organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2-Hy­dr­oxy-3,5-di­iodo­benzyl­­idene)nicotinohydrazide aceto­nitrile monosolvate

aCollege of Chemistry and Pharmacy, Taizhou University, Taizhou Zhejiang 317000, People's Republic of China, and bDepartment of Chemistry, Liaoning Normal University, Dalian 116029, People's Republic of China
*Correspondence e-mail: liushiyong2010@yahoo.cn

(Received 25 May 2011; accepted 30 May 2011; online 11 June 2011)

In the hydrazone molecule of the title compound, C13H9I2N3O2·CH3CN, the aromatic rings form a dihedral angle of 9.4 (3)°. In the crystal structure, inter­molecular I⋯N inter­actions [3.099 (4) Å] link hydrogen-bonded aggregates of the hydrozone and solvent molecules related by translation along the b axis into chains. An intramolecular O—H⋯N hydrogen bond forms an S(6) ring.

Related literature

For the crystal structures of hydrazones recently reported by us, see: Liu & You (2010a[Liu, S.-Y. & You, Z. (2010a). Acta Cryst. E66, o1652.],b[Liu, S.-Y. & You, Z. (2010b). Acta Cryst. E66, o1658.],c[Liu, S.-Y. & You, Z. (2010c). Acta Cryst. E66, o1662.]); Liu & Wang (2010a[Liu, S.-Y. & Wang, X. (2010a). Acta Cryst. E66, o1775.],b[Liu, S.-Y. & Wang, X. (2010b). Acta Cryst. E66, o1805.]; 2011[Liu, S.-Y. & Wang, X.-L. (2011). Acta Cryst. E67, o1625.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9I2N3O2·C2H3N

  • Mr = 534.09

  • Monoclinic, P 21 /n

  • a = 11.1347 (13) Å

  • b = 13.3721 (16) Å

  • c = 11.9999 (15) Å

  • β = 104.083 (6)°

  • V = 1733.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.64 mm−1

  • T = 298 K

  • 0.23 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.488, Tmax = 0.529

  • 10053 measured reflections

  • 3546 independent reflections

  • 2730 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.062

  • S = 1.01

  • 3546 reflections

  • 213 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.86 2.584 (4) 147
N2—H2⋯N4 0.90 (1) 2.22 (2) 3.076 (5) 160 (4)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our structural studies of hydrazone derivatives (Liu & You, 2010a,b,c; Liu & Wang, 2010a,b; 2011), we present here the title compound (I).

In the asymmetric part of (I) (Fig. 1), the acetonitrile molecule is linked to the hydrazone molecule through intermolecular N–H···N hydrogen bond (Table 1). An intramolecular O—H···N hydrogen bond (Table 1) affects the molecular conformation - the dihedral angle between the C1–C6 benzene ring and the C9–C13/N3 pyridine ring is 9.4 (3)°.

In the crystal structure, there is I1···N3(x, -1 + y, z) [3.099 (4) Å] interaction, which link the molecules into chains along b axis.

Related literature top

For the crystal structures of hydrazones recently reported by us, see: Liu & You (2010a,b,c); Liu & Wang (2010a,b; 2011).

Experimental top

The title compound was prepared by the condensation reaction of 2-hydroxy-3,5-diiodobenzaldehyde (1.0 mmol, 0.374 g) and nicotinohydrazide (1.0 mmol, 0.137 g) in acetonitrile (50 ml) at ambient temperature. Colourless block-shaped single crystals suitable for X-ray structural determination were obtained by slow evaporation of the solution for a few days.

Refinement top

H2 was located from a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, O—H distance of 0.82 Å, and with Uiso(H) = 1.2–1.5Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius and the hydrogen bonds are drawn as dashed lines.
(E)-N'-(2-Hydroxy-3,5-diiodobenzylidene)nicotinohydrazide acetonitrile monosolvate top
Crystal data top
C13H9I2N3O2·C2H3NF(000) = 1008
Mr = 534.09Dx = 2.047 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.1347 (13) ÅCell parameters from 2928 reflections
b = 13.3721 (16) Åθ = 2.4–26.0°
c = 11.9999 (15) ŵ = 3.64 mm1
β = 104.083 (6)°T = 298 K
V = 1733.0 (4) Å3Block, colourless
Z = 40.23 × 0.22 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3546 independent reflections
Radiation source: fine-focus sealed tube2730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.488, Tmax = 0.529k = 1516
10053 measured reflectionsl = 914
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0273P)2]
where P = (Fo2 + 2Fc2)/3
3546 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
C13H9I2N3O2·C2H3NV = 1733.0 (4) Å3
Mr = 534.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1347 (13) ŵ = 3.64 mm1
b = 13.3721 (16) ÅT = 298 K
c = 11.9999 (15) Å0.23 × 0.22 × 0.20 mm
β = 104.083 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3546 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2730 reflections with I > 2σ(I)
Tmin = 0.488, Tmax = 0.529Rint = 0.031
10053 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.41 e Å3
3546 reflectionsΔρmin = 0.37 e Å3
213 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.58225 (2)0.137781 (18)0.14099 (2)0.04871 (9)
I20.97606 (3)0.30924 (2)0.06800 (2)0.05637 (10)
N10.5759 (3)0.5602 (2)0.1531 (3)0.0441 (8)
N20.5445 (3)0.6581 (2)0.1681 (3)0.0461 (8)
N30.4412 (4)0.9562 (2)0.2073 (3)0.0625 (10)
N40.7239 (4)0.8004 (3)0.0881 (4)0.0773 (12)
O10.5386 (3)0.37009 (19)0.1633 (3)0.0524 (7)
H10.52680.42980.17160.079*
O20.4105 (3)0.6067 (2)0.2699 (3)0.0652 (8)
C10.6974 (3)0.4418 (2)0.0834 (3)0.0375 (8)
C20.6354 (3)0.3585 (3)0.1150 (3)0.0394 (8)
C30.6742 (3)0.2631 (3)0.0952 (3)0.0399 (9)
C40.7714 (3)0.2493 (3)0.0444 (3)0.0413 (9)
H40.79690.18500.03180.050*
C50.8309 (3)0.3311 (3)0.0123 (3)0.0399 (9)
C60.7952 (3)0.4261 (3)0.0316 (3)0.0418 (9)
H60.83640.48050.01010.050*
C70.6612 (3)0.5441 (3)0.1014 (3)0.0440 (9)
H70.70040.59750.07520.053*
C80.4560 (3)0.6742 (3)0.2269 (3)0.0428 (9)
C90.4165 (3)0.7803 (3)0.2325 (3)0.0392 (8)
C100.3099 (4)0.7986 (3)0.2676 (4)0.0538 (10)
H100.26640.74590.28980.065*
C110.2676 (4)0.8956 (3)0.2697 (4)0.0628 (12)
H110.19440.90950.29100.075*
C120.3370 (4)0.9702 (3)0.2396 (4)0.0613 (12)
H120.30921.03550.24190.074*
C130.4789 (4)0.8619 (3)0.2048 (3)0.0518 (10)
H130.55220.85040.18280.062*
C140.8500 (5)0.9474 (3)0.0420 (4)0.0834 (16)
H14A0.88740.92880.01910.125*
H14B0.91350.96500.10880.125*
H14C0.79631.00370.01840.125*
C150.7793 (4)0.8646 (3)0.0688 (4)0.0595 (11)
H20.580 (4)0.707 (2)0.135 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.05615 (17)0.03602 (14)0.06087 (19)0.00160 (11)0.02760 (13)0.00167 (12)
I20.05261 (17)0.05701 (18)0.0699 (2)0.00518 (13)0.03507 (14)0.00061 (14)
N10.0471 (19)0.0306 (16)0.057 (2)0.0023 (13)0.0177 (16)0.0047 (14)
N20.052 (2)0.0276 (17)0.064 (2)0.0024 (14)0.0242 (17)0.0030 (15)
N30.075 (3)0.0336 (18)0.085 (3)0.0053 (17)0.032 (2)0.0059 (18)
N40.059 (3)0.066 (3)0.115 (4)0.001 (2)0.038 (2)0.005 (3)
O10.0511 (17)0.0445 (15)0.0723 (19)0.0018 (13)0.0359 (14)0.0019 (15)
O20.072 (2)0.0430 (16)0.094 (2)0.0027 (15)0.0471 (18)0.0030 (16)
C10.044 (2)0.0317 (19)0.039 (2)0.0001 (15)0.0135 (16)0.0021 (15)
C20.040 (2)0.041 (2)0.040 (2)0.0008 (16)0.0158 (17)0.0008 (17)
C30.048 (2)0.0331 (19)0.042 (2)0.0001 (16)0.0179 (17)0.0019 (16)
C40.049 (2)0.0339 (19)0.046 (2)0.0074 (17)0.0198 (18)0.0004 (17)
C50.038 (2)0.043 (2)0.042 (2)0.0032 (16)0.0184 (17)0.0005 (17)
C60.046 (2)0.0345 (19)0.048 (2)0.0018 (16)0.0172 (18)0.0011 (17)
C70.050 (2)0.0325 (19)0.053 (2)0.0013 (16)0.0198 (19)0.0016 (17)
C80.047 (2)0.035 (2)0.049 (2)0.0027 (17)0.0179 (19)0.0044 (17)
C90.042 (2)0.0356 (19)0.044 (2)0.0013 (15)0.0177 (17)0.0080 (17)
C100.050 (2)0.047 (2)0.069 (3)0.0041 (19)0.023 (2)0.011 (2)
C110.043 (2)0.061 (3)0.088 (3)0.005 (2)0.024 (2)0.019 (3)
C120.064 (3)0.044 (2)0.076 (3)0.008 (2)0.017 (2)0.015 (2)
C130.056 (3)0.037 (2)0.070 (3)0.0006 (18)0.031 (2)0.005 (2)
C140.114 (4)0.052 (3)0.098 (4)0.001 (3)0.052 (3)0.009 (3)
C150.060 (3)0.054 (3)0.072 (3)0.012 (2)0.030 (2)0.003 (2)
Geometric parameters (Å, º) top
I1—C32.106 (3)C4—H40.9300
I2—C52.094 (3)C5—C61.367 (5)
N1—C71.273 (4)C6—H60.9300
N1—N21.377 (4)C7—H70.9300
N2—C81.362 (5)C8—C91.492 (5)
N2—H20.897 (10)C9—C101.375 (5)
N3—C121.323 (5)C9—C131.377 (5)
N3—C131.332 (5)C10—C111.382 (5)
N4—C151.114 (5)C10—H100.9300
O1—C21.351 (4)C11—C121.364 (6)
O1—H10.8200C11—H110.9300
O2—C81.210 (4)C12—H120.9300
C1—C61.395 (5)C13—H130.9300
C1—C21.411 (5)C14—C151.440 (6)
C1—C71.457 (5)C14—H14A0.9600
C2—C31.385 (5)C14—H14B0.9600
C3—C41.377 (5)C14—H14C0.9600
C4—C51.382 (5)
C7—N1—N2117.9 (3)C1—C7—H7120.1
C8—N2—N1117.2 (3)O2—C8—N2122.3 (3)
C8—N2—H2124 (3)O2—C8—C9122.1 (3)
N1—N2—H2118 (3)N2—C8—C9115.6 (3)
C12—N3—C13116.4 (4)C10—C9—C13117.2 (3)
C2—O1—H1109.5C10—C9—C8118.0 (3)
C6—C1—C2119.1 (3)C13—C9—C8124.8 (3)
C6—C1—C7118.8 (3)C9—C10—C11119.8 (4)
C2—C1—C7122.1 (3)C9—C10—H10120.1
O1—C2—C3119.6 (3)C11—C10—H10120.1
O1—C2—C1121.2 (3)C12—C11—C10117.6 (4)
C3—C2—C1119.2 (3)C12—C11—H11121.2
C4—C3—C2120.7 (3)C10—C11—H11121.2
C4—C3—I1119.6 (3)N3—C12—C11124.7 (4)
C2—C3—I1119.7 (3)N3—C12—H12117.7
C3—C4—C5120.0 (3)C11—C12—H12117.7
C3—C4—H4120.0N3—C13—C9124.4 (4)
C5—C4—H4120.0N3—C13—H13117.8
C6—C5—C4120.6 (3)C9—C13—H13117.8
C6—C5—I2119.8 (3)C15—C14—H14A109.5
C4—C5—I2119.6 (3)C15—C14—H14B109.5
C5—C6—C1120.5 (3)H14A—C14—H14B109.5
C5—C6—H6119.8C15—C14—H14C109.5
C1—C6—H6119.8H14A—C14—H14C109.5
N1—C7—C1119.8 (3)H14B—C14—H14C109.5
N1—C7—H7120.1N4—C15—C14179.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.584 (4)147
N2—H2···N40.90 (1)2.22 (2)3.076 (5)160 (4)

Experimental details

Crystal data
Chemical formulaC13H9I2N3O2·C2H3N
Mr534.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.1347 (13), 13.3721 (16), 11.9999 (15)
β (°) 104.083 (6)
V3)1733.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.64
Crystal size (mm)0.23 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.488, 0.529
No. of measured, independent and
observed [I > 2σ(I)] reflections
10053, 3546, 2730
Rint0.031
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.062, 1.01
No. of reflections3546
No. of parameters213
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.37

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.584 (4)147.1
N2—H2···N40.897 (10)2.216 (19)3.076 (5)160 (4)
 

Acknowledgements

The authors acknowledge the Undergraduate Innovation Group Project of Zhejiang Province (project no. 2010R428015).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, S.-Y. & Wang, X. (2010a). Acta Cryst. E66, o1775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & Wang, X. (2010b). Acta Cryst. E66, o1805.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & Wang, X.-L. (2011). Acta Cryst. E67, o1625.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & You, Z. (2010a). Acta Cryst. E66, o1652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & You, Z. (2010b). Acta Cryst. E66, o1658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & You, Z. (2010c). Acta Cryst. E66, o1662.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds