organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(1H-benzimidazol-1-yl)but-2-ene

aCollege of Chemical Engineering, Hebei United University, Tangshan 063009, People's Republic of China, and bQian'an College, Hebei United University, Tangshan 063009, People's Republic of China
*Correspondence e-mail: tsdgying@126.com

(Received 6 June 2011; accepted 20 June 2011; online 25 June 2011)

In the pseudo-centrosymmetric mol­ecule of the title compound, C18H16N4, two benzimidazole fragments form the dihedral angles of 83.49 (7) and 79.37 (7)°, with the mean plane of the linking butene chain. No classical inter­molecular inter­actions are observed. The porous crystal packing exhibits voids of 85 Å3.

Related literature

For applications of benzimidazole derivatives, see: Tidwell et al. (1993[Tidwell, R. R., Jones, S. K., Naiman, N. A., Berger, L. C., Brake, W. B., Dykstra, C. C. & Hall, J. E. (1993). Antimicrob. Agents Chemother. 37, 1713-1716.]); Santra & Dogra (1999[Santra, S. & Dogra, S. K. (1999). J. Mol. Struct. 476, 223-233.]). For related structures, see: Su et al. (2003[Su, C.-Y., Cai, Y.-P., Chen, C.-L., Smith, M. D., Kaim, W. & zur Loye, H.-C. (2003). J. Am. Chem. Soc. 125, 8595-8613.]); Chen et al. (2007[Chen, C.-L., Zhang, J.-Y. & Su, C.-Y. (2007). Eur. J. Inorg. Chem. pp. 2997- 3010.]); Liu et al. (2011[Liu, T.-F., Wu, W.-F., Wan, C.-Q., He, C.-H., Jiao, C.-H. & Cui, G.-H. (2011). J. Coord. Chem. 64, 975-986.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N4

  • Mr = 288.35

  • Monoclinic, P 21 /c

  • a = 12.564 (3) Å

  • b = 9.140 (2) Å

  • c = 18.131 (3) Å

  • β = 127.281 (12)°

  • V = 1656.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.956, Tmax = 0.996

  • 12226 measured reflections

  • 2925 independent reflections

  • 1639 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.133

  • S = 1.01

  • 2925 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bis-benzimidazole compounds have have been widely used due to their anti-viral activities (Tidwell et al., 1993), photochemical and photophysical properties (Santra & Dogra, 1999). They have found applications in supramolecular coordination chemistry to generate various coordination architectures (Su et al., 2003; Chen et al., 2007; Liu et al., 2011). Herewith we report the crystal structure of the title bis-benzimidazole compound (I).

In (I) (Fig. 1), the molecule adopts a trans conformation. Two benzimidazole fragments form the dihedral angles of 83.49 (7) and 79.37 (7) °, respectively, with the mean plane of linking them butene chain. The C11—C10—C9—C8 torsion angle is 176.5 (3)°. The average bond distances and angles for the benzimidazole ring are in agreement with those in related benzimidazole compounds (Chen et al., 2007; Liu et al.2011). In the absence of classical intermolecular interactions, the porous crystal packing exhibits voids of 85 Å3.

Related literature top

For applications of benzimidazole derivatives, see: Tidwell et al. (1993); Santra & Dogra (1999). For related structures, see: Su et al. (2003); Chen et al. (2007); Liu et al. (2011).

Experimental top

The title compound was prepared according to the literature (Liu et al., 2011). Single crystals were grown from an ethanol solution over a period of several days at room temperature.

Refinement top

H atoms were placed in calculated positions (C—H 0.93-0.97 Å), and refined with a riding model, with Uiso(H) = 1.2Ueq(C). The program Squeeze in PLATON (Spek, 2009) was applied to remove regions of diffuse electron density that could not be satisfactorily modeled.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level.
1,4-Bis(1H-benzimidazol-1-yl)but-2-ene top
Crystal data top
C18H16N4F(000) = 608
Mr = 288.35Dx = 1.156 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4528 reflections
a = 12.564 (3) Åθ = 3.5–20.3°
b = 9.140 (2) ŵ = 0.07 mm1
c = 18.131 (3) ÅT = 295 K
β = 127.281 (12)°Block, colourless
V = 1656.7 (6) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2925 independent reflections
Radiation source: fine–focus sealed tube1639 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.956, Tmax = 0.996k = 1010
12226 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0545P)2]
where P = (Fo2 + 2Fc2)/3
2925 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C18H16N4V = 1656.7 (6) Å3
Mr = 288.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.564 (3) ŵ = 0.07 mm1
b = 9.140 (2) ÅT = 295 K
c = 18.131 (3) Å0.20 × 0.18 × 0.17 mm
β = 127.281 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2925 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1639 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.996Rint = 0.056
12226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
2925 reflectionsΔρmin = 0.14 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.93808 (17)0.12271 (19)0.16716 (12)0.0514 (5)
N21.0262 (2)0.1093 (2)0.31752 (13)0.0646 (6)
N30.55655 (17)0.1198 (2)0.20779 (12)0.0533 (5)
N40.4402 (2)0.1102 (2)0.36219 (14)0.0724 (6)
C11.0390 (2)0.0742 (2)0.25325 (18)0.0632 (7)
H11.11110.02060.26550.076*
C20.9075 (2)0.1874 (2)0.27030 (15)0.0528 (6)
C30.8415 (3)0.2500 (3)0.30264 (17)0.0650 (7)
H30.87660.24360.36480.078*
C40.7230 (3)0.3217 (3)0.2396 (2)0.0710 (7)
H40.67710.36410.25950.085*
C50.6706 (2)0.3319 (3)0.14720 (18)0.0662 (7)
H50.59070.38220.10680.079*
C60.7322 (2)0.2708 (2)0.11317 (16)0.0567 (6)
H60.69620.27780.05090.068*
C70.8516 (2)0.1974 (2)0.17686 (14)0.0474 (6)
C80.9207 (2)0.0957 (2)0.08116 (15)0.0592 (6)
H8A0.89730.18650.04690.071*
H8B1.00430.06120.09550.071*
C90.8136 (2)0.0152 (3)0.02248 (17)0.0590 (6)
H90.82770.10960.04600.071*
C100.7016 (2)0.0108 (2)0.05950 (17)0.0600 (6)
H100.69020.10370.08430.072*
C110.5908 (2)0.0964 (3)0.11649 (16)0.0678 (7)
H11B0.51220.06160.12350.081*
H11A0.61660.18920.08390.081*
C120.4456 (2)0.0739 (3)0.2902 (2)0.0684 (7)
H120.37830.02070.29530.082*
C130.5584 (2)0.1877 (2)0.32404 (15)0.0548 (6)
C140.6068 (3)0.2551 (3)0.36690 (17)0.0738 (8)
H140.55990.25080.43080.089*
C150.7263 (3)0.3282 (3)0.3115 (2)0.0797 (8)
H150.75970.37610.33880.096*
C160.7985 (2)0.3327 (3)0.2160 (2)0.0699 (7)
H160.87940.38270.18070.084*
C170.7535 (2)0.2653 (2)0.17234 (16)0.0545 (6)
H170.80210.26730.10820.065*
C180.6318 (2)0.1941 (2)0.22858 (14)0.0443 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0494 (11)0.0484 (11)0.0549 (12)0.0002 (9)0.0308 (11)0.0018 (9)
N20.0630 (13)0.0578 (13)0.0591 (13)0.0018 (11)0.0297 (11)0.0044 (10)
N30.0467 (11)0.0536 (12)0.0573 (12)0.0023 (10)0.0303 (10)0.0052 (10)
N40.0592 (14)0.0724 (15)0.0568 (13)0.0074 (12)0.0201 (11)0.0030 (11)
C10.0531 (15)0.0533 (16)0.0684 (18)0.0049 (12)0.0291 (15)0.0048 (13)
C20.0570 (15)0.0439 (13)0.0556 (15)0.0049 (12)0.0331 (13)0.0007 (11)
C30.084 (2)0.0591 (16)0.0631 (16)0.0103 (14)0.0507 (16)0.0061 (12)
C40.0794 (19)0.0583 (17)0.094 (2)0.0030 (15)0.0625 (18)0.0055 (15)
C50.0515 (15)0.0570 (16)0.084 (2)0.0026 (13)0.0376 (15)0.0007 (13)
C60.0537 (15)0.0529 (15)0.0532 (14)0.0025 (12)0.0269 (13)0.0030 (11)
C70.0455 (13)0.0417 (13)0.0488 (14)0.0046 (11)0.0253 (12)0.0022 (10)
C80.0641 (15)0.0595 (15)0.0607 (15)0.0039 (13)0.0413 (13)0.0064 (12)
C90.0732 (16)0.0531 (15)0.0619 (16)0.0067 (13)0.0468 (15)0.0067 (12)
C100.0753 (17)0.0540 (15)0.0641 (16)0.0089 (14)0.0492 (15)0.0122 (12)
C110.0686 (17)0.0706 (17)0.0766 (18)0.0148 (14)0.0504 (15)0.0169 (13)
C120.0478 (15)0.0543 (16)0.082 (2)0.0080 (12)0.0285 (16)0.0017 (14)
C130.0522 (15)0.0512 (14)0.0527 (14)0.0033 (12)0.0274 (13)0.0001 (11)
C140.083 (2)0.082 (2)0.0539 (16)0.0163 (16)0.0402 (16)0.0155 (14)
C150.080 (2)0.079 (2)0.105 (2)0.0119 (17)0.0691 (19)0.0235 (17)
C160.0555 (15)0.0593 (17)0.092 (2)0.0005 (13)0.0430 (16)0.0075 (14)
C170.0485 (14)0.0457 (14)0.0588 (15)0.0036 (11)0.0271 (13)0.0026 (11)
C180.0420 (13)0.0384 (12)0.0490 (14)0.0039 (11)0.0258 (11)0.0027 (10)
Geometric parameters (Å, º) top
N1—C11.358 (3)C8—C91.495 (3)
N1—C71.382 (2)C8—H8A0.9700
N1—C81.458 (2)C8—H8B0.9700
N2—C11.309 (3)C9—C101.308 (3)
N2—C21.387 (3)C9—H90.9300
N3—C121.352 (3)C10—C111.491 (3)
N3—C181.389 (2)C10—H100.9300
N3—C111.452 (3)C11—H11B0.9700
N4—C121.308 (3)C11—H11A0.9700
N4—C131.393 (3)C12—H120.9300
C1—H10.9300C13—C181.384 (3)
C2—C71.389 (3)C13—C141.387 (3)
C2—C31.395 (3)C14—C151.372 (3)
C3—C41.375 (3)C14—H140.9300
C3—H30.9300C15—C161.387 (3)
C4—C51.383 (3)C15—H150.9300
C4—H40.9300C16—C171.365 (3)
C5—C61.368 (3)C16—H160.9300
C5—H50.9300C17—C181.383 (3)
C6—C71.391 (3)C17—H170.9300
C6—H60.9300
C1—N1—C7105.92 (18)H8A—C8—H8B108.0
C1—N1—C8127.2 (2)C10—C9—C8124.8 (2)
C7—N1—C8126.83 (18)C10—C9—H9117.6
C1—N2—C2104.1 (2)C8—C9—H9117.6
C12—N3—C18105.52 (19)C9—C10—C11125.3 (2)
C12—N3—C11127.5 (2)C9—C10—H10117.3
C18—N3—C11126.95 (19)C11—C10—H10117.3
C12—N4—C13103.8 (2)N3—C11—C10113.18 (19)
N2—C1—N1114.2 (2)N3—C11—H11B108.9
N2—C1—H1122.9C10—C11—H11B108.9
N1—C1—H1122.9N3—C11—H11A108.9
N2—C2—C7110.3 (2)C10—C11—H11A108.9
N2—C2—C3130.0 (2)H11B—C11—H11A107.8
C7—C2—C3119.7 (2)N4—C12—N3114.8 (2)
C4—C3—C2117.8 (2)N4—C12—H12122.6
C4—C3—H3121.1N3—C12—H12122.6
C2—C3—H3121.1C18—C13—C14119.7 (2)
C3—C4—C5121.3 (2)C18—C13—N4110.2 (2)
C3—C4—H4119.3C14—C13—N4130.1 (2)
C5—C4—H4119.3C15—C14—C13117.6 (2)
C6—C5—C4122.3 (2)C15—C14—H14121.2
C6—C5—H5118.8C13—C14—H14121.2
C4—C5—H5118.8C14—C15—C16121.7 (2)
C5—C6—C7116.3 (2)C14—C15—H15119.1
C5—C6—H6121.9C16—C15—H15119.1
C7—C6—H6121.9C17—C16—C15121.6 (2)
N1—C7—C2105.48 (19)C17—C16—H16119.2
N1—C7—C6131.9 (2)C15—C16—H16119.2
C2—C7—C6122.6 (2)C16—C17—C18116.5 (2)
N1—C8—C9111.31 (18)C16—C17—H17121.8
N1—C8—H8A109.4C18—C17—H17121.8
C9—C8—H8A109.4C17—C18—C13122.9 (2)
N1—C8—H8B109.4C17—C18—N3131.3 (2)
C9—C8—H8B109.4C13—C18—N3105.72 (19)
C2—N2—C1—N10.1 (3)C12—N3—C11—C10108.2 (3)
C7—N1—C1—N20.3 (2)C18—N3—C11—C1071.6 (3)
C8—N1—C1—N2176.94 (19)C9—C10—C11—N3123.4 (2)
C1—N2—C2—C70.2 (2)C13—N4—C12—N30.2 (3)
C1—N2—C2—C3178.6 (2)C18—N3—C12—N40.1 (3)
N2—C2—C3—C4179.6 (2)C11—N3—C12—N4179.9 (2)
C7—C2—C3—C40.8 (3)C12—N4—C13—C180.4 (2)
C2—C3—C4—C50.2 (3)C12—N4—C13—C14178.9 (2)
C3—C4—C5—C60.7 (4)C18—C13—C14—C151.1 (3)
C4—C5—C6—C70.2 (3)N4—C13—C14—C15178.1 (2)
C1—N1—C7—C20.4 (2)C13—C14—C15—C161.4 (4)
C8—N1—C7—C2176.86 (18)C14—C15—C16—C170.5 (4)
C1—N1—C7—C6179.6 (2)C15—C16—C17—C180.7 (3)
C8—N1—C7—C63.1 (3)C16—C17—C18—C131.0 (3)
N2—C2—C7—N10.4 (2)C16—C17—C18—N3177.8 (2)
C3—C2—C7—N1178.58 (19)C14—C13—C18—C170.1 (3)
N2—C2—C7—C6179.66 (19)N4—C13—C18—C17179.48 (19)
C3—C2—C7—C61.3 (3)C14—C13—C18—N3178.9 (2)
C5—C6—C7—N1179.1 (2)N4—C13—C18—N30.4 (2)
C5—C6—C7—C20.8 (3)C12—N3—C18—C17179.2 (2)
C1—N1—C8—C9104.7 (2)C11—N3—C18—C170.9 (3)
C7—N1—C8—C972.0 (3)C12—N3—C18—C130.3 (2)
N1—C8—C9—C10116.2 (2)C11—N3—C18—C13179.85 (19)
C8—C9—C10—C11176.37 (19)

Experimental details

Crystal data
Chemical formulaC18H16N4
Mr288.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)12.564 (3), 9.140 (2), 18.131 (3)
β (°) 127.281 (12)
V3)1656.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.956, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
12226, 2925, 1639
Rint0.056
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.133, 1.01
No. of reflections2925
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Hebei United University for support of this work.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C.-L., Zhang, J.-Y. & Su, C.-Y. (2007). Eur. J. Inorg. Chem. pp. 2997– 3010.  CrossRef Google Scholar
First citationLiu, T.-F., Wu, W.-F., Wan, C.-Q., He, C.-H., Jiao, C.-H. & Cui, G.-H. (2011). J. Coord. Chem. 64, 975–986.  CrossRef CAS Google Scholar
First citationSantra, S. & Dogra, S. K. (1999). J. Mol. Struct. 476, 223–233.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C.-Y., Cai, Y.-P., Chen, C.-L., Smith, M. D., Kaim, W. & zur Loye, H.-C. (2003). J. Am. Chem. Soc. 125, 8595–8613.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTidwell, R. R., Jones, S. K., Naiman, N. A., Berger, L. C., Brake, W. B., Dykstra, C. C. & Hall, J. E. (1993). Antimicrob. Agents Chemother. 37, 1713–1716.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds