organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2-Chloro-5-nitro­benzyl­­idene)-3-meth­­oxy­benzohydrazide monohydrate

aCollege of Chemistry and Pharmacy, Taizhou University, Taizhou Zhejiang 317000, People's Republic of China, and bDepartment of Chemistry, Liaoning Normal University, Dalian 116029, People's Republic of China
*Correspondence e-mail: liushiyong2010@yahoo.cn

(Received 25 May 2011; accepted 30 May 2011; online 11 June 2011)

In the hydrazone mol­ecule of the title compound, C15H12ClN3O4·H2O, the two benzene rings form a dihedral angle of 3.6 (1)°. In the crystal structure, the solvent water mol­ecules are involved in the formation of inter­molecular N—H⋯O and O—H⋯N hydrogen bonds, which link the mol­ecules into double ribbons extending along the b axis. Inter­molecular ππ inter­actions between the aromatic rings [centroid–centroid distances = 3.712 (3) and 3.672 (3) Å] link these ribbons further into layers parallel to the ab plane.

Related literature

For the crystal structures of hydrazones recently reported by us, see: Liu & You (2010a[Liu, S.-Y. & You, Z. (2010a). Acta Cryst. E66, o1652.],b[Liu, S.-Y. & You, Z. (2010b). Acta Cryst. E66, o1658.],c[Liu, S.-Y. & You, Z. (2010c). Acta Cryst. E66, o1662.]); Liu & Wang (2010a[Liu, S.-Y. & Wang, X. (2010a). Acta Cryst. E66, o1775.],b[Liu, S.-Y. & Wang, X. (2010b). Acta Cryst. E66, o1805.]); Sun et al. (2011[Sun, S.-S., Liu, S.-Y., Zheng, T.-T. & Wang, X.-L. (2011). Acta Cryst. E67, o1624.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12ClN3O4·H2O

  • Mr = 351.74

  • Triclinic, [P \overline 1]

  • a = 7.176 (2) Å

  • b = 7.179 (2) Å

  • c = 15.395 (4) Å

  • α = 83.820 (18)°

  • β = 89.953 (18)°

  • γ = 80.190 (18)°

  • V = 776.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.23 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.947

  • 4678 measured reflections

  • 3267 independent reflections

  • 2015 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.185

  • S = 1.02

  • 3267 reflections

  • 222 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O5 0.90 (1) 1.92 (1) 2.813 (4) 169 (4)
O5—H5B⋯O1iii 0.84 (1) 2.03 (2) 2.783 (3) 150 (4)
O5—H5A⋯O1iv 0.84 (1) 2.30 (3) 3.004 (4) 142 (3)
Symmetry codes: (iii) x, y+1, z; (iv) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our structural studies of hydrazone derivatives (Liu & You, 2010a,b,c; Liu & Wang, 2010a,b; Sun et al., 2011), we present here the title compound (I) (Fig. 1).

In the hydrazone molecule of (I) , two benzene rings form a dihedral angle of 3.6 (1)°. In the crystal structure, the crystalline water molecules are involved in formation of intermolecular N—H···O and O—H···O hydrogen bonds (Table 2), which link the molecules into doubled ribbons extended along b axis (Fig. 2). Intermolecular ππ interactions (Table 1) between the aromatic rings link further these ribbons into layers parallel to ab plane.

Related literature top

For the crystal structures of hydrazones recently reported by us, see: Liu & You (2010a,b,c); Liu & Wang (2010a,b); Sun et al. (2011).

Experimental top

The title compound was prepared by the condensation reaction of 2-chloro-5-nitrobenzaldehyde (1.0 mmol, 0.185 g) and 3-methoxybenzohydrazide (1.0 mmol, 0.166 g) in methanol (50 ml) at ambient temperature. Colourless block-shaped single crystals suitable for X-ray structural determination were obtained by slow evaporation of the solution for a few days.

Refinement top

N- and O-bound H atoms were located from a difference Fourier map and refined with Uiso(H) fixed to 0.08 and with the N—H distance restrained to 0.90 (1) Å and O—H distances restrained to 0.84 (1). The remaining H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, and with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius. Hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A portion of the crystal packing viewed along the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
(E)-N'-(2-Chloro-5-nitrobenzylidene)-3-methoxybenzohydrazide monohydrate top
Crystal data top
C15H12ClN3O4·H2OZ = 2
Mr = 351.74F(000) = 364
Triclinic, P1Dx = 1.504 Mg m3
a = 7.176 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.179 (2) ÅCell parameters from 887 reflections
c = 15.395 (4) Åθ = 2.8–25.3°
α = 83.820 (18)°µ = 0.28 mm1
β = 89.953 (18)°T = 298 K
γ = 80.190 (18)°Block, colourless
V = 776.8 (4) Å30.23 × 0.21 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3267 independent reflections
Radiation source: fine-focus sealed tube2015 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.939, Tmax = 0.947k = 89
4678 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0928P)2]
where P = (Fo2 + 2Fc2)/3
3267 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.36 e Å3
4 restraintsΔρmin = 0.48 e Å3
Crystal data top
C15H12ClN3O4·H2Oγ = 80.190 (18)°
Mr = 351.74V = 776.8 (4) Å3
Triclinic, P1Z = 2
a = 7.176 (2) ÅMo Kα radiation
b = 7.179 (2) ŵ = 0.28 mm1
c = 15.395 (4) ÅT = 298 K
α = 83.820 (18)°0.23 × 0.21 × 0.20 mm
β = 89.953 (18)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3267 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2015 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.947Rint = 0.032
4678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0614 restraints
wR(F2) = 0.185H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.36 e Å3
3267 reflectionsΔρmin = 0.48 e Å3
222 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05788 (14)1.03926 (12)1.12824 (6)0.0525 (3)
N10.2400 (4)0.5012 (4)1.03085 (15)0.0348 (6)
N20.2787 (4)0.5246 (3)0.94318 (16)0.0350 (6)
N30.1926 (5)0.3190 (5)1.36258 (19)0.0543 (8)
O10.3018 (4)0.2107 (3)0.93423 (15)0.0486 (6)
O20.2513 (4)0.8041 (4)0.63274 (15)0.0594 (8)
O30.2584 (5)0.1707 (4)1.33358 (19)0.0750 (9)
O40.1633 (5)0.3291 (4)1.44026 (17)0.0838 (10)
O50.4570 (3)0.8422 (3)0.90264 (16)0.0475 (6)*
C10.1635 (4)0.6554 (4)1.15934 (19)0.0322 (7)
C20.0887 (4)0.8238 (4)1.1940 (2)0.0350 (7)
C30.0387 (5)0.8259 (5)1.2810 (2)0.0435 (8)
H30.01480.93921.30210.052*
C40.0690 (5)0.6595 (5)1.3356 (2)0.0448 (8)
H40.03500.65821.39400.054*
C50.1506 (5)0.4938 (5)1.3029 (2)0.0373 (8)
C60.1960 (4)0.4882 (4)1.2159 (2)0.0356 (7)
H60.24780.37381.19540.043*
C70.2063 (4)0.6559 (4)1.0662 (2)0.0362 (7)
H70.20880.77081.03230.043*
C80.3063 (4)0.3706 (4)0.8984 (2)0.0335 (7)
C90.3373 (4)0.4103 (4)0.8024 (2)0.0327 (7)
C100.2874 (4)0.5904 (4)0.7584 (2)0.0366 (7)
H100.23780.69160.78920.044*
C110.3104 (5)0.6216 (5)0.6691 (2)0.0397 (8)
C120.3870 (5)0.4713 (5)0.6231 (2)0.0449 (8)
H120.40350.49070.56310.054*
C130.4381 (5)0.2933 (5)0.6678 (2)0.0462 (9)
H130.48930.19250.63710.055*
C140.4157 (5)0.2598 (5)0.7561 (2)0.0396 (8)
H140.45240.13830.78490.048*
C150.2835 (6)0.8508 (6)0.5424 (2)0.0683 (12)
H15A0.41620.81940.53120.103*
H15B0.24140.98440.52670.103*
H15C0.21480.77990.50830.103*
H20.334 (5)0.624 (4)0.923 (3)0.080*
H5A0.563 (3)0.822 (5)0.928 (2)0.080*
H5B0.382 (4)0.931 (4)0.921 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0666 (7)0.0353 (5)0.0513 (6)0.0039 (4)0.0017 (4)0.0056 (4)
N10.0430 (16)0.0342 (14)0.0266 (13)0.0046 (12)0.0026 (11)0.0043 (11)
N20.0474 (17)0.0316 (14)0.0263 (13)0.0060 (12)0.0050 (12)0.0053 (11)
N30.069 (2)0.057 (2)0.0384 (18)0.0204 (17)0.0057 (15)0.0042 (15)
O10.0780 (18)0.0293 (12)0.0386 (13)0.0088 (12)0.0036 (12)0.0046 (10)
O20.085 (2)0.0501 (15)0.0335 (13)0.0100 (14)0.0089 (13)0.0051 (11)
O30.114 (3)0.0452 (16)0.0614 (19)0.0077 (17)0.0034 (17)0.0033 (14)
O40.133 (3)0.086 (2)0.0292 (14)0.021 (2)0.0034 (16)0.0090 (14)
C10.0302 (16)0.0331 (16)0.0331 (16)0.0038 (13)0.0005 (13)0.0062 (13)
C20.0334 (17)0.0363 (17)0.0347 (17)0.0030 (13)0.0015 (13)0.0053 (13)
C30.044 (2)0.045 (2)0.0417 (19)0.0018 (16)0.0014 (16)0.0174 (16)
C40.048 (2)0.060 (2)0.0297 (17)0.0132 (17)0.0049 (15)0.0131 (16)
C50.0391 (19)0.0415 (18)0.0330 (17)0.0134 (15)0.0025 (14)0.0011 (14)
C60.0389 (18)0.0356 (17)0.0325 (16)0.0047 (14)0.0004 (14)0.0072 (13)
C70.0397 (18)0.0320 (16)0.0342 (16)0.0009 (14)0.0045 (14)0.0008 (13)
C80.0372 (18)0.0305 (16)0.0331 (16)0.0044 (13)0.0001 (13)0.0059 (13)
C90.0309 (17)0.0351 (16)0.0334 (16)0.0064 (13)0.0002 (13)0.0080 (13)
C100.0410 (19)0.0355 (17)0.0319 (16)0.0000 (14)0.0021 (14)0.0080 (13)
C110.0392 (19)0.0416 (18)0.0365 (18)0.0020 (15)0.0026 (15)0.0036 (14)
C120.051 (2)0.054 (2)0.0320 (17)0.0110 (17)0.0133 (16)0.0106 (15)
C130.056 (2)0.0410 (19)0.045 (2)0.0088 (16)0.0150 (17)0.0183 (15)
C140.046 (2)0.0347 (17)0.0379 (18)0.0044 (15)0.0032 (15)0.0066 (14)
C150.096 (3)0.067 (3)0.036 (2)0.005 (2)0.004 (2)0.0071 (19)
Geometric parameters (Å, º) top
Cl1—C21.735 (3)C4—C51.380 (5)
N1—C71.275 (4)C4—H40.9300
N1—N21.376 (3)C5—C61.381 (4)
N2—C81.351 (4)C6—H60.9300
N2—H20.902 (10)C7—H70.9300
N3—O31.219 (4)C8—C91.499 (4)
N3—O41.222 (4)C9—C101.383 (4)
N3—C51.461 (4)C9—C141.396 (4)
O1—C81.225 (3)C10—C111.383 (4)
O2—C111.365 (4)C10—H100.9300
O2—C151.424 (4)C11—C121.389 (5)
O5—H5A0.837 (10)C12—C131.376 (5)
O5—H5B0.835 (10)C12—H120.9300
C1—C61.391 (4)C13—C141.369 (5)
C1—C21.397 (4)C13—H130.9300
C1—C71.467 (4)C14—H140.9300
C2—C31.388 (4)C15—H15A0.9600
C3—C41.370 (5)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
Cg1···Cg2i3.712 (3)Cg1···Cg2ii3.672 (3)
C7—N1—N2114.2 (2)C1—C7—H7119.5
C8—N2—N1119.0 (2)O1—C8—N2121.7 (3)
C8—N2—H2118 (3)O1—C8—C9122.8 (3)
N1—N2—H2118 (3)N2—C8—C9115.5 (3)
O3—N3—O4122.8 (3)C10—C9—C14119.4 (3)
O3—N3—C5119.1 (3)C10—C9—C8121.9 (3)
O4—N3—C5118.1 (3)C14—C9—C8118.7 (3)
C11—O2—C15118.6 (3)C9—C10—C11120.7 (3)
H5A—O5—H5B113 (2)C9—C10—H10119.7
C6—C1—C2117.9 (3)C11—C10—H10119.7
C6—C1—C7121.3 (3)O2—C11—C10115.3 (3)
C2—C1—C7120.8 (3)O2—C11—C12124.9 (3)
C3—C2—C1121.9 (3)C10—C11—C12119.8 (3)
C3—C2—Cl1117.9 (2)C13—C12—C11118.9 (3)
C1—C2—Cl1120.2 (2)C13—C12—H12120.5
C4—C3—C2119.4 (3)C11—C12—H12120.5
C4—C3—H3120.3C14—C13—C12122.0 (3)
C2—C3—H3120.3C14—C13—H13119.0
C3—C4—C5119.1 (3)C12—C13—H13119.0
C3—C4—H4120.5C13—C14—C9119.2 (3)
C5—C4—H4120.5C13—C14—H14120.4
C4—C5—C6122.3 (3)C9—C14—H14120.4
C4—C5—N3118.8 (3)O2—C15—H15A109.5
C6—C5—N3119.0 (3)O2—C15—H15B109.5
C5—C6—C1119.3 (3)H15A—C15—H15B109.5
C5—C6—H6120.3O2—C15—H15C109.5
C1—C6—H6120.3H15A—C15—H15C109.5
N1—C7—C1121.0 (3)H15B—C15—H15C109.5
N1—C7—H7119.5
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O50.90 (1)1.92 (1)2.813 (4)169 (4)
O5—H5B···O1iii0.84 (1)2.03 (2)2.783 (3)150 (4)
O5—H5A···O1iv0.84 (1)2.30 (3)3.004 (4)142 (3)
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H12ClN3O4·H2O
Mr351.74
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.176 (2), 7.179 (2), 15.395 (4)
α, β, γ (°)83.820 (18), 89.953 (18), 80.190 (18)
V3)776.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.23 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.939, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
4678, 3267, 2015
Rint0.032
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.185, 1.02
No. of reflections3267
No. of parameters222
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.48

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected interatomic distances (Å) top
Cg1···Cg2i3.712 (3)Cg1···Cg2ii3.672 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O50.902 (10)1.922 (13)2.813 (4)169 (4)
O5—H5B···O1iii0.835 (10)2.03 (2)2.783 (3)150 (4)
O5—H5A···O1iv0.837 (10)2.30 (3)3.004 (4)142 (3)
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z+2.
 

Acknowledgements

The authors acknowledge the Undergraduate Innovation Group Project of Zhejiang Province (project no. 2010R428015).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, S.-Y. & Wang, X. (2010a). Acta Cryst. E66, o1775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & Wang, X. (2010b). Acta Cryst. E66, o1805.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & You, Z. (2010a). Acta Cryst. E66, o1652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & You, Z. (2010b). Acta Cryst. E66, o1658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & You, Z. (2010c). Acta Cryst. E66, o1662.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, S.-S., Liu, S.-Y., Zheng, T.-T. & Wang, X.-L. (2011). Acta Cryst. E67, o1624.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds