metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(1H-imidazole-4-carboxyl­ato-κ2N3,O)zinc

aGuangdong Test Center for Green Labelling, Guangzhou 510440, People's Republic of China, and bSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: S2371386@yahoo.com.cn

(Received 20 May 2011; accepted 30 May 2011; online 11 June 2011)

In the title compound, [Zn(C4H3N2O2)2(H2O)2], the ZnII ion is situated on a twofold rotation axis and exhibits a distorted octa­hedral coordination configuration. The equatorial plane contains two cis-oriented bidentate 1H-imidazole-4-carboxyl­ate ligands and the axial positions are occupied by two coordinated water mol­ecules. In the crystal structure, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular network. There are ππ inter­actions between the imidazole rings, with a centroid-to-centroid distance of 3.504 (3) Å.

Related literature

For general background, see: Yin et al. (2009[Yin, W. P., Li, Y. G., Mei, X. L. & Yao, J. C. (2009). Chin. J. Struct. Chem. 28, 1155-1159.]); Zheng et al. (2011)[Zheng, S. R., Cai, S. L., Pan, M., Xiao, T. T., Fan, J. & Zhang, W. G. (2011). CrystEngComm, 13, 883-888.]; Alkordi et al. (2009[Alkordi, M. H., Brant, J. A., Wojtas, L., Kravtsov, V. C., Cairns, A. J. & Eddaoudi, M. (2009). J. Am. Chem. Soc. 131, 17753-17755.]); Lu et al. (2009[Lu, W. G., Jiang, L., Feng, X. L. & Lu, T. B. (2009). Inorg. Chem. 48, 6997-6999.]). For related structures, see: Haggag (2005[Haggag, S. S. (2005). Egypt. J. Chem. 48, 27-41.]); Starosta & Leciejewicz (2006[Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648-m2650.]); Gryz et al. (2007[Gryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539-546.]); Yin et al. (2009[Yin, W. P., Li, Y. G., Mei, X. L. & Yao, J. C. (2009). Chin. J. Struct. Chem. 28, 1155-1159.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C4H3N2O2)2(H2O)2]

  • Mr = 323.57

  • Orthorhombic, P c c n

  • a = 7.1399 (19) Å

  • b = 11.757 (3) Å

  • c = 13.508 (4) Å

  • V = 1133.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.20 mm−1

  • T = 298 K

  • 0.35 × 0.32 × 0.30 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.513, Tmax = 0.558

  • 5336 measured reflections

  • 1037 independent reflections

  • 913 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.066

  • S = 1.08

  • 1037 reflections

  • 95 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 1.93 2.784 (2) 174
O1W—H1WA⋯O2ii 0.83 (2) 2.04 (2) 2.850 (2) 167 (3)
O1W—H1WB⋯O2iii 0.82 (2) 1.96 (2) 2.778 (2) 175 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we were interested in constructing coordination polymers based on N-heterocyclic carboxylic acids (Zheng et al., 2011). The imidazole-4-carboxylatic acid (H2imc), which contains two N atoms of an imidazole group and one carboxylate group, remains largely unexplored, compared with its analogue imidazole-4,5-dicarboxylic acid (Alkordi et al., 2009; Lu et al., 2009). To date, only a few mononuclear complexes based on the H2imc ligand have been documented (Haggag, 2005; Starosta & Leciejewicz, 2006; Gryz et al., 2007; Yin et al., 2009). For instance, Yin et al. (2009) reported the structure of a mononuclear complex [Cd(Himc)2(H2O)2], which was prepared by the solvent evaporation method. Herein, we report a new ZnII coordination polymer [Zn(Himc)2(H2O)2], (I), which is isomorphous with the CdII analog.

The asymmetric unit of (I) contains a half of [Zn(Himc)2(H2O)2] formula unit. The ZnII ion exhibits a distorted octahedral geometry (Fig. 1), in which two cis-oriented bidentate chelating Himc- ligands are located in the equatorial plane, forming two stable five-membered rings with metal ion, and the axial sites are occupied by two coordinated water molecules (Fig. 1). The Zn—O distances range from 2.1623 (17) to 2.1626 (14) Å and Zn—N bonds have the value of 2.0751 (16) Å. All Zn—O and Zn—N bond distances are shorter than those of CdII analog [the axial Cd—O, the equatorial Cd—O and Cd—N bond distances are 2.343 (2), 2.325 (2) and 2.274 (2) Å, respectively].

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional supramolecular network, which demonstrate ππ interactions between the imidazole rings (Fig. 2) with the centroid-to-centroid distance of 3.504 (3) Å.

Related literature top

For general background, see: Yin et al. (2009); Zheng et al. (2011); Alkordi et al. (2009); Lu et al. (2009). For related structures, see: Haggag (2005); Starosta & Leciejewicz (2006); Gryz et al. (2007); Yin et al. (2009).

Experimental top

13.6 mg ZnCl2 (0.10 mmol) and 16.8 mg H2imc (0.20 mmol) were mixed in 6 ml EtOH/H2O (1:1). The aqueous NaOH (0.20 M) solution was dropwise added to the above solution and the pH was adjusted to about 7. Then, the resulting mixture was sealed into a 10 ml Teflon-lined stainless-steel reactor, which was heated at 100°C for 48 h under autogenous pressure, and then slowly cooled to room temperature at a rate of 2°C/h. Colorless block crystals of (I) were isolated, washed with distilled water, and dried in air (yield: 56%). IR (KBr, n/cm-1): 3382m, 3147 s, 2997w, 2941w, 2849w, 1688m, 1584 s, 15581m, 1462m, 1402w, 1395 s, 1237 s, 1094m, 1003 s, 931w, 847w, 820w, 793m, 713w, 656m, 610w, 494m.

Refinement top

C- and N-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C,N). H atoms of the water molecule were located from a difference Fourier map and isotropically refined with O—H bond lenghts restrained to 0.82 (2) Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level [symmetry code: (i) -x + 5/2, -y + 3/2, z.]
[Figure 2] Fig. 2. A portion of the crystal packing showing ππ interactions between the imidazole rings as dashed lines.
Diaquabis(1H-imidazole-4-carboxylato-κ2N3,O)zinc top
Crystal data top
[Zn(C4H3N2O2)2(H2O)2]Dx = 1.895 Mg m3
Mr = 323.57Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 2272 reflections
a = 7.1399 (19) Åθ = 3.3–27.3°
b = 11.757 (3) ŵ = 2.20 mm1
c = 13.508 (4) ÅT = 298 K
V = 1133.9 (5) Å3Block, colourless
Z = 40.35 × 0.32 × 0.30 mm
F(000) = 656
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1037 independent reflections
Radiation source: fine-focus sealed tube913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.2°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.513, Tmax = 0.558k = 814
5336 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.618P]
where P = (Fo2 + 2Fc2)/3
1037 reflections(Δ/σ)max < 0.001
95 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Zn(C4H3N2O2)2(H2O)2]V = 1133.9 (5) Å3
Mr = 323.57Z = 4
Orthorhombic, PccnMo Kα radiation
a = 7.1399 (19) ŵ = 2.20 mm1
b = 11.757 (3) ÅT = 298 K
c = 13.508 (4) Å0.35 × 0.32 × 0.30 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1037 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
913 reflections with I > 2σ(I)
Tmin = 0.513, Tmax = 0.558Rint = 0.021
5336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0232 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.29 e Å3
1037 reflectionsΔρmin = 0.33 e Å3
95 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.25000.75000.37215 (2)0.02665 (15)
N11.0565 (2)0.81059 (14)0.47393 (11)0.0263 (4)
N20.8608 (2)0.87069 (15)0.58685 (12)0.0318 (4)
H20.81230.88360.64400.038*
C20.9100 (3)0.86538 (16)0.42860 (13)0.0229 (4)
C10.9084 (3)0.87026 (16)0.31884 (14)0.0229 (4)
C30.7885 (3)0.90319 (19)0.49823 (15)0.0291 (4)
H30.67810.94330.48750.035*
C41.0207 (3)0.81514 (18)0.56937 (14)0.0322 (5)
H41.09660.78380.61820.039*
O11.04760 (19)0.82909 (12)0.27495 (9)0.0304 (3)
O20.76821 (19)0.91520 (13)0.27745 (10)0.0303 (4)
O1W1.0979 (2)0.59370 (14)0.34656 (12)0.0356 (4)
H1WA1.150 (4)0.550 (2)0.3077 (18)0.062 (9)*
H1WB0.989 (3)0.595 (3)0.328 (2)0.072 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0242 (2)0.0358 (2)0.0200 (2)0.00824 (13)0.0000.000
N10.0267 (9)0.0336 (10)0.0187 (8)0.0059 (7)0.0010 (7)0.0021 (7)
N20.0338 (10)0.0426 (11)0.0189 (8)0.0024 (8)0.0070 (7)0.0012 (7)
C20.0220 (10)0.0252 (10)0.0214 (10)0.0008 (8)0.0003 (8)0.0002 (8)
C10.0246 (10)0.0238 (10)0.0205 (9)0.0028 (8)0.0016 (8)0.0009 (8)
C30.0254 (10)0.0344 (11)0.0275 (11)0.0040 (9)0.0007 (9)0.0018 (9)
C40.0344 (12)0.0421 (13)0.0203 (10)0.0044 (9)0.0009 (9)0.0046 (9)
O10.0283 (8)0.0434 (9)0.0194 (7)0.0063 (6)0.0021 (6)0.0011 (6)
O20.0249 (8)0.0433 (9)0.0227 (7)0.0044 (6)0.0045 (6)0.0051 (6)
O1W0.0264 (8)0.0386 (9)0.0417 (9)0.0049 (7)0.0033 (7)0.0108 (7)
Geometric parameters (Å, º) top
Zn1—N12.0751 (16)N2—H20.8600
Zn1—N1i2.0751 (16)C2—C31.354 (3)
Zn1—O12.1626 (14)C2—C11.484 (3)
Zn1—O1i2.1626 (14)C1—O11.255 (2)
Zn1—O1Wi2.1623 (17)C1—O21.262 (2)
Zn1—O1W2.1623 (17)C3—H30.9300
N1—C41.315 (2)C4—H40.9300
N1—C21.373 (2)O1W—H1WA0.828 (17)
N2—C41.336 (3)O1W—H1WB0.818 (18)
N2—C31.358 (3)
N1—Zn1—N1i97.01 (9)C4—N2—H2126.1
N1—Zn1—O179.04 (6)C3—N2—H2126.1
N1i—Zn1—O1174.10 (5)C3—C2—N1109.40 (16)
N1—Zn1—O1i174.10 (5)C3—C2—C1132.55 (17)
N1i—Zn1—O1i79.04 (6)N1—C2—C1118.02 (15)
O1—Zn1—O1i105.24 (7)O1—C1—O2125.47 (17)
N1—Zn1—O1Wi98.53 (7)O1—C1—C2116.81 (15)
N1i—Zn1—O1Wi93.64 (7)O2—C1—C2117.71 (16)
O1—Zn1—O1Wi82.71 (6)C2—C3—N2106.05 (18)
O1i—Zn1—O1Wi86.15 (6)C2—C3—H3127.0
N1—Zn1—O1W93.64 (7)N2—C3—H3127.0
N1i—Zn1—O1W98.54 (7)N1—C4—N2111.05 (18)
O1—Zn1—O1W86.15 (6)N1—C4—H4124.5
O1i—Zn1—O1W82.71 (6)N2—C4—H4124.5
O1Wi—Zn1—O1W161.60 (9)C1—O1—Zn1114.11 (11)
C4—N1—C2105.65 (16)Zn1—O1W—H1WA114 (2)
C4—N1—Zn1142.45 (15)Zn1—O1W—H1WB121 (2)
C2—N1—Zn1111.89 (12)H1WA—O1W—H1WB104 (3)
C4—N2—C3107.84 (17)
N1i—Zn1—N1—C45.0 (2)C3—C2—C1—O21.8 (3)
O1—Zn1—N1—C4179.4 (3)N1—C2—C1—O2176.18 (18)
O1i—Zn1—N1—C442.6 (7)N1—C2—C3—N20.3 (2)
O1Wi—Zn1—N1—C499.8 (2)C1—C2—C3—N2177.80 (19)
O1W—Zn1—N1—C494.1 (3)C4—N2—C3—C20.0 (2)
N1i—Zn1—N1—C2175.82 (16)C2—N1—C4—N20.6 (2)
O1—Zn1—N1—C20.25 (13)Zn1—N1—C4—N2179.84 (17)
O1i—Zn1—N1—C2136.6 (5)C3—N2—C4—N10.4 (3)
O1Wi—Zn1—N1—C281.05 (14)O2—C1—O1—Zn1176.15 (15)
O1W—Zn1—N1—C285.11 (14)C2—C1—O1—Zn13.9 (2)
C4—N1—C2—C30.6 (2)N1—Zn1—O1—C12.39 (14)
Zn1—N1—C2—C3179.92 (14)N1i—Zn1—O1—C150.7 (6)
C4—N1—C2—C1177.86 (17)O1i—Zn1—O1—C1173.43 (15)
Zn1—N1—C2—C11.6 (2)O1Wi—Zn1—O1—C1102.60 (14)
C3—C2—C1—O1178.1 (2)O1W—Zn1—O1—C192.07 (14)
N1—C2—C1—O13.9 (2)
Symmetry code: (i) x+5/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2ii0.861.932.784 (2)174
O1W—H1WA···O2iii0.83 (2)2.04 (2)2.850 (2)167 (3)
O1W—H1WB···O2iv0.82 (2)1.96 (2)2.778 (2)175 (3)
Symmetry codes: (ii) x+3/2, y, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x+3/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Zn(C4H3N2O2)2(H2O)2]
Mr323.57
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)298
a, b, c (Å)7.1399 (19), 11.757 (3), 13.508 (4)
V3)1133.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.20
Crystal size (mm)0.35 × 0.32 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.513, 0.558
No. of measured, independent and
observed [I > 2σ(I)] reflections
5336, 1037, 913
Rint0.021
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.066, 1.08
No. of reflections1037
No. of parameters95
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.33

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.861.932.784 (2)173.6
O1W—H1WA···O2ii0.828 (17)2.039 (18)2.850 (2)167 (3)
O1W—H1WB···O2iii0.818 (18)1.962 (19)2.778 (2)175 (3)
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x+3/2, y+3/2, z.
 

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant No. 21003053) and the Natural Science Foundation of Guang Dong (grant No. 10451063101004667).

References

First citationAlkordi, M. H., Brant, J. A., Wojtas, L., Kravtsov, V. C., Cairns, A. J. & Eddaoudi, M. (2009). J. Am. Chem. Soc. 131, 17753–17755.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaggag, S. S. (2005). Egypt. J. Chem. 48, 27–41.  CAS Google Scholar
First citationLu, W. G., Jiang, L., Feng, X. L. & Lu, T. B. (2009). Inorg. Chem. 48, 6997–6999.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648–m2650.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, W. P., Li, Y. G., Mei, X. L. & Yao, J. C. (2009). Chin. J. Struct. Chem. 28, 1155-1159.  CAS Google Scholar
First citationZheng, S. R., Cai, S. L., Pan, M., Xiao, T. T., Fan, J. & Zhang, W. G. (2011). CrystEngComm, 13, 883–888.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds