystal data top
C17H11ClN2O3F(000) = 672
Mr = 326.73Dx = 1.532 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0530 (8) ÅCell parameters from 381 reflections
b = 12.8699 (13) Åθ = 2.6–17.6°
c = 15.7701 (17) ŵ = 0.29 mm1
β = 98.180 (1)°T = 298 K
V = 1416.9 (3) Å3Needle-like, orange
Z = 40.38 × 0.13 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2506 independent reflections
Radiation source: fine-focus sealed tube826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.195
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 88
Tmin = 0.899, Tmax = 0.972k = 1513
7115 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0279P)2]
where P = (Fo2 + 2Fc2)/3
2506 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C17H11ClN2O3V = 1416.9 (3) Å3
Mr = 326.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0530 (8) ŵ = 0.29 mm1
b = 12.8699 (13) ÅT = 298 K
c = 15.7701 (17) Å0.38 × 0.13 × 0.10 mm
β = 98.180 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2506 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
826 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.972Rint = 0.195
7115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 0.92Δρmax = 0.30 e Å3
2506 reflectionsΔρmin = 0.33 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.2762 (3)0.18899 (12)1.41156 (10)0.0618 (7)
N10.2572 (8)0.4009 (4)1.4787 (3)0.0468 (16)
N20.5023 (10)0.0960 (4)1.7252 (4)0.065 (2)
O10.1367 (7)0.4326 (3)1.3208 (3)0.0730 (18)
H10.17210.39991.36480.110*
O20.4914 (9)0.0043 (4)1.7011 (3)0.0845 (19)
O30.5720 (9)0.1209 (3)1.7972 (3)0.086 (2)
C10.2399 (9)0.5024 (5)1.4905 (4)0.0436 (19)
H1A0.27000.52911.54560.052*
C20.1788 (9)0.5698 (4)1.4240 (4)0.0441 (19)
C30.1298 (11)0.5312 (5)1.3387 (4)0.058 (2)
C40.0772 (10)0.6039 (5)1.2683 (4)0.060 (2)
H40.04730.57891.21270.072*
C50.0714 (10)0.7060 (5)1.2830 (4)0.060 (2)
H50.04010.75061.23660.072*
C60.1122 (9)0.7501 (4)1.3681 (4)0.0421 (18)
C70.1664 (9)0.6842 (4)1.4387 (4)0.0441 (19)
C80.2087 (9)0.7311 (5)1.5193 (4)0.052 (2)
H80.24250.68941.56720.062*
C90.2017 (10)0.8362 (5)1.5295 (5)0.054 (2)
H90.23310.86561.58360.065*
C100.1475 (10)0.8988 (5)1.4589 (5)0.056 (2)
H100.14070.97041.46610.068*
C110.1037 (10)0.8572 (4)1.3787 (5)0.054 (2)
H110.06870.90021.33160.065*
C120.3140 (9)0.3279 (4)1.5437 (4)0.0400 (18)
C130.3278 (9)0.2238 (5)1.5197 (4)0.0413 (18)
C140.3845 (10)0.1468 (4)1.5788 (4)0.046 (2)
H140.38920.07751.56240.055*
C150.4332 (9)0.1761 (5)1.6617 (4)0.0444 (18)
C160.4224 (9)0.2773 (5)1.6893 (4)0.047 (2)
H160.45320.29411.74700.057*
C170.3651 (9)0.3523 (4)1.6296 (4)0.0426 (19)
H170.36040.42121.64700.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0977 (16)0.0460 (10)0.0362 (10)0.0018 (11)0.0089 (10)0.0058 (8)
N10.064 (4)0.024 (3)0.048 (4)0.000 (3)0.005 (3)0.003 (3)
N20.103 (6)0.042 (4)0.043 (4)0.001 (4)0.013 (4)0.005 (3)
O10.134 (5)0.037 (3)0.039 (3)0.007 (3)0.019 (3)0.001 (2)
O20.144 (5)0.043 (3)0.060 (4)0.006 (3)0.007 (4)0.004 (3)
O30.148 (6)0.055 (3)0.040 (3)0.009 (3)0.036 (4)0.001 (2)
C10.051 (5)0.036 (4)0.042 (4)0.006 (3)0.002 (4)0.002 (3)
C20.053 (5)0.037 (4)0.040 (4)0.001 (3)0.002 (4)0.000 (3)
C30.084 (6)0.033 (4)0.051 (5)0.007 (4)0.008 (5)0.003 (3)
C40.094 (7)0.045 (4)0.032 (4)0.000 (4)0.025 (4)0.002 (3)
C50.077 (6)0.048 (5)0.049 (5)0.005 (4)0.013 (4)0.016 (4)
C60.050 (5)0.035 (4)0.041 (4)0.005 (3)0.004 (4)0.003 (3)
C70.051 (5)0.032 (4)0.045 (4)0.003 (3)0.007 (4)0.004 (3)
C80.062 (5)0.047 (4)0.043 (5)0.002 (4)0.003 (4)0.008 (3)
C90.060 (6)0.045 (5)0.053 (5)0.001 (4)0.003 (4)0.015 (4)
C100.067 (6)0.030 (4)0.072 (6)0.003 (4)0.008 (5)0.010 (4)
C110.059 (5)0.028 (4)0.070 (6)0.005 (3)0.009 (5)0.001 (4)
C120.046 (5)0.036 (4)0.038 (4)0.003 (3)0.006 (4)0.003 (3)
C130.051 (5)0.037 (4)0.034 (4)0.003 (3)0.002 (4)0.008 (3)
C140.070 (6)0.029 (4)0.035 (4)0.007 (3)0.007 (4)0.004 (3)
C150.055 (5)0.042 (4)0.033 (4)0.006 (4)0.004 (4)0.008 (3)
C160.062 (5)0.045 (4)0.031 (4)0.004 (4)0.002 (4)0.003 (3)
C170.053 (5)0.032 (4)0.041 (4)0.001 (3)0.001 (4)0.008 (3)
Geometric parameters (Å, º) top
Cl1—C131.751 (6)C6—C71.408 (8)
N1—C11.328 (7)C7—C81.400 (8)
N1—C121.406 (7)C8—C91.364 (8)
N2—O31.215 (6)C8—H80.9300
N2—O21.239 (6)C9—C101.383 (9)
N2—C151.471 (7)C9—H90.9300
O1—C31.303 (7)C10—C111.368 (9)
O1—H10.8200C10—H100.9300
C1—C21.383 (8)C11—H110.9300
C1—H1A0.9300C12—C171.387 (8)
C2—C31.429 (8)C12—C131.399 (7)
C2—C71.495 (8)C13—C141.380 (7)
C3—C41.458 (8)C14—C151.357 (8)
C4—C51.335 (8)C14—H140.9300
C4—H40.9300C15—C161.379 (8)
C5—C61.449 (8)C16—C171.370 (7)
C5—H50.9300C16—H160.9300
C6—C111.391 (7)C17—H170.9300
C1—N1—C12125.2 (5)C7—C8—H8119.0
O3—N2—O2122.5 (5)C8—C9—C10119.5 (7)
O3—N2—C15120.1 (6)C8—C9—H9120.2
O2—N2—C15117.3 (6)C10—C9—H9120.2
C3—O1—H1109.5C11—C10—C9121.1 (6)
N1—C1—C2122.4 (6)C11—C10—H10119.4
N1—C1—H1A118.8C9—C10—H10119.4
C2—C1—H1A118.8C10—C11—C6119.3 (7)
C1—C2—C3120.3 (6)C10—C11—H11120.3
C1—C2—C7121.2 (6)C6—C11—H11120.3
C3—C2—C7118.5 (5)C17—C12—C13117.5 (5)
O1—C3—C2122.1 (6)C17—C12—N1124.7 (5)
O1—C3—C4118.3 (6)C13—C12—N1117.8 (6)
C2—C3—C4119.6 (6)C14—C13—C12122.0 (6)
C5—C4—C3120.7 (6)C14—C13—Cl1118.2 (5)
C5—C4—H4119.6C12—C13—Cl1119.7 (5)
C3—C4—H4119.6C15—C14—C13117.3 (6)
C4—C5—C6122.6 (6)C15—C14—H14121.3
C4—C5—H5118.7C13—C14—H14121.3
C6—C5—H5118.7C14—C15—C16123.3 (6)
C11—C6—C7120.9 (6)C14—C15—N2118.3 (6)
C11—C6—C5119.5 (6)C16—C15—N2118.3 (6)
C7—C6—C5119.5 (5)C17—C16—C15118.2 (6)
C8—C7—C6117.2 (6)C17—C16—H16120.9
C8—C7—C2123.8 (6)C15—C16—H16120.9
C6—C7—C2119.0 (5)C16—C17—C12121.5 (6)
C9—C8—C7121.9 (6)C16—C17—H17119.2
C9—C8—H8119.0C12—C17—H17119.2
C12—N1—C1—C2178.4 (7)C8—C9—C10—C111.1 (11)
N1—C1—C2—C30.6 (11)C9—C10—C11—C60.6 (12)
N1—C1—C2—C7178.1 (6)C7—C6—C11—C100.5 (11)
C1—C2—C3—O11.4 (12)C5—C6—C11—C10178.2 (7)
C7—C2—C3—O1179.9 (6)C1—N1—C12—C171.8 (11)
C1—C2—C3—C4176.2 (7)C1—N1—C12—C13179.0 (6)
C7—C2—C3—C42.5 (11)C17—C12—C13—C141.9 (10)
O1—C3—C4—C5178.7 (7)N1—C12—C13—C14179.2 (6)
C2—C3—C4—C51.0 (11)C17—C12—C13—Cl1177.0 (5)
C3—C4—C5—C61.4 (11)N1—C12—C13—Cl10.4 (8)
C4—C5—C6—C11179.9 (7)C12—C13—C14—C152.1 (11)
C4—C5—C6—C72.2 (11)Cl1—C13—C14—C15176.7 (5)
C11—C6—C7—C80.8 (10)C13—C14—C15—C162.2 (11)
C5—C6—C7—C8178.5 (6)C13—C14—C15—N2177.3 (6)
C11—C6—C7—C2178.3 (6)O3—N2—C15—C14169.8 (7)
C5—C6—C7—C20.6 (10)O2—N2—C15—C148.1 (10)
C1—C2—C7—C82.0 (10)O3—N2—C15—C169.8 (11)
C3—C2—C7—C8179.3 (7)O2—N2—C15—C16172.3 (7)
C1—C2—C7—C6177.0 (7)C14—C15—C16—C172.0 (11)
C3—C2—C7—C61.7 (10)N2—C15—C16—C17177.5 (6)
C6—C7—C8—C91.2 (11)C15—C16—C17—C121.7 (10)
C2—C7—C8—C9177.7 (6)C13—C12—C17—C161.6 (10)
C7—C8—C9—C101.4 (11)N1—C12—C17—C16178.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.812.547 (5)149
C8—H8···O3i0.932.503.392 (5)160
Symmetry code: (i) x+1, y+1/2, z+7/2.

Experimental details

Crystal data
Chemical formulaC17H11ClN2O3
Mr326.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.0530 (8), 12.8699 (13), 15.7701 (17)
β (°) 98.180 (1)
V3)1416.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.38 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.899, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
7115, 2506, 826
Rint0.195
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.185, 0.92
No. of reflections2506
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.33

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.8201.8102.547 (5)148.64
C8—H8···O3i0.9302.5033.392 (5)160.04
Symmetry code: (i) x+1, y+1/2, z+7/2.
 

Acknowledgements

Financial support from Huaibei Normal University is gratefully acknowledged.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurgess, J., Fawcett, J., Russell, D. R., Gilani, S. R. & Palma, V. (1999). Acta Cryst. C55, 1707–1710.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCaligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.  CrossRef Web of Science Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationGayathri, D., Velmurugan, D., Ravikumar, K., Saravanakumar, D. & Kandaswamy, M. (2007). Acta Cryst. E63, o2324–o2326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPopovic, Z., Roje, V., Pavlovic, G., Matkovic-Calogovic, D. & Giester, G. (2001). J. Mol. Struct. 597, 39–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationPyrz, J. W., Roe, A. L., Stern, L. J. & Que, L. Jr (1985). J. Am. Chem. Soc. 107, 614–620.  CrossRef CAS Web of Science Google Scholar
First citationSalman, S. R., Shawkat, S. H. & Al-Obaidi, G. M. (1990). Can. J. Spectrosc. 35, 25–27.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds