organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[4-Amino-3-(4-methyl­phen­yl)-5-sulfanyl­­idene-4,5-di­hydro-1H-1,2,4-triazol-1-yl]-3-(2-chloro­phen­yl)-1-phenyl­propan-1-one

aSchool of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, People's Republic of China, and bSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China
*Correspondence e-mail: zhao_submit@yahoo.com.cn

(Received 29 May 2011; accepted 19 June 2011; online 25 June 2011)

In the title mol­ecule, C24H21ClN4OS, the 1,2,4-triazole ring forms dihedral angles of 37.2 (2), 71.9 (2) and 84.9 (2) ° with the three benzene rings. In the crystal, weak inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For the crystal structures of related 1,2,4-triazole-5(4H)-thione derivatives, see: Al-Tamimi et al. (2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.]); Fun et al. (2009[Fun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o495-o496.]); Tan et al. (2010[Tan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o2224.]); Wang et al. (2011[Wang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269.]).

[Scheme 1]

Experimental

Crystal data
  • C24H21ClN4OS

  • Mr = 448.96

  • Monoclinic, P 21 /n

  • a = 10.9873 (12) Å

  • b = 11.8220 (14) Å

  • c = 17.438 (3) Å

  • β = 94.828 (7)°

  • V = 2257.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 113 K

  • 0.30 × 0.08 × 0.08 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.919, Tmax = 0.978

  • 22007 measured reflections

  • 4989 independent reflections

  • 3972 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.145

  • S = 1.11

  • 4989 reflections

  • 289 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯S1i 0.93 (3) 2.77 (3) 3.526 (3) 139 (2)
Symmetry code: (i) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of structural study of 1,2,4-triazole-5(4H)-thione derivatives in our group (Wang et al., 2011), we present here the crystal structure of the title compound, (I).

In (I) (Fig.1), all bond lengths and angles are normal and comparable with those observed in related structures (Al-Tamimi et al., 2010; Fun et al., 2009; Tan et al., 2010; Wang et al., 2011). The C1 atom in the triazole ring deviates from the normal Csp2 hybridization state having the bond angles of 102.49 (19)° (N1—C1—N3) and 129.67 (18)° (N1—C1—S1). The three benzene rings in the molecule are inclined with respect to the 1,2,4-triazole ring [dihedral angles of 37.7 (2)° (C18—C23), 71.9 (2)° (C6—C11) and 84.9 (2)% (C12—C17)]. Benzene ring A (C18—C23) attached to the triazole ring makes the dihedral angles of 97.3 (2) and 84.7 (2)° with the benzene rings B (C6—C11) and C (C12—C17), respectively. Rings B and C form a dihedral angle of 60.4 (2)°.

In the crystal structure, intermolecular N—H···S hydrogen bonds (Table 1) link the adjacent molecules into centrosymmetric dimers.

Related literature top

For the crystal structures of related 1,2,4-triazole-5(4H)-thione derivates, see: Al-Tamimi et al. (2010); Fun et al. (2009); Tan et al. (2010); Wang et al. (2011).

Experimental top

The title compound was synthesized by the reaction of the 3-(2-chlorophenyl)-1- (4-methylphenyl)-2-propen-1-one (2.0 mmol) with 4-amino-3-phenyl-4H-1,2,4- triazole-5-thiol (2.0 mmol) in ethanol. The reaction progress was monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as colourless solid in 75% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

Refinement top

The H atoms attached to N atoms were located on a difference map and isotropically refined. C-bound H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and refined as riding, with Uiso(H) = 1.2-1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 55% probability level.
3-[4-Amino-3-(4-methylphenyl)-5-sulfanylidene-4,5-dihydro-1H- 1,2,4-triazol-1-yl]-3-(2-chlorophenyl)-1-phenylpropan-1-one top
Crystal data top
C24H21ClN4OSF(000) = 936
Mr = 448.96Dx = 1.321 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6624 reflections
a = 10.9873 (12) Åθ = 1.7–27.2°
b = 11.8220 (14) ŵ = 0.29 mm1
c = 17.438 (3) ÅT = 113 K
β = 94.828 (7)°Prism, colourless
V = 2257.1 (5) Å30.30 × 0.08 × 0.08 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4989 independent reflections
Radiation source: rotating anode3972 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.065
Detector resolution: 14.63 pixels mm-1θmax = 27.2°, θmin = 2.1°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1515
Tmin = 0.919, Tmax = 0.978l = 2022
22007 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.058P)2 + 0.3265P]
where P = (Fo2 + 2Fc2)/3
4989 reflections(Δ/σ)max = 0.002
289 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
C24H21ClN4OSV = 2257.1 (5) Å3
Mr = 448.96Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9873 (12) ŵ = 0.29 mm1
b = 11.8220 (14) ÅT = 113 K
c = 17.438 (3) Å0.30 × 0.08 × 0.08 mm
β = 94.828 (7)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4989 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3972 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.978Rint = 0.065
22007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.93 e Å3
4989 reflectionsΔρmin = 0.76 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.02423 (6)0.49557 (5)0.11191 (4)0.03397 (19)
Cl10.32308 (8)0.64505 (9)0.19347 (5)0.0734 (3)
O10.05692 (16)0.81675 (14)0.24353 (10)0.0345 (4)
N10.00694 (16)0.72168 (16)0.08127 (10)0.0235 (4)
N20.06436 (17)0.80772 (15)0.04491 (11)0.0248 (4)
N30.15533 (16)0.64405 (16)0.03124 (11)0.0260 (4)
N40.2416 (2)0.5653 (2)0.00864 (18)0.0378 (6)
C10.0594 (2)0.61979 (19)0.07433 (13)0.0253 (5)
C20.15630 (19)0.75776 (19)0.01521 (13)0.0234 (5)
C30.1037 (2)0.7430 (2)0.12081 (13)0.0254 (5)
H30.10250.69210.16670.030*
C40.1022 (2)0.86520 (19)0.14850 (13)0.0265 (5)
H4C0.10260.91620.10340.032*
H4D0.17720.88010.17450.032*
C50.0087 (2)0.8918 (2)0.20371 (13)0.0248 (5)
C60.05468 (19)1.01009 (19)0.20922 (12)0.0238 (5)
C70.1565 (2)1.0353 (2)0.25923 (15)0.0358 (6)
H70.19630.97640.28880.043*
C80.2006 (3)1.1444 (2)0.26661 (16)0.0448 (7)
H80.27181.15980.29980.054*
C90.1412 (2)1.2315 (2)0.22572 (16)0.0422 (7)
H90.16951.30710.23200.051*
C100.0406 (2)1.2074 (2)0.17581 (16)0.0412 (7)
H100.00021.26670.14730.049*
C110.0015 (2)1.0977 (2)0.16691 (14)0.0321 (6)
H110.06981.08210.13140.038*
C120.2167 (2)0.7165 (2)0.06798 (14)0.0276 (5)
C130.3211 (2)0.6709 (2)0.09597 (16)0.0413 (7)
C140.4247 (2)0.6455 (2)0.0482 (2)0.0495 (8)
H140.49430.61360.06890.059*
C150.4263 (3)0.6667 (2)0.02916 (19)0.0473 (8)
H150.49670.64870.06230.057*
C160.3258 (3)0.7140 (2)0.05900 (16)0.0416 (7)
H160.32740.72990.11250.050*
C170.2220 (2)0.7383 (2)0.01052 (15)0.0337 (6)
H170.15300.77060.03160.040*
C180.24385 (19)0.8188 (2)0.02880 (13)0.0249 (5)
C190.2891 (2)0.7736 (2)0.09446 (14)0.0320 (6)
H190.26700.69930.11100.038*
C200.3669 (2)0.8382 (2)0.13548 (14)0.0361 (6)
H200.39780.80680.18010.043*
C210.4010 (2)0.9470 (2)0.11339 (14)0.0345 (6)
C220.3555 (2)0.9906 (2)0.04791 (15)0.0317 (6)
H220.37801.06490.03140.038*
C230.2777 (2)0.9280 (2)0.00594 (14)0.0279 (5)
H230.24720.95980.03870.033*
C240.4854 (3)1.0158 (3)0.15917 (17)0.0521 (8)
H24A0.50021.08960.13450.078*
H24B0.44761.02680.21160.078*
H24C0.56310.97570.16110.078*
H4A0.257 (3)0.526 (3)0.0465 (18)0.046 (10)*
H4B0.201 (3)0.518 (2)0.0274 (16)0.040 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0322 (3)0.0223 (4)0.0465 (4)0.0008 (3)0.0020 (3)0.0056 (3)
Cl10.0556 (5)0.1144 (8)0.0517 (5)0.0340 (5)0.0137 (4)0.0089 (5)
O10.0406 (10)0.0255 (10)0.0351 (10)0.0017 (8)0.0099 (8)0.0046 (8)
N10.0227 (10)0.0214 (10)0.0258 (10)0.0006 (8)0.0008 (7)0.0011 (8)
N20.0253 (10)0.0208 (10)0.0283 (11)0.0008 (8)0.0015 (8)0.0007 (8)
N30.0202 (10)0.0208 (11)0.0364 (12)0.0037 (8)0.0021 (8)0.0019 (9)
N40.0296 (12)0.0249 (13)0.0590 (17)0.0091 (10)0.0051 (11)0.0017 (12)
C10.0211 (11)0.0233 (13)0.0299 (13)0.0008 (9)0.0067 (9)0.0037 (10)
C20.0222 (11)0.0216 (12)0.0254 (12)0.0027 (9)0.0044 (9)0.0011 (9)
C30.0259 (12)0.0256 (13)0.0247 (12)0.0005 (10)0.0023 (9)0.0007 (10)
C40.0246 (12)0.0261 (13)0.0284 (13)0.0019 (10)0.0000 (9)0.0029 (10)
C50.0246 (12)0.0273 (13)0.0226 (12)0.0033 (10)0.0017 (9)0.0028 (10)
C60.0225 (11)0.0271 (13)0.0221 (12)0.0001 (9)0.0033 (9)0.0000 (9)
C70.0364 (14)0.0276 (14)0.0413 (15)0.0038 (11)0.0102 (11)0.0013 (12)
C80.0398 (16)0.0377 (17)0.0529 (18)0.0070 (13)0.0200 (13)0.0024 (13)
C90.0423 (15)0.0306 (15)0.0521 (18)0.0129 (12)0.0046 (13)0.0048 (13)
C100.0408 (15)0.0325 (15)0.0476 (17)0.0059 (12)0.0124 (12)0.0124 (13)
C110.0292 (13)0.0299 (14)0.0352 (14)0.0032 (10)0.0088 (10)0.0087 (11)
C120.0230 (12)0.0246 (13)0.0346 (14)0.0003 (10)0.0006 (9)0.0075 (11)
C130.0343 (14)0.0441 (17)0.0453 (16)0.0057 (12)0.0026 (12)0.0060 (13)
C140.0254 (14)0.0420 (18)0.080 (2)0.0056 (12)0.0003 (14)0.0081 (16)
C150.0326 (15)0.0358 (16)0.069 (2)0.0100 (12)0.0210 (14)0.0123 (15)
C160.0424 (16)0.0352 (16)0.0441 (16)0.0098 (12)0.0157 (12)0.0064 (13)
C170.0323 (13)0.0302 (14)0.0369 (15)0.0044 (11)0.0067 (10)0.0023 (11)
C180.0188 (11)0.0264 (13)0.0290 (12)0.0058 (9)0.0016 (9)0.0037 (10)
C190.0290 (13)0.0350 (15)0.0313 (14)0.0040 (11)0.0022 (10)0.0027 (11)
C200.0304 (13)0.0516 (18)0.0265 (13)0.0094 (12)0.0028 (10)0.0013 (12)
C210.0227 (12)0.0462 (17)0.0339 (14)0.0019 (11)0.0010 (10)0.0110 (12)
C220.0270 (13)0.0299 (14)0.0377 (14)0.0024 (10)0.0001 (10)0.0065 (11)
C230.0264 (12)0.0278 (14)0.0293 (13)0.0043 (10)0.0016 (9)0.0013 (10)
C240.0441 (17)0.071 (2)0.0422 (18)0.0056 (15)0.0100 (13)0.0162 (15)
Geometric parameters (Å, º) top
S1—C11.667 (2)C10—C111.381 (3)
Cl1—C131.730 (3)C10—H100.9500
O1—C51.220 (3)C11—H110.9500
N1—C11.345 (3)C12—C171.390 (3)
N1—N21.379 (2)C12—C131.391 (3)
N1—C31.468 (3)C13—C141.387 (4)
N2—C21.314 (3)C14—C151.371 (4)
N3—C21.373 (3)C14—H140.9500
N3—C11.375 (3)C15—C161.378 (4)
N3—N41.409 (3)C15—H150.9500
N4—H4A0.81 (3)C16—C171.392 (3)
N4—H4B0.93 (3)C16—H160.9500
C2—C181.469 (3)C17—H170.9500
C3—C121.516 (3)C18—C231.393 (3)
C3—C41.523 (3)C18—C191.393 (3)
C3—H31.0000C19—C201.388 (3)
C4—C51.520 (3)C19—H190.9500
C4—H4C0.9900C20—C211.385 (4)
C4—H4D0.9900C20—H200.9500
C5—C61.487 (3)C21—C221.384 (3)
C6—C111.386 (3)C21—C241.511 (4)
C6—C71.392 (3)C22—C231.385 (3)
C7—C81.381 (4)C22—H220.9500
C7—H70.9500C23—H230.9500
C8—C91.384 (4)C24—H24A0.9800
C8—H80.9500C24—H24B0.9800
C9—C101.378 (4)C24—H24C0.9800
C9—H90.9500
C1—N1—N2113.77 (18)C10—C11—C6120.8 (2)
C1—N1—C3124.99 (19)C10—C11—H11119.6
N2—N1—C3121.21 (18)C6—C11—H11119.6
C2—N2—N1104.26 (18)C17—C12—C13116.8 (2)
C2—N3—C1109.56 (18)C17—C12—C3121.6 (2)
C2—N3—N4124.99 (19)C13—C12—C3121.6 (2)
C1—N3—N4125.4 (2)C14—C13—C12122.2 (3)
N3—N4—H4A104 (2)C14—C13—Cl1118.3 (2)
N3—N4—H4B107.0 (17)C12—C13—Cl1119.5 (2)
H4A—N4—H4B105 (3)C15—C14—C13119.5 (3)
N1—C1—N3102.49 (19)C15—C14—H14120.2
N1—C1—S1129.67 (18)C13—C14—H14120.2
N3—C1—S1127.75 (17)C14—C15—C16120.1 (3)
N2—C2—N3109.91 (19)C14—C15—H15119.9
N2—C2—C18123.0 (2)C16—C15—H15119.9
N3—C2—C18127.1 (2)C15—C16—C17119.7 (3)
N1—C3—C12110.34 (18)C15—C16—H16120.1
N1—C3—C4108.91 (18)C17—C16—H16120.1
C12—C3—C4112.02 (18)C12—C17—C16121.6 (3)
N1—C3—H3108.5C12—C17—H17119.2
C12—C3—H3108.5C16—C17—H17119.2
C4—C3—H3108.5C23—C18—C19119.0 (2)
C5—C4—C3112.57 (19)C23—C18—C2118.5 (2)
C5—C4—H4C109.1C19—C18—C2122.4 (2)
C3—C4—H4C109.1C20—C19—C18119.4 (2)
C5—C4—H4D109.1C20—C19—H19120.3
C3—C4—H4D109.1C18—C19—H19120.3
H4C—C4—H4D107.8C21—C20—C19122.1 (2)
O1—C5—C6121.2 (2)C21—C20—H20119.0
O1—C5—C4119.8 (2)C19—C20—H20119.0
C6—C5—C4119.02 (19)C22—C21—C20117.9 (2)
C11—C6—C7118.2 (2)C22—C21—C24121.0 (3)
C11—C6—C5122.3 (2)C20—C21—C24121.1 (2)
C7—C6—C5119.5 (2)C21—C22—C23121.2 (2)
C8—C7—C6121.0 (2)C21—C22—H22119.4
C8—C7—H7119.5C23—C22—H22119.4
C6—C7—H7119.5C22—C23—C18120.4 (2)
C7—C8—C9120.0 (2)C22—C23—H23119.8
C7—C8—H8120.0C18—C23—H23119.8
C9—C8—H8120.0C21—C24—H24A109.5
C10—C9—C8119.4 (3)C21—C24—H24B109.5
C10—C9—H9120.3H24A—C24—H24B109.5
C8—C9—H9120.3C21—C24—H24C109.5
C9—C10—C11120.6 (2)H24A—C24—H24C109.5
C9—C10—H10119.7H24B—C24—H24C109.5
C11—C10—H10119.7
C1—N1—N2—C20.7 (2)C9—C10—C11—C61.5 (4)
C3—N1—N2—C2178.69 (18)C7—C6—C11—C101.7 (4)
N2—N1—C1—N30.1 (2)C5—C6—C11—C10177.3 (2)
C3—N1—C1—N3178.02 (19)N1—C3—C12—C1736.0 (3)
N2—N1—C1—S1176.98 (16)C4—C3—C12—C1785.5 (3)
C3—N1—C1—S15.1 (3)N1—C3—C12—C13145.1 (2)
C2—N3—C1—N10.5 (2)C4—C3—C12—C1393.4 (3)
N4—N3—C1—N1178.9 (2)C17—C12—C13—C141.6 (4)
C2—N3—C1—S1176.44 (17)C3—C12—C13—C14179.5 (2)
N4—N3—C1—S12.0 (3)C17—C12—C13—Cl1178.24 (19)
N1—N2—C2—N31.0 (2)C3—C12—C13—Cl10.7 (3)
N1—N2—C2—C18179.51 (19)C12—C13—C14—C150.7 (4)
C1—N3—C2—N21.0 (2)Cl1—C13—C14—C15179.1 (2)
N4—N3—C2—N2179.4 (2)C13—C14—C15—C160.7 (4)
C1—N3—C2—C18179.5 (2)C14—C15—C16—C171.1 (4)
N4—N3—C2—C181.1 (4)C13—C12—C17—C161.1 (4)
C1—N1—C3—C1282.3 (3)C3—C12—C17—C16180.0 (2)
N2—N1—C3—C1295.4 (2)C15—C16—C17—C120.3 (4)
C1—N1—C3—C4154.4 (2)N2—C2—C18—C2336.4 (3)
N2—N1—C3—C427.9 (3)N3—C2—C18—C23144.2 (2)
N1—C3—C4—C559.6 (2)N2—C2—C18—C19140.3 (2)
C12—C3—C4—C5178.04 (19)N3—C2—C18—C1939.1 (3)
C3—C4—C5—O128.0 (3)C23—C18—C19—C200.1 (3)
C3—C4—C5—C6153.21 (19)C2—C18—C19—C20176.8 (2)
O1—C5—C6—C11177.3 (2)C18—C19—C20—C210.3 (4)
C4—C5—C6—C111.4 (3)C19—C20—C21—C220.4 (4)
O1—C5—C6—C71.7 (3)C19—C20—C21—C24179.8 (2)
C4—C5—C6—C7179.6 (2)C20—C21—C22—C230.4 (4)
C11—C6—C7—C80.0 (4)C24—C21—C22—C23179.7 (2)
C5—C6—C7—C8179.1 (2)C21—C22—C23—C180.3 (4)
C6—C7—C8—C92.0 (4)C19—C18—C23—C220.1 (3)
C7—C8—C9—C102.3 (4)C2—C18—C23—C22176.9 (2)
C8—C9—C10—C110.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···S1i0.93 (3)2.77 (3)3.526 (3)139 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H21ClN4OS
Mr448.96
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)10.9873 (12), 11.8220 (14), 17.438 (3)
β (°) 94.828 (7)
V3)2257.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.08 × 0.08
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.919, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
22007, 4989, 3972
Rint0.065
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.145, 1.11
No. of reflections4989
No. of parameters289
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.93, 0.76

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···S1i0.93 (3)2.77 (3)3.526 (3)139 (2)
Symmetry code: (i) x, y+1, z.
 

References

First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o495–o496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o2224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds