organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 4,5-di­phenyl-3,6-bis­­(tri­methyl­sil­yl)benzene-1,2-di­carboxyl­ate

aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and bTianjin Research and Design Institute of Chemical Industry, Tianjin 300131, People's Republic of China
*Correspondence e-mail: ququhongmei@126.com

(Received 29 May 2011; accepted 19 June 2011; online 30 June 2011)

In the title compound, C30H38O4Si2, the two phenyl rings are twisted away from the central benzene ring by 70.28 (8) and 67.42 (7)°. The two Si atoms attached to the benzene ring deviate in opposite directions from the ring plane by 0.258 (3) and 0.206 (3) Å, respectively. One ethyl group is disordered over two conformations in a 0.568 (5):0.432 (5) ratio. The crystal packing exhibits weak inter­molecular C—H⋯O inter­actions.

Related literature

For general background to the synthesis of benzene compounds, see: Reppe & Schweckendiek (1948[Reppe, W. & Schweckendiek, W. J. (1948). Liebigs Ann. Chem. 560, 104-116.]); Reppe et al. (1948[Reppe, W., Schlichting, O., Klager, K. & Toepel, T. (1948). Liebigs Ann. Chem. 560, 1-92.]); Schore (1988[Schore, N. E. (1988). Chem. Rev. 88, 1081-1119.]); Vollhardt (1984[Vollhardt, K. P. C. (1984). Angew. Chem. Int. Ed. Engl. 23, 539-556.]); Yamamoto (2005[Yamamoto, Y. (2005). Curr. Org. Chem. 9, 503-519.]). For related structures, see: Haberecht et al. (2002[Haberecht, M., Lerner, H.-W. & Bolte, M. (2002). Acta Cryst. E58, o436-o437.]); Takahashi et al. (2006[Takahashi, N., Li, S., Huang, W., Kong, F., Nakajima, K., Shen, B., Ohe, T. & Kanno, K. (2006). J. Org. Chem. 71, 7967-7977.]).

[Scheme 1]

Experimental

Crystal data
  • C30H38O4Si2

  • Mr = 518.78

  • Triclinic, [P \overline 1]

  • a = 11.534 (2) Å

  • b = 12.389 (3) Å

  • c = 12.853 (3) Å

  • α = 63.40 (3)°

  • β = 67.63 (3)°

  • γ = 65.99 (3)°

  • V = 1455.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.970, Tmax = 0.982

  • 12066 measured reflections

  • 6772 independent reflections

  • 3380 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 0.95

  • 6772 reflections

  • 338 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1 0.98 2.39 3.116 (3) 131
C27—H27B⋯O4 0.98 2.43 3.137 (3) 129

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of benzene compounds is an important activity in organic chemistry. Reppe and colleagues (Reppe & Schweckendiek, 1948; Reppe et al., 1948) first discovered the Ni-catalyzed cyclization of acetylene affording benzene in 1948. Since then, Vollhardt et al. (1984), Schore (1988), Yamamoto (2005) and many others developed the chemistry of transition metal complexes-mediated or catalyzed cyclotrimerization of alkynes. The title compound (I) has been prepared by zirconocene-mediated cyclization of 1-phenyl-2- trimethylsilyl acetylene and diethyl acetylenedicarboxylate (DEAD). Herewith we present its crystal structure.

In (I) (Fig.1), the C1—Si1 and C4—Si2 bond lengths of 1.921 (2) and 1.923 (2) Å, respectively, are slightly longer than those in p-bis(trimethylsilyl)benzene [1.882 (1) Å] (Haberecht et al., 2002). The lengths of the C—Si and C—O bonds in (I) agree with the corresponding values in 1,4-bis(trimethylsilyl)-2,3-bis(methoxycarbonyl)-9,10-dihydroanthracene (Takahashi et al., 2006). It seems that the bond lengths are influenced by the steric hindrance of substituents on the central benzene ring. In the title molecule, there are three benzene rings - A (C1—C6), B (C13—C18) and C (C19—C24), respectively. Rings B and C are twisted from the central benzene ring A at 67.42 (7) and 70.28 (8)°, respectively. The Si1 and Si2 atoms attached to benzene ring deviate from its plane in opposite directions at 0.206 (3) and 0.258 (3) Å, respectively.

The crystal packing exhibits weak intermolecular C—H···O interactions (Table 1).

Related literature top

For general background to the synthesis of benzene compounds, see: Reppe & Schweckendiek (1948); Reppe et al. (1948); Schore (1988); Vollhardt (1984); Yamamoto (2005). For related structures, see: Haberecht et al. (2002); Takahashi et al. (2006).

Experimental top

The title compound (I) has been prepared by zirconocene-mediated cyclization of 1-phenyl-2- trimethylsilyl acetylene and diethyl acetylenedicarboxylate (DEAD) (see Fig. 2). To a solution of Cp2ZrCl2 (350 mg, 1.20 mmol) in 10 ml of THF was added n-BuLi (1.56 M hexane solution, 1.54 ml, 2.40 mmol) at -78 °C, and the mixture was stirred for 15 min. The solution was warmed to -40°C for 30 min and then re-cooled to -78°C. After 15 min, 1-phenyl-2-trimethylsilyl acetylene (393 µL, 2.0 mmol) was added to the solution, and it was warmed to room temperature. After stirring for 3 h, CuCl (297 mg, 3.0 mmol) and diethyl acetylenedicarboxylate (DEAD) (0.477 ml, 3.0 mmol) were added to the mixture, and it was stirred for 6 h at room temperature. The mixture was quenched with 3 N HCl and extracted with ethyl acetate. The combined organic phase was washed with water, saturated aqueous NaHCO3 solution, and brine. The solution was dried over anhydrous Na2SO4. The solvent was evaporated, and the resulting solid was purified by a flash chromatography (silica gel, hexane: ethyl acetate =5:1 as eluent) to afford mixture of the title compound I and II. When mixture was heated in toluene at 100 °C for 3 h, benzene I (424 mg) was obtained in 82% yield as pale yellow solid. 1H NMR (CDCl3, Me4Si): -0.14 (s, 18 H), 1.41 (t, J = 6.9 Hz, 6 H), 4.29–4.36 (q, J = 7.2 Hz, 4 H), 6.78–6.81 (m, 4 H), 7.00–7.08 (m, 6 H); 13C NMR (CDCl3, Me4Si): 1.7, 13.8, 61.8, 126.7, 126.9, 131.3, 137.9, 138.0, 142.0, 149.6, 170.5. HRMS (EI) calc. for C30H38O4Si2: 518.2309. Found: 518.2314. The solid of compound (I) was re-crystallized by ethanol to give colorless single crystals of (I), suitable for X-ray analysis.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and constrained to ride on their parent atoms, with C—H = 0.95, 0.99 and 0.98 Å for aromatic, methylene and methyl H atoms, respectively. All H atoms were refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for the other H atoms. The ethyl chain C8—C9 has been treated as disordered over two conformations with the occupancies refined to 0.568 (5) and 0.432 (5), respectively.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Only major part of the disordered ethyl fragment is shown.
[Figure 2] Fig. 2. The preparation of the title compound.
Diethyl 4,5-diphenyl-3,6-bis(trimethylsilyl)benzene-1,2-dicarboxylate top
Crystal data top
C30H38O4Si2Z = 2
Mr = 518.78F(000) = 556
Triclinic, P1Dx = 1.184 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.534 (2) ÅCell parameters from 4247 reflections
b = 12.389 (3) Åθ = 1.9–27.9°
c = 12.853 (3) ŵ = 0.15 mm1
α = 63.40 (3)°T = 113 K
β = 67.63 (3)°Block, colourless
γ = 65.99 (3)°0.20 × 0.18 × 0.12 mm
V = 1455.1 (5) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
6772 independent reflections
Radiation source: rotating anode3380 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.047
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 1.9°
ω and ϕ scansh = 1512
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1516
Tmin = 0.970, Tmax = 0.982l = 1613
12066 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0512P)2]
where P = (Fo2 + 2Fc2)/3
6772 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 0.31 e Å3
4 restraintsΔρmin = 0.38 e Å3
Crystal data top
C30H38O4Si2γ = 65.99 (3)°
Mr = 518.78V = 1455.1 (5) Å3
Triclinic, P1Z = 2
a = 11.534 (2) ÅMo Kα radiation
b = 12.389 (3) ŵ = 0.15 mm1
c = 12.853 (3) ÅT = 113 K
α = 63.40 (3)°0.20 × 0.18 × 0.12 mm
β = 67.63 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
6772 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3380 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.982Rint = 0.047
12066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 0.95Δρmax = 0.31 e Å3
6772 reflectionsΔρmin = 0.38 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.73346 (5)0.73464 (5)1.08693 (5)0.02948 (16)
Si20.27477 (5)0.80890 (5)0.83890 (5)0.02739 (15)
O10.77590 (13)0.91083 (15)0.81335 (14)0.0447 (4)
O20.81690 (12)0.76114 (14)0.74003 (13)0.0418 (4)
O30.59560 (14)0.92819 (15)0.63566 (13)0.0451 (4)
O40.56124 (12)0.74465 (14)0.67925 (11)0.0349 (4)
C10.59901 (16)0.76175 (17)1.01700 (17)0.0245 (4)
C20.47780 (16)0.73924 (17)1.08678 (16)0.0232 (4)
C30.38661 (16)0.74403 (17)1.03477 (16)0.0216 (4)
C40.40993 (16)0.77728 (17)0.91040 (16)0.0231 (4)
C50.53145 (17)0.79973 (18)0.84046 (16)0.0247 (4)
C60.62236 (16)0.79331 (17)0.89246 (17)0.0252 (4)
C70.74488 (18)0.8302 (2)0.81181 (18)0.0312 (5)
C80.9196 (6)0.8173 (6)0.6438 (7)0.0543 (17)0.568 (5)
H8A0.96350.84500.67630.065*0.568 (5)
H8B0.88140.89060.57950.065*0.568 (5)
C91.0145 (4)0.7134 (5)0.5967 (4)0.0716 (19)0.568 (5)
H9A1.09140.74030.53980.107*0.568 (5)
H9B0.97220.69460.55600.107*0.568 (5)
H9C1.04170.63780.66350.107*0.568 (5)
C8'0.9492 (8)0.7716 (10)0.6688 (10)0.0543 (17)0.432 (5)
H8'A1.00160.69640.64530.065*0.432 (5)
H8'B0.99470.77900.71590.065*0.432 (5)
C9'0.9316 (6)0.8881 (7)0.5594 (6)0.090 (3)0.432 (5)
H9'A1.01710.90180.51150.136*0.432 (5)
H9'B0.87520.96090.58410.136*0.432 (5)
H9'C0.89120.87740.51130.136*0.432 (5)
C100.89613 (18)0.6606 (2)1.0013 (2)0.0452 (6)
H10A0.96500.64641.03680.068*
H10B0.91230.71680.91750.068*
H10C0.89620.57991.00470.068*
C110.7302 (2)0.8833 (2)1.0921 (2)0.0440 (6)
H11A0.79970.86631.12820.066*
H11B0.64520.91751.14030.066*
H11C0.74410.94461.01050.066*
C120.72081 (19)0.6150 (2)1.24164 (19)0.0405 (6)
H12A0.79120.60431.27340.061*
H12B0.72860.53441.23910.061*
H12C0.63600.64351.29360.061*
C130.43822 (16)0.71655 (18)1.21850 (16)0.0248 (4)
C140.41489 (17)0.8136 (2)1.25575 (18)0.0318 (5)
H14A0.42730.89191.19770.038*
C150.3737 (2)0.7989 (2)1.3765 (2)0.0438 (6)
H15A0.35860.86651.40080.053*
C160.3547 (2)0.6856 (2)1.4612 (2)0.0464 (6)
H16A0.32660.67481.54410.056*
C170.37663 (19)0.5881 (2)1.42545 (19)0.0414 (6)
H17A0.36340.51021.48390.050*
C180.41791 (17)0.60276 (19)1.30465 (17)0.0302 (5)
H18A0.43230.53521.28070.036*
C190.26591 (16)0.70700 (19)1.11783 (16)0.0242 (4)
C200.16765 (17)0.7812 (2)1.18300 (17)0.0322 (5)
H20A0.17450.85951.17260.039*
C210.05982 (19)0.7405 (2)1.26302 (19)0.0436 (6)
H21A0.00720.79121.30700.052*
C220.0498 (2)0.6273 (3)1.2788 (2)0.0483 (7)
H22A0.02370.59961.33420.058*
C230.1457 (2)0.5537 (2)1.21452 (19)0.0434 (6)
H23A0.13830.47561.22500.052*
C240.25341 (18)0.5944 (2)1.13433 (18)0.0324 (5)
H24A0.31960.54341.09010.039*
C250.10646 (17)0.8685 (2)0.92639 (18)0.0355 (5)
H25A0.04190.88290.88590.053*
H25B0.09820.94770.93200.053*
H25C0.09100.80601.00720.053*
C260.2847 (2)0.6650 (2)0.8199 (2)0.0428 (6)
H26A0.21470.68370.78350.064*
H26B0.27470.59790.89840.064*
H26C0.36970.63750.76770.064*
C270.28319 (19)0.9412 (2)0.69133 (18)0.0433 (6)
H27A0.21330.95560.65700.065*
H27B0.36830.91940.63650.065*
H27C0.27251.01790.70320.065*
C280.56678 (17)0.8339 (2)0.70744 (18)0.0308 (5)
C290.5882 (2)0.7649 (2)0.55243 (18)0.0455 (6)
H29A0.56120.85630.50710.055*
H29B0.53620.72480.54240.055*
C300.7289 (2)0.7116 (2)0.5031 (2)0.0568 (7)
H30A0.74420.72650.41800.085*
H30B0.75540.62070.54690.085*
H30C0.78040.75210.51180.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0278 (3)0.0246 (3)0.0402 (3)0.0068 (2)0.0132 (2)0.0112 (3)
Si20.0273 (3)0.0293 (4)0.0268 (3)0.0070 (2)0.0075 (2)0.0109 (2)
O10.0424 (8)0.0370 (10)0.0554 (10)0.0222 (7)0.0068 (7)0.0114 (8)
O20.0315 (8)0.0469 (11)0.0420 (9)0.0185 (7)0.0080 (7)0.0186 (8)
O30.0552 (9)0.0424 (10)0.0303 (8)0.0258 (8)0.0077 (7)0.0019 (7)
O40.0415 (8)0.0350 (9)0.0242 (7)0.0102 (7)0.0028 (6)0.0119 (7)
C10.0256 (10)0.0159 (10)0.0307 (11)0.0042 (8)0.0075 (8)0.0080 (8)
C20.0259 (10)0.0177 (10)0.0243 (10)0.0036 (8)0.0071 (8)0.0073 (8)
C30.0211 (9)0.0173 (11)0.0250 (10)0.0045 (8)0.0045 (8)0.0080 (8)
C40.0229 (9)0.0189 (11)0.0252 (10)0.0044 (8)0.0047 (8)0.0082 (8)
C50.0270 (10)0.0194 (11)0.0232 (10)0.0051 (8)0.0043 (8)0.0065 (8)
C60.0231 (10)0.0189 (11)0.0291 (11)0.0058 (8)0.0049 (8)0.0059 (8)
C70.0288 (11)0.0266 (13)0.0319 (12)0.0082 (9)0.0069 (9)0.0050 (10)
C80.036 (3)0.051 (5)0.051 (4)0.022 (3)0.015 (3)0.009 (4)
C90.042 (3)0.092 (5)0.062 (3)0.024 (3)0.011 (2)0.027 (3)
C8'0.036 (3)0.051 (5)0.051 (4)0.022 (3)0.015 (3)0.009 (4)
C9'0.061 (4)0.126 (8)0.049 (4)0.049 (5)0.008 (4)0.002 (5)
C100.0333 (12)0.0412 (15)0.0637 (16)0.0005 (10)0.0194 (11)0.0232 (13)
C110.0426 (13)0.0364 (14)0.0635 (16)0.0133 (11)0.0155 (11)0.0221 (12)
C120.0398 (12)0.0375 (14)0.0481 (14)0.0075 (10)0.0256 (10)0.0089 (11)
C130.0217 (10)0.0253 (12)0.0266 (10)0.0042 (8)0.0082 (8)0.0087 (9)
C140.0323 (11)0.0293 (13)0.0334 (12)0.0057 (9)0.0107 (9)0.0111 (10)
C150.0460 (13)0.0479 (16)0.0445 (14)0.0051 (11)0.0153 (11)0.0259 (12)
C160.0520 (14)0.0612 (19)0.0263 (12)0.0136 (13)0.0138 (10)0.0144 (12)
C170.0440 (13)0.0455 (16)0.0294 (12)0.0165 (11)0.0144 (10)0.0007 (11)
C180.0329 (11)0.0289 (12)0.0291 (11)0.0093 (9)0.0126 (9)0.0056 (9)
C190.0216 (9)0.0282 (12)0.0211 (10)0.0071 (8)0.0057 (8)0.0066 (8)
C200.0283 (11)0.0378 (14)0.0294 (11)0.0090 (9)0.0053 (9)0.0125 (10)
C210.0281 (12)0.0634 (19)0.0317 (12)0.0086 (11)0.0003 (9)0.0202 (12)
C220.0343 (13)0.0666 (19)0.0389 (14)0.0277 (13)0.0005 (10)0.0091 (13)
C230.0456 (13)0.0450 (16)0.0432 (14)0.0268 (12)0.0116 (11)0.0053 (12)
C240.0330 (11)0.0337 (13)0.0297 (11)0.0127 (9)0.0076 (9)0.0076 (10)
C250.0295 (11)0.0367 (14)0.0400 (12)0.0044 (9)0.0123 (9)0.0144 (10)
C260.0477 (13)0.0431 (15)0.0496 (14)0.0125 (11)0.0132 (11)0.0252 (12)
C270.0389 (12)0.0437 (15)0.0352 (12)0.0032 (10)0.0155 (10)0.0059 (11)
C280.0236 (10)0.0311 (13)0.0291 (11)0.0073 (9)0.0053 (8)0.0048 (10)
C290.0528 (14)0.0563 (17)0.0248 (11)0.0159 (12)0.0067 (10)0.0138 (11)
C300.0553 (15)0.070 (2)0.0390 (14)0.0144 (13)0.0011 (12)0.0271 (14)
Geometric parameters (Å, º) top
Si1—C111.858 (2)C11—H11C0.9800
Si1—C121.868 (2)C12—H12A0.9800
Si1—C101.872 (2)C12—H12B0.9800
Si1—C11.9214 (19)C12—H12C0.9800
Si2—C261.859 (2)C13—C141.379 (3)
Si2—C251.869 (2)C13—C181.394 (3)
Si2—C271.871 (2)C14—C151.387 (3)
Si2—C41.9233 (19)C14—H14A0.9500
O1—C71.200 (2)C15—C161.380 (3)
O2—C71.348 (2)C15—H15A0.9500
O2—C8'1.475 (8)C16—C171.376 (3)
O2—C81.483 (6)C16—H16A0.9500
O3—C281.202 (2)C17—C181.387 (3)
O4—C281.338 (2)C17—H17A0.9500
O4—C291.459 (2)C18—H18A0.9500
C1—C21.406 (2)C19—C241.374 (3)
C1—C61.409 (3)C19—C201.397 (3)
C2—C31.416 (2)C20—C211.390 (3)
C2—C131.498 (2)C20—H20A0.9500
C3—C41.404 (2)C21—C221.372 (3)
C3—C191.496 (2)C21—H21A0.9500
C4—C51.409 (2)C22—C231.377 (3)
C5—C61.404 (3)C22—H22A0.9500
C5—C281.493 (3)C23—C241.389 (3)
C6—C71.505 (3)C23—H23A0.9500
C8—C91.506 (8)C24—H24A0.9500
C8—H8A0.9900C25—H25A0.9800
C8—H8B0.9900C25—H25B0.9800
C9—H9A0.9800C25—H25C0.9800
C9—H9B0.9800C26—H26A0.9800
C9—H9C0.9800C26—H26B0.9800
C8'—C9'1.504 (8)C26—H26C0.9800
C8'—H8'A0.9900C27—H27A0.9800
C8'—H8'B0.9900C27—H27B0.9800
C9'—H9'A0.9800C27—H27C0.9800
C9'—H9'B0.9800C29—C301.481 (3)
C9'—H9'C0.9800C29—H29A0.9900
C10—H10A0.9800C29—H29B0.9900
C10—H10B0.9800C30—H30A0.9800
C10—H10C0.9800C30—H30B0.9800
C11—H11A0.9800C30—H30C0.9800
C11—H11B0.9800
C11—Si1—C12108.75 (11)Si1—C12—H12B109.5
C11—Si1—C10111.67 (10)H12A—C12—H12B109.5
C12—Si1—C10102.99 (11)Si1—C12—H12C109.5
C11—Si1—C1111.51 (9)H12A—C12—H12C109.5
C12—Si1—C1112.47 (9)H12B—C12—H12C109.5
C10—Si1—C1109.18 (9)C14—C13—C18118.75 (19)
C26—Si2—C25108.78 (10)C14—C13—C2118.88 (18)
C26—Si2—C27110.16 (11)C18—C13—C2122.30 (19)
C25—Si2—C27102.15 (10)C13—C14—C15121.2 (2)
C26—Si2—C4111.22 (9)C13—C14—H14A119.4
C25—Si2—C4113.09 (8)C15—C14—H14A119.4
C27—Si2—C4111.07 (10)C16—C15—C14119.6 (2)
C7—O2—C8'119.7 (7)C16—C15—H15A120.2
C7—O2—C8111.5 (4)C14—C15—H15A120.2
C8'—O2—C821.5 (4)C17—C16—C15119.9 (2)
C28—O4—C29117.80 (17)C17—C16—H16A120.1
C2—C1—C6116.18 (16)C15—C16—H16A120.1
C2—C1—Si1122.45 (14)C16—C17—C18120.5 (2)
C6—C1—Si1121.06 (13)C16—C17—H17A119.8
C1—C2—C3121.63 (16)C18—C17—H17A119.8
C1—C2—C13120.41 (15)C17—C18—C13120.1 (2)
C3—C2—C13117.86 (15)C17—C18—H18A120.0
C4—C3—C2121.75 (16)C13—C18—H18A120.0
C4—C3—C19120.70 (15)C24—C19—C20118.84 (18)
C2—C3—C19117.50 (15)C24—C19—C3119.20 (17)
C3—C4—C5116.57 (15)C20—C19—C3121.90 (18)
C3—C4—Si2121.16 (13)C21—C20—C19119.9 (2)
C5—C4—Si2121.90 (13)C21—C20—H20A120.0
C6—C5—C4121.50 (16)C19—C20—H20A120.0
C6—C5—C28117.65 (16)C22—C21—C20120.3 (2)
C4—C5—C28120.84 (16)C22—C21—H21A119.9
C5—C6—C1122.30 (16)C20—C21—H21A119.9
C5—C6—C7118.89 (16)C21—C22—C23120.3 (2)
C1—C6—C7118.67 (16)C21—C22—H22A119.9
O1—C7—O2123.88 (18)C23—C22—H22A119.9
O1—C7—C6123.30 (19)C22—C23—C24119.5 (2)
O2—C7—C6112.80 (18)C22—C23—H23A120.3
O2—C8—C9105.0 (5)C24—C23—H23A120.3
O2—C8—H8A110.8C19—C24—C23121.2 (2)
C9—C8—H8A110.8C19—C24—H24A119.4
O2—C8—H8B110.8C23—C24—H24A119.4
C9—C8—H8B110.8Si2—C25—H25A109.5
H8A—C8—H8B108.8Si2—C25—H25B109.5
C8—C9—H9A109.5H25A—C25—H25B109.5
C8—C9—H9B109.5Si2—C25—H25C109.5
H9A—C9—H9B109.5H25A—C25—H25C109.5
C8—C9—H9C109.5H25B—C25—H25C109.5
H9A—C9—H9C109.5Si2—C26—H26A109.5
H9B—C9—H9C109.5Si2—C26—H26B109.5
O2—C8'—C9'106.5 (6)H26A—C26—H26B109.5
O2—C8'—H8'A110.4Si2—C26—H26C109.5
C9'—C8'—H8'A110.4H26A—C26—H26C109.5
O2—C8'—H8'B110.4H26B—C26—H26C109.5
C9'—C8'—H8'B110.4Si2—C27—H27A109.5
H8'A—C8'—H8'B108.6Si2—C27—H27B109.5
C8'—C9'—H9'A109.5H27A—C27—H27B109.5
C8'—C9'—H9'B109.5Si2—C27—H27C109.5
H9'A—C9'—H9'B109.5H27A—C27—H27C109.5
C8'—C9'—H9'C109.5H27B—C27—H27C109.5
H9'A—C9'—H9'C109.5O3—C28—O4124.7 (2)
H9'B—C9'—H9'C109.5O3—C28—C5125.0 (2)
Si1—C10—H10A109.5O4—C28—C5110.34 (17)
Si1—C10—H10B109.5O4—C29—C30111.25 (17)
H10A—C10—H10B109.5O4—C29—H29A109.4
Si1—C10—H10C109.5C30—C29—H29A109.4
H10A—C10—H10C109.5O4—C29—H29B109.4
H10B—C10—H10C109.5C30—C29—H29B109.4
Si1—C11—H11A109.5H29A—C29—H29B108.0
Si1—C11—H11B109.5C29—C30—H30A109.5
H11A—C11—H11B109.5C29—C30—H30B109.5
Si1—C11—H11C109.5H30A—C30—H30B109.5
H11A—C11—H11C109.5C29—C30—H30C109.5
H11B—C11—H11C109.5H30A—C30—H30C109.5
Si1—C12—H12A109.5H30B—C30—H30C109.5
C11—Si1—C1—C296.97 (18)C5—C6—C7—O1123.1 (2)
C12—Si1—C1—C225.50 (19)C1—C6—C7—O152.7 (3)
C10—Si1—C1—C2139.16 (16)C5—C6—C7—O258.3 (2)
C11—Si1—C1—C689.57 (18)C1—C6—C7—O2125.97 (19)
C12—Si1—C1—C6147.96 (16)C7—O2—C8—C9163.3 (4)
C10—Si1—C1—C634.30 (19)C8'—O2—C8—C946 (2)
C6—C1—C2—C32.0 (3)C7—O2—C8'—C9'81.0 (11)
Si1—C1—C2—C3171.72 (14)C8—O2—C8'—C9'8 (2)
C6—C1—C2—C13174.44 (17)C1—C2—C13—C1466.6 (2)
Si1—C1—C2—C1311.8 (2)C3—C2—C13—C14110.0 (2)
C1—C2—C3—C43.1 (3)C1—C2—C13—C18116.6 (2)
C13—C2—C3—C4173.50 (17)C3—C2—C13—C1866.8 (2)
C1—C2—C3—C19174.46 (17)C18—C13—C14—C150.9 (3)
C13—C2—C3—C199.0 (2)C2—C13—C14—C15177.77 (16)
C2—C3—C4—C53.0 (3)C13—C14—C15—C160.4 (3)
C19—C3—C4—C5174.47 (16)C14—C15—C16—C170.1 (3)
C2—C3—C4—Si2170.20 (14)C15—C16—C17—C180.1 (3)
C19—C3—C4—Si212.4 (2)C16—C17—C18—C130.4 (3)
C26—Si2—C4—C394.38 (17)C14—C13—C18—C170.8 (3)
C25—Si2—C4—C328.36 (19)C2—C13—C18—C17177.62 (15)
C27—Si2—C4—C3142.54 (16)C4—C3—C19—C2469.9 (2)
C26—Si2—C4—C592.81 (18)C2—C3—C19—C24107.7 (2)
C25—Si2—C4—C5144.45 (16)C4—C3—C19—C20112.8 (2)
C27—Si2—C4—C530.27 (18)C2—C3—C19—C2069.7 (2)
C3—C4—C5—C62.1 (3)C24—C19—C20—C210.1 (3)
Si2—C4—C5—C6171.00 (14)C3—C19—C20—C21177.23 (16)
C3—C4—C5—C28179.11 (17)C19—C20—C21—C220.3 (3)
Si2—C4—C5—C287.8 (3)C20—C21—C22—C230.7 (3)
C4—C5—C6—C11.3 (3)C21—C22—C23—C240.6 (3)
C28—C5—C6—C1179.87 (18)C20—C19—C24—C230.3 (3)
C4—C5—C6—C7174.30 (17)C3—C19—C24—C23177.18 (17)
C28—C5—C6—C74.5 (3)C22—C23—C24—C190.1 (3)
C2—C1—C6—C51.2 (3)C29—O4—C28—O32.0 (3)
Si1—C1—C6—C5172.65 (14)C29—O4—C28—C5177.76 (14)
C2—C1—C6—C7174.43 (17)C6—C5—C28—O356.6 (3)
Si1—C1—C6—C711.7 (2)C4—C5—C28—O3122.3 (2)
C8'—O2—C7—O17.8 (5)C6—C5—C28—O4123.73 (18)
C8—O2—C7—O114.2 (4)C4—C5—C28—O457.5 (2)
C8'—O2—C7—C6170.8 (4)C28—O4—C29—C3090.7 (2)
C8—O2—C7—C6167.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O10.982.393.116 (3)131
C27—H27B···O40.982.433.137 (3)129

Experimental details

Crystal data
Chemical formulaC30H38O4Si2
Mr518.78
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)11.534 (2), 12.389 (3), 12.853 (3)
α, β, γ (°)63.40 (3), 67.63 (3), 65.99 (3)
V3)1455.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.970, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
12066, 6772, 3380
Rint0.047
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 0.95
No. of reflections6772
No. of parameters338
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.38

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O10.982.393.116 (3)131
C27—H27B···O40.982.433.137 (3)129
 

Acknowledgements

The authors gratefully acknowledge the State Key Laboratory of Elemento-Organic Chemistry (Nankai University) for the data collection.

References

First citationHaberecht, M., Lerner, H.-W. & Bolte, M. (2002). Acta Cryst. E58, o436–o437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReppe, W., Schlichting, O., Klager, K. & Toepel, T. (1948). Liebigs Ann. Chem. 560, 1–92.  CrossRef CAS Google Scholar
First citationReppe, W. & Schweckendiek, W. J. (1948). Liebigs Ann. Chem. 560, 104–116.  CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSchore, N. E. (1988). Chem. Rev. 88, 1081–1119.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, N., Li, S., Huang, W., Kong, F., Nakajima, K., Shen, B., Ohe, T. & Kanno, K. (2006). J. Org. Chem. 71, 7967–7977.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVollhardt, K. P. C. (1984). Angew. Chem. Int. Ed. Engl. 23, 539–556.  CrossRef Google Scholar
First citationYamamoto, Y. (2005). Curr. Org. Chem. 9, 503–519.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds