metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m867-m868

Tris(1,10-phenanthroline)cadmium 3,3′-dicarb­­oxy-4,4′-diazenedi­yl­dibenzoate–4,4′-diazenediyldiphthalic acid–methanol (1/0.5/1)

aInstitute of Functionalized Materials, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China, and bCollege of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
*Correspondence e-mail: scwangjun2011@126.com

(Received 9 May 2011; accepted 30 May 2011; online 11 June 2011)

In the title compoud, [Cd(C12H8N2)3](C16H8N2O8)·0.5C16H10N2O8·CH3OH, the CdII atom has a distorted octa­hedral coordination formed by six N atoms from three separate phenanthroline ligands. One of the 4,4′-diazenediyldiphthalic acid mol­ecules is arranged around an inversion center and possesses two –COOH groups, while the other is partially deprotonated and is a dianion for charge balance. It can be noted that, in the undeprotonated acid, the –COOH groups are disordered over two positions by rotation around the C—C bond linking the –COOH group to the phenyl ring. Surprisingly, the H atom is not involved in the disorder. In the dianion, the remaining H atom is located between the two COO groups. These deprotonated and undeprotonated mol­ecules are linked by O—H⋯O hydrogen bonds, forming a chain developing parallel to the [111] direction. The methanol solvent molecule is highly disordered; it was not considered in the final model by elimination of its contribution from the intensity data.

Related literature

For background to crystal engineering, see: Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]). For rigid carb­oxy­lic acids, see: Banerjee et al. (2008[Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, F., O'Keffe, M. & Yaghi, O. M. (2008). Science, 319, 939-943.]); Liu, Huang et al. (2011[Liu, J. Q., Huang, Y. S., Zhao, Y. Y. & Jia, Z. B. (2011). Cryst. Growth Des. 11, 569-574.]). For related chelating N-donor ligands, see: Liu, Jia & Wang (2011[Liu, J. Q., Jia, Z. B. & Wang, Y. Y. (2011). J. Mol. Struct. 987, 126-131.]); Liu (2011[Liu, J. Q. (2011). J. Coord. Chem. 64, 1503-1512.]); Breneman & Parker (1993[Breneman, G. L. & Parker, O. J. (1993). Polyhedron, 12, 891-895.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C12H8N2)3](C16H8N2O8)·0.5C16H10N2O8·CH4O

  • Mr = 1220.43

  • Triclinic, [p \overline 1]

  • a = 13.6902 (9) Å

  • b = 13.7659 (9) Å

  • c = 16.9518 (11) Å

  • α = 79.022 (1)°

  • β = 73.492 (1)°

  • γ = 64.439 (1)°

  • V = 2754.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 298 K

  • 0.23 × 0.16 × 0.07 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.900, Tmax = 0.968

  • 21086 measured reflections

  • 10030 independent reflections

  • 8170 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.103

  • S = 1.07

  • 9876 reflections

  • 775 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O7 1.15 1.24 2.386 (4) 174
O10—H10A⋯O11 1.10 1.41 2.367 (4) 141

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.], 2010[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the past decade, much progress has been achieved in the synthesis and structural characterization of metal-organic frameworks(MOFs) due to their potential applications (Yaghi et al., 2003; Kitagawa et al., 2004). Generally, the multidentate organic ligands containing coordination sites of O donors are widely used as building blocks in the construction of MOFs (Banerjee et al., 2008; Liu, Huang et al., 2011). On the other hand, 1, 10-Phenanthroline, one of those ligands, has usually been used to construct a great variety of structurally interesting entities, such as monomers(Breneman & Parker, 1993; Liu, Jia & Wang, 2011; Liu, 2011). Herein, we are interested in self-assemblies of Cd(II) ion with H4L and phenanthroline, which led to the preparation of the title compound.

In the asymmetric unit of title compound, there are one Cd(II) ion, three phen ligands, one deprotonated H2L, a half undeprotonated H4L ligand and one methanol molecule. As shown in Fig. 1. The Cd(II) atom is six-coordinated in a slightly distorted octahedral geometry defined by six N atoms from three different phen ligands. Interestingly, one of the (4,4'-diazenediyldiphthalic acid) is arranged around inversion center and possess two COOH groups, while the other is partially deprotonated and it is a dianion for balancing the charge. The Cd-N bond distances range from 2.329 (3) to 2.366 (3)Å. The N4-Cd1-N5 and N1-Cd1-N5 bond angles are 90.58 (9) and 93.19 (9)°, respectively. From the above values, it appears that the three phen ligands are nearly perpendicular to each other.

In H2L, the acidic H atom is nearly engaged in a bridging O···H···O interactions (Table 1). Furthermore, The molecules of H4L are linked by O-H···O hydrogen bonds to two H2L on both sides, forming a one-dimensional chain with void parallel to the [1 1 1] direction (Fig. 2, Table 1). The disordered methanol molecule is located in the void. The Cd(II) complexes are antiparallel to the above chains. The above hydrogen bonds could participate to the stabilization of the title complex.

Related literature top

For background to crystal engineering, see: Yaghi et al. (2003); Kitagawa et al. (2004). For rigid carboxylic acids, see: Banerjee et al. (2008); Liu, Huang et al. (2011). For related chelating N-donor ligands, see: Liu, Jia & Wang (2011); Liu (2011); Breneman & Parker (1993).

Experimental top

The Cd(AC)2.H2O(19mg, 0.1mmol) was added dropwise slowly to ligand H4L(16mg, 0.06mmol) and phen (20mg, 0.01mmol) methanol solution(15mL). The pH of the mixture solution was adjusted to about 3.5 with 2N HAC solution. Then, the reaction mixture was stirred for 15 days at room temperature. Crystals of (I) were obtained at room temperature.

Refinement top

The occupancy of the COOH group was determined by fixing the sum of the occupancy to 1 and by using overall isotropic thermal parameter for O atoms and restraining the C-O distances by using the SAME instruction. The ratio was found to be equal to 0.65/0.35. Once the occupancy has been determined, the occupancy factors were fixed and the Uiso for the O atoms was refined freely then anisotropic thermal parameters were introduced.

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(C).

All H atoms attached to the COOH groups were found in difference Fourier maps, and then they were refined freely with Uiso(H) = 1.2Ueq(C). In the last cycles of refinement they were treated as riding on their parent O atoms.

The unit cell contains a certain amount of methanol molecules. However, these molecules appear to be highly disordered and it was difficult to model their positions and distribution reliably. Therefore, the SQUEEZE function of PLATON (van der Sluis & Spek, 1990; Spek, 2003) was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was emplyed from the final refinement.

There are two large cavities of about 113 \%A^3^ per unitl cell. PLATON estimated that each cavity contains 17 electrons which may correspond to a solvent molecule of methanol as suggested by chemical analyses.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: APEX2 (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (van der Sluis & Spek, 1990; Spek, 2003); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-labelling scheme. Thermal displacement are drawn at the 30% probability level. Only the major components of the disordered carboxylate groups are represented. H atoms have been omitted for clarity. [symmetric codes: -x+1, -y, -z+1].
[Figure 2] Fig. 2. View of the 1D chain formed by the O-H···O hydrogen bonds linking the H4L and H2L molecules. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
Tris(1,10-phenanthroline)cadmium 3,3'-dicarboxy-4,4'–diazenediyldibenzoate– 4,4'-diazenediyldiphthalic acid–methanol (1/0.5/1) top
Crystal data top
[Cd(C12H8N2)3](C16H8N2O8)·0.5C16H10N2O8·CH4OZ = 2
Mr = 1220.43F(000) = 1244
Triclinic, p1Dx = 1.471 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.6902 (9) ÅCell parameters from 10030 reflections
b = 13.7659 (9) Åθ = 2.4–25.2°
c = 16.9518 (11) ŵ = 0.47 mm1
α = 79.022 (1)°T = 298 K
β = 73.492 (1)°Block, red
γ = 64.439 (1)°0.23 × 0.16 × 0.07 mm
V = 2754.7 (3) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
10030 independent reflections
Radiation source: fine-focus sealed tube8170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1616
Tmin = 0.900, Tmax = 0.968k = 1616
21086 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0643P)2]
where P = (Fo2 + 2Fc2)/3
9876 reflections(Δ/σ)max = 0.002
775 parametersΔρmax = 0.66 e Å3
10 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cd(C12H8N2)3](C16H8N2O8)·0.5C16H10N2O8·CH4Oγ = 64.439 (1)°
Mr = 1220.43V = 2754.7 (3) Å3
Triclinic, p1Z = 2
a = 13.6902 (9) ÅMo Kα radiation
b = 13.7659 (9) ŵ = 0.47 mm1
c = 16.9518 (11) ÅT = 298 K
α = 79.022 (1)°0.23 × 0.16 × 0.07 mm
β = 73.492 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
10030 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
8170 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.968Rint = 0.021
21086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03510 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.07Δρmax = 0.66 e Å3
9876 reflectionsΔρmin = 0.29 e Å3
775 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.194625 (14)0.318919 (15)0.770925 (10)0.05192 (9)
N10.2000 (2)0.34134 (18)0.90344 (14)0.0644 (6)
N20.01626 (18)0.36033 (18)0.85645 (13)0.0572 (5)
N30.15295 (17)0.48840 (18)0.69513 (12)0.0523 (5)
N40.36188 (17)0.33952 (19)0.70773 (13)0.0564 (5)
N50.29240 (19)0.12915 (19)0.78538 (14)0.0620 (6)
N60.16334 (18)0.2430 (2)0.67404 (13)0.0606 (6)
C10.2886 (3)0.3350 (3)0.9249 (2)0.0823 (10)
H10.35240.32930.88410.099*
C20.2888 (4)0.3367 (3)1.0074 (3)0.1024 (14)
H20.35200.33151.02120.123*
C30.1961 (5)0.3460 (3)1.0661 (2)0.1059 (16)
H30.19580.34691.12090.127*
C40.0990 (4)0.3544 (2)1.04590 (18)0.0860 (12)
C50.0037 (5)0.3647 (3)1.1045 (2)0.1116 (18)
H50.00820.36541.16020.134*
C60.0918 (5)0.3733 (3)1.0815 (3)0.1185 (18)
H60.15660.37981.12140.142*
C70.0899 (3)0.3729 (2)0.9969 (2)0.0820 (10)
C80.1819 (3)0.3822 (3)0.9691 (3)0.1015 (14)
H80.24860.38941.00670.122*
C90.1726 (3)0.3806 (3)0.8892 (3)0.0946 (12)
H90.23260.38640.87040.114*
C100.0726 (2)0.3703 (2)0.8339 (2)0.0712 (8)
H100.06790.37030.77810.085*
C110.0094 (3)0.3614 (2)0.93751 (16)0.0601 (7)
C120.1051 (3)0.3525 (2)0.96180 (15)0.0626 (8)
C130.0526 (2)0.5588 (2)0.68553 (16)0.0583 (7)
H130.00800.54120.71100.070*
C140.0339 (3)0.6570 (3)0.63954 (18)0.0697 (8)
H140.03740.70360.63380.084*
C150.1219 (3)0.6841 (3)0.60295 (18)0.0750 (9)
H150.11110.74950.57130.090*
C160.2285 (3)0.6139 (2)0.61277 (17)0.0660 (7)
C170.3245 (3)0.6384 (3)0.5782 (2)0.0926 (11)
H170.31670.70450.54850.111*
C180.4240 (3)0.5685 (4)0.5879 (3)0.0999 (12)
H180.48410.58790.56630.120*
C190.4426 (3)0.4638 (3)0.63071 (19)0.0755 (9)
C200.5488 (3)0.3843 (4)0.6386 (2)0.0932 (12)
H200.61160.39960.61700.112*
C210.5585 (3)0.2864 (4)0.6775 (2)0.0920 (11)
H210.62790.23260.68110.110*
C220.4630 (2)0.2680 (3)0.71172 (19)0.0726 (8)
H220.47050.20090.73940.087*
C230.3510 (2)0.4370 (2)0.66705 (15)0.0566 (6)
C240.2412 (2)0.5148 (2)0.65882 (14)0.0535 (6)
C250.3575 (3)0.0734 (3)0.8377 (2)0.0772 (9)
H250.36370.11060.87520.093*
C260.4165 (3)0.0373 (3)0.8390 (3)0.0953 (12)
H260.46230.07320.87580.114*
C270.4066 (3)0.0921 (3)0.7864 (3)0.1054 (15)
H270.44560.16660.78690.126*
C280.3383 (3)0.0383 (3)0.7308 (2)0.0828 (10)
C290.3250 (4)0.0914 (4)0.6713 (4)0.1158 (17)
H290.36180.16600.67000.139*
C300.2617 (4)0.0357 (4)0.6188 (3)0.1181 (18)
H300.25330.07280.58240.142*
C310.2052 (3)0.0796 (3)0.6155 (2)0.0846 (11)
C320.1410 (3)0.1409 (4)0.5584 (2)0.0984 (13)
H320.13320.10700.51940.118*
C330.0908 (3)0.2482 (4)0.5601 (2)0.0996 (14)
H330.04810.28940.52210.119*
C340.1026 (3)0.2983 (3)0.61885 (17)0.0736 (9)
H340.06680.37300.61950.088*
C350.2147 (2)0.1351 (3)0.67309 (17)0.0629 (7)
C360.2826 (2)0.0746 (2)0.73160 (18)0.0635 (7)
N70.48610 (19)0.04145 (17)0.51715 (13)0.0576 (5)
C370.4210 (2)0.1386 (2)0.47573 (14)0.0520 (6)
C380.3927 (2)0.2337 (2)0.50901 (16)0.0608 (7)
H380.41610.23210.55580.073*
C390.3303 (2)0.3303 (2)0.47330 (16)0.0599 (7)
H390.31270.39390.49590.072*
C400.2928 (2)0.3353 (2)0.40435 (15)0.0526 (6)
C430.2217 (3)0.4439 (2)0.3717 (2)0.0631 (7)
O10.1197 (5)0.4801 (7)0.3911 (5)0.095 (2)0.65
O20.2763 (8)0.4987 (8)0.3310 (6)0.089 (3)0.65
H2A0.23300.56590.33410.107*
O1B0.1409 (11)0.4604 (12)0.3517 (11)0.141 (8)0.35
O2B0.2661 (17)0.5111 (14)0.3622 (12)0.099 (6)0.35
C410.3216 (2)0.2387 (2)0.37008 (14)0.0494 (6)
C440.2883 (2)0.2380 (2)0.29324 (17)0.0586 (7)
O30.2267 (4)0.3186 (3)0.2611 (3)0.0802 (12)0.65
O40.3291 (4)0.1439 (5)0.2683 (4)0.098 (2)0.65
H4A0.28870.13630.24250.117*
O3B0.3059 (11)0.2912 (9)0.2303 (5)0.116 (4)0.35
O4B0.2695 (8)0.1541 (8)0.2944 (6)0.083 (3)0.35
C420.3845 (2)0.1411 (2)0.40667 (15)0.0517 (6)
H420.40230.07690.38480.062*
N120.06170 (18)1.02786 (18)0.86767 (13)0.0547 (5)
N130.11991 (18)0.94232 (17)0.90151 (13)0.0538 (5)
O50.0929 (4)0.9112 (3)0.5944 (2)0.1661 (18)
O60.1637 (2)1.0836 (2)0.56001 (16)0.1144 (10)
H6A0.17351.16480.57670.172*
O70.18108 (17)1.24773 (18)0.60126 (13)0.0793 (6)
O80.1673 (2)1.30459 (18)0.70774 (17)0.0948 (8)
O90.4026 (3)0.6922 (2)1.0424 (2)0.1316 (12)
O100.4367 (2)0.7670 (2)1.1261 (2)0.1290 (12)
H10A0.42640.85091.12670.194*
O110.3728 (3)0.9370 (2)1.1782 (2)0.1315 (12)
O120.2653 (3)1.1037 (2)1.15481 (17)0.1148 (10)
C450.0172 (2)1.0163 (2)0.80526 (15)0.0519 (6)
C460.0319 (3)0.9203 (2)0.78078 (19)0.0736 (8)
H460.07270.85460.80600.088*
C470.0152 (3)0.9238 (3)0.7178 (2)0.0824 (10)
H470.00780.85910.70260.099*
C480.0734 (2)1.0197 (2)0.67622 (17)0.0662 (8)
C490.0908 (2)1.1174 (2)0.70260 (15)0.0514 (6)
C500.0443 (2)1.1117 (2)0.76747 (15)0.0518 (6)
H500.05561.17600.78600.062*
C510.1117 (3)1.0008 (3)0.6058 (2)0.0994 (12)
C520.1511 (2)1.2309 (2)0.66752 (18)0.0610 (7)
C530.1621 (2)0.9608 (2)0.96310 (15)0.0488 (6)
C540.1289 (2)1.0597 (2)0.99084 (17)0.0595 (7)
H540.07421.12030.97120.071*
C550.1778 (3)1.0679 (2)1.04835 (18)0.0651 (7)
H550.15431.13521.06750.078*
C560.2602 (2)0.9811 (2)1.07910 (16)0.0571 (6)
C570.2943 (2)0.8789 (2)1.05090 (16)0.0546 (6)
C580.2426 (2)0.8717 (2)0.99353 (15)0.0532 (6)
H580.26310.80460.97520.064*
C590.3030 (3)1.0095 (3)1.1414 (2)0.0810 (9)
C600.3838 (3)0.7717 (3)1.0739 (2)0.0827 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.05361 (13)0.06166 (14)0.04453 (12)0.02190 (9)0.01962 (8)0.00342 (8)
N10.0808 (16)0.0558 (14)0.0554 (13)0.0139 (12)0.0365 (12)0.0029 (10)
N20.0637 (14)0.0519 (13)0.0554 (12)0.0245 (11)0.0103 (10)0.0048 (10)
N30.0538 (12)0.0627 (14)0.0449 (11)0.0227 (11)0.0190 (9)0.0039 (10)
N40.0521 (12)0.0708 (15)0.0526 (12)0.0257 (11)0.0233 (10)0.0007 (11)
N50.0610 (13)0.0639 (15)0.0584 (13)0.0244 (12)0.0127 (11)0.0012 (11)
N60.0547 (12)0.0854 (18)0.0498 (12)0.0323 (13)0.0129 (10)0.0117 (11)
C10.087 (2)0.081 (2)0.081 (2)0.0110 (18)0.0500 (18)0.0171 (17)
C20.135 (3)0.078 (2)0.100 (3)0.009 (2)0.084 (3)0.016 (2)
C30.192 (5)0.053 (2)0.065 (2)0.017 (2)0.069 (3)0.0049 (16)
C40.158 (3)0.0394 (16)0.0476 (16)0.0200 (19)0.038 (2)0.0007 (12)
C50.204 (5)0.062 (2)0.0389 (17)0.041 (3)0.003 (3)0.0063 (15)
C60.179 (5)0.075 (3)0.070 (3)0.053 (3)0.027 (3)0.014 (2)
C70.111 (3)0.0466 (17)0.0665 (19)0.0316 (18)0.0153 (18)0.0100 (14)
C80.088 (3)0.076 (2)0.126 (4)0.047 (2)0.031 (2)0.027 (2)
C90.071 (2)0.090 (3)0.122 (3)0.042 (2)0.007 (2)0.028 (2)
C100.0635 (18)0.068 (2)0.089 (2)0.0317 (15)0.0121 (16)0.0143 (16)
C110.0825 (19)0.0346 (13)0.0551 (15)0.0213 (13)0.0101 (14)0.0010 (11)
C120.100 (2)0.0324 (13)0.0431 (14)0.0154 (14)0.0183 (14)0.0010 (10)
C130.0577 (16)0.0640 (18)0.0541 (14)0.0205 (14)0.0224 (12)0.0019 (13)
C140.0742 (19)0.068 (2)0.0602 (17)0.0160 (16)0.0284 (15)0.0015 (14)
C150.097 (2)0.0594 (19)0.0598 (17)0.0251 (18)0.0210 (16)0.0052 (14)
C160.078 (2)0.0650 (19)0.0563 (16)0.0317 (16)0.0158 (14)0.0008 (13)
C170.100 (3)0.084 (3)0.094 (3)0.050 (2)0.015 (2)0.014 (2)
C180.089 (3)0.116 (3)0.109 (3)0.066 (3)0.014 (2)0.005 (2)
C190.0676 (19)0.096 (2)0.0718 (19)0.0449 (18)0.0179 (15)0.0045 (17)
C200.061 (2)0.136 (4)0.095 (3)0.053 (2)0.0219 (18)0.005 (2)
C210.0534 (18)0.126 (3)0.091 (2)0.033 (2)0.0298 (17)0.018 (2)
C220.0569 (17)0.090 (2)0.0690 (18)0.0251 (16)0.0276 (14)0.0075 (16)
C230.0578 (15)0.0749 (19)0.0478 (13)0.0322 (14)0.0185 (11)0.0052 (13)
C240.0620 (15)0.0641 (17)0.0421 (12)0.0283 (13)0.0173 (11)0.0054 (12)
C250.073 (2)0.078 (2)0.0716 (19)0.0264 (18)0.0208 (16)0.0133 (16)
C260.074 (2)0.078 (3)0.105 (3)0.018 (2)0.014 (2)0.018 (2)
C270.086 (3)0.059 (2)0.133 (4)0.023 (2)0.015 (3)0.004 (2)
C280.069 (2)0.062 (2)0.104 (3)0.0292 (17)0.0109 (19)0.0153 (19)
C290.096 (3)0.087 (3)0.161 (5)0.045 (3)0.018 (3)0.055 (3)
C300.105 (3)0.128 (4)0.144 (4)0.075 (3)0.029 (3)0.080 (3)
C310.073 (2)0.120 (3)0.081 (2)0.060 (2)0.0130 (17)0.048 (2)
C320.087 (2)0.166 (4)0.073 (2)0.072 (3)0.0019 (19)0.052 (3)
C330.079 (2)0.180 (5)0.0632 (19)0.063 (3)0.0178 (17)0.033 (2)
C340.0666 (18)0.111 (3)0.0562 (16)0.0403 (18)0.0193 (14)0.0155 (16)
C350.0541 (15)0.084 (2)0.0579 (16)0.0384 (15)0.0067 (12)0.0243 (15)
C360.0571 (16)0.0684 (19)0.0662 (17)0.0337 (15)0.0049 (13)0.0154 (14)
N70.0637 (13)0.0574 (14)0.0516 (12)0.0198 (12)0.0285 (10)0.0084 (10)
C370.0526 (14)0.0575 (16)0.0452 (13)0.0186 (12)0.0207 (11)0.0040 (11)
C380.0716 (17)0.0683 (18)0.0506 (14)0.0268 (15)0.0311 (13)0.0003 (13)
C390.0719 (17)0.0559 (17)0.0599 (15)0.0240 (14)0.0277 (13)0.0074 (13)
C400.0526 (14)0.0529 (15)0.0550 (14)0.0199 (12)0.0217 (11)0.0012 (12)
C430.0640 (19)0.0543 (17)0.0762 (19)0.0180 (15)0.0359 (16)0.0002 (14)
O10.060 (3)0.084 (4)0.140 (5)0.017 (2)0.045 (3)0.001 (3)
O20.070 (3)0.063 (4)0.114 (6)0.012 (2)0.031 (3)0.019 (3)
O1B0.150 (12)0.061 (7)0.27 (2)0.038 (8)0.175 (14)0.028 (10)
O2B0.113 (12)0.055 (6)0.163 (17)0.046 (8)0.094 (12)0.039 (8)
C410.0494 (13)0.0536 (15)0.0466 (13)0.0177 (11)0.0212 (10)0.0014 (11)
C440.0609 (16)0.0626 (18)0.0563 (16)0.0191 (15)0.0303 (13)0.0017 (14)
O30.109 (3)0.065 (2)0.069 (3)0.017 (2)0.059 (2)0.0042 (19)
O40.103 (4)0.081 (3)0.108 (5)0.004 (3)0.073 (3)0.033 (3)
O3B0.216 (12)0.129 (9)0.073 (6)0.120 (9)0.090 (7)0.048 (6)
O4B0.138 (9)0.080 (6)0.077 (6)0.067 (7)0.066 (6)0.014 (4)
C420.0540 (14)0.0502 (15)0.0501 (13)0.0155 (12)0.0215 (11)0.0008 (11)
N120.0634 (13)0.0537 (13)0.0542 (12)0.0239 (11)0.0294 (10)0.0053 (10)
N130.0614 (13)0.0530 (13)0.0548 (12)0.0228 (11)0.0295 (10)0.0027 (10)
O50.259 (4)0.091 (2)0.181 (3)0.015 (2)0.168 (3)0.038 (2)
O60.145 (2)0.108 (2)0.0991 (18)0.0198 (17)0.0903 (18)0.0079 (15)
O70.0750 (13)0.0851 (15)0.0726 (13)0.0197 (12)0.0455 (11)0.0188 (11)
O80.123 (2)0.0525 (13)0.122 (2)0.0230 (13)0.0799 (17)0.0138 (13)
O90.139 (3)0.0675 (17)0.177 (3)0.0176 (16)0.102 (2)0.0270 (18)
O100.127 (2)0.095 (2)0.159 (3)0.0114 (17)0.112 (2)0.0156 (18)
O110.159 (3)0.101 (2)0.163 (3)0.0201 (19)0.130 (2)0.0109 (19)
O120.187 (3)0.0809 (18)0.116 (2)0.0481 (19)0.107 (2)0.0005 (15)
C450.0580 (15)0.0523 (15)0.0498 (13)0.0201 (12)0.0269 (11)0.0032 (11)
C460.097 (2)0.0518 (17)0.0747 (19)0.0153 (16)0.0518 (17)0.0024 (14)
C470.113 (3)0.0549 (18)0.089 (2)0.0175 (18)0.059 (2)0.0120 (16)
C480.0746 (18)0.0665 (19)0.0618 (16)0.0175 (15)0.0382 (14)0.0072 (14)
C490.0473 (13)0.0580 (16)0.0498 (13)0.0184 (12)0.0221 (11)0.0036 (11)
C500.0552 (14)0.0515 (15)0.0548 (14)0.0225 (12)0.0235 (11)0.0014 (11)
C510.120 (3)0.090 (3)0.097 (3)0.016 (2)0.072 (2)0.018 (2)
C520.0511 (15)0.0621 (18)0.0705 (17)0.0218 (13)0.0271 (13)0.0111 (14)
C530.0534 (14)0.0505 (15)0.0501 (13)0.0245 (12)0.0233 (11)0.0052 (11)
C540.0721 (17)0.0458 (15)0.0662 (16)0.0172 (13)0.0413 (14)0.0062 (12)
C550.089 (2)0.0464 (15)0.0704 (17)0.0236 (15)0.0430 (16)0.0002 (13)
C560.0682 (17)0.0582 (17)0.0555 (15)0.0278 (14)0.0328 (13)0.0067 (12)
C570.0543 (14)0.0538 (16)0.0586 (15)0.0196 (12)0.0272 (12)0.0062 (12)
C580.0599 (15)0.0466 (14)0.0560 (14)0.0190 (12)0.0233 (12)0.0010 (11)
C590.111 (3)0.074 (2)0.081 (2)0.039 (2)0.061 (2)0.0057 (17)
C600.076 (2)0.068 (2)0.095 (2)0.0058 (17)0.0465 (18)0.0026 (18)
Geometric parameters (Å, º) top
Cd1—N62.327 (2)C31—C321.398 (6)
Cd1—N22.343 (2)C31—C351.412 (4)
Cd1—N42.350 (2)C32—C331.336 (6)
Cd1—N12.350 (2)C32—H320.9300
Cd1—N32.355 (2)C33—C341.395 (5)
Cd1—N52.367 (2)C33—H330.9300
N1—C11.327 (4)C34—H340.9300
N1—C121.358 (4)C35—C361.443 (4)
N2—C101.321 (4)N7—N7i1.240 (4)
N2—C111.353 (3)N7—C371.430 (3)
N3—C131.330 (3)C37—C381.379 (4)
N3—C241.357 (3)C37—C421.387 (3)
N4—C221.320 (4)C38—C391.368 (4)
N4—C231.354 (3)C38—H380.9300
N5—C251.331 (4)C39—C401.383 (3)
N5—C361.353 (4)C39—H390.9300
N6—C341.331 (4)C40—C411.405 (4)
N6—C351.342 (4)C40—C431.492 (4)
C1—C21.404 (5)C43—O1B1.164 (10)
C1—H10.9300C43—O11.227 (6)
C2—C31.344 (6)C43—O21.266 (7)
C2—H20.9300C43—O2B1.274 (12)
C3—C41.417 (6)O2—H2A0.8587
C3—H30.9300O2B—H2A0.8314
C4—C121.409 (4)C41—C421.385 (3)
C4—C51.439 (6)C41—C441.500 (3)
C5—C61.321 (6)C44—O3B1.201 (7)
C5—H50.9300C44—O31.209 (5)
C6—C71.428 (6)C44—O41.273 (6)
C6—H60.9300C44—O4B1.283 (9)
C7—C111.409 (4)O4—H4A0.8427
C7—C81.414 (6)O4B—H4A0.8941
C8—C91.328 (6)C42—H420.9300
C8—H80.9300N12—N131.242 (3)
C9—C101.388 (4)N12—C451.425 (3)
C9—H90.9300N13—C531.435 (3)
C10—H100.9300O5—C511.189 (5)
C11—C121.432 (4)O6—C511.298 (4)
C13—C141.383 (4)O6—H6A1.1480
C13—H130.9300O7—C521.251 (3)
C14—C151.360 (4)O7—H6A1.2413
C14—H140.9300O8—C521.236 (4)
C15—C161.397 (4)O9—C601.203 (4)
C15—H150.9300O10—C601.271 (4)
C16—C241.402 (4)O10—H10A1.1042
C16—C171.434 (5)O11—C591.256 (4)
C17—C181.320 (5)O11—H10A1.4085
C17—H170.9300O12—C591.212 (4)
C18—C191.435 (5)C45—C501.369 (3)
C18—H180.9300C45—C461.375 (4)
C19—C231.400 (4)C46—C471.379 (4)
C19—C201.417 (5)C46—H460.9300
C20—C211.351 (5)C47—C481.390 (4)
C20—H200.9300C47—H470.9300
C21—C221.381 (4)C48—C491.400 (4)
C21—H210.9300C48—C511.536 (4)
C22—H220.9300C49—C501.394 (3)
C23—C241.449 (4)C49—C521.513 (4)
C25—C261.382 (5)C50—H500.9300
C25—H250.9300C53—C541.366 (4)
C26—C271.340 (6)C53—C581.379 (3)
C26—H260.9300C54—C551.375 (4)
C27—C281.396 (6)C54—H540.9300
C27—H270.9300C55—C561.380 (4)
C28—C361.406 (4)C55—H550.9300
C28—C291.444 (6)C56—C571.410 (4)
C29—C301.318 (7)C56—C591.522 (4)
C29—H290.9300C57—C581.395 (3)
C30—C311.433 (6)C57—C601.524 (4)
C30—H300.9300C58—H580.9300
N6—Cd1—N294.62 (8)C28—C29—H29119.5
N6—Cd1—N4105.02 (7)C29—C30—C31122.7 (4)
N2—Cd1—N4157.03 (8)C29—C30—H30118.7
N6—Cd1—N1155.72 (9)C31—C30—H30118.7
N2—Cd1—N171.50 (8)C32—C31—C35117.8 (4)
N4—Cd1—N193.53 (8)C32—C31—C30123.8 (4)
N6—Cd1—N393.24 (8)C35—C31—C30118.4 (4)
N2—Cd1—N396.00 (7)C33—C32—C31119.7 (3)
N4—Cd1—N371.47 (8)C33—C32—H32120.1
N1—Cd1—N3107.65 (7)C31—C32—H32120.1
N6—Cd1—N571.49 (9)C32—C33—C34119.8 (4)
N2—Cd1—N5107.14 (7)C32—C33—H33120.1
N4—Cd1—N590.59 (8)C34—C33—H33120.1
N1—Cd1—N593.15 (8)N6—C34—C33122.3 (4)
N3—Cd1—N5152.94 (8)N6—C34—H34118.8
C1—N1—C12119.9 (3)C33—C34—H34118.8
C1—N1—Cd1125.3 (2)N6—C35—C31121.7 (3)
C12—N1—Cd1114.47 (18)N6—C35—C36119.1 (2)
C10—N2—C11118.5 (3)C31—C35—C36119.2 (3)
C10—N2—Cd1125.79 (19)N5—C36—C28121.5 (3)
C11—N2—Cd1115.24 (19)N5—C36—C35118.5 (3)
C13—N3—C24118.3 (2)C28—C36—C35119.9 (3)
C13—N3—Cd1126.23 (18)N7i—N7—C37114.0 (3)
C24—N3—Cd1115.46 (16)C38—C37—C42119.8 (2)
C22—N4—C23117.9 (2)C38—C37—N7116.4 (2)
C22—N4—Cd1126.4 (2)C42—C37—N7123.9 (2)
C23—N4—Cd1115.55 (16)C39—C38—C37120.1 (2)
C25—N5—C36118.4 (3)C39—C38—H38119.9
C25—N5—Cd1126.9 (2)C37—C38—H38119.9
C36—N5—Cd1114.70 (19)C38—C39—C40121.4 (2)
C34—N6—C35118.7 (3)C38—C39—H39119.3
C34—N6—Cd1125.1 (2)C40—C39—H39119.3
C35—N6—Cd1116.16 (18)C39—C40—C41118.7 (2)
N1—C1—C2121.8 (4)C39—C40—C43117.5 (2)
N1—C1—H1119.1C41—C40—C43123.7 (2)
C2—C1—H1119.1O1B—C43—O134.1 (9)
C3—C2—C1119.0 (4)O1B—C43—O2115.9 (11)
C3—C2—H2120.5O1—C43—O2123.8 (7)
C1—C2—H2120.5O1B—C43—O2B125.6 (12)
C2—C3—C4121.1 (3)O1—C43—O2B116.8 (11)
C2—C3—H3119.4O2—C43—O2B24.9 (12)
C4—C3—H3119.4O1B—C43—C40122.9 (9)
C12—C4—C3116.6 (4)O1—C43—C40122.5 (5)
C12—C4—C5118.4 (4)O2—C43—C40113.2 (6)
C3—C4—C5125.0 (4)O2B—C43—C40111.2 (9)
C6—C5—C4122.0 (4)C43—O2—H2A108.0
C6—C5—H5119.0C43—O2B—H2A109.2
C4—C5—H5119.0C42—C41—C40119.6 (2)
C5—C6—C7121.5 (4)C42—C41—C44118.6 (2)
C5—C6—H6119.2C40—C41—C44121.8 (2)
C7—C6—H6119.2O3B—C44—O348.8 (6)
C11—C7—C8117.8 (3)O3B—C44—O4101.9 (7)
C11—C7—C6118.5 (4)O3—C44—O4124.8 (4)
C8—C7—C6123.7 (4)O3B—C44—O4B121.9 (7)
C9—C8—C7119.7 (3)O3—C44—O4B113.5 (6)
C9—C8—H8120.1O4—C44—O4B35.3 (5)
C7—C8—H8120.1O3B—C44—C41123.7 (5)
C8—C9—C10119.4 (4)O3—C44—C41122.6 (3)
C8—C9—H9120.3O4—C44—C41112.5 (4)
C10—C9—H9120.3O4B—C44—C41111.6 (5)
N2—C10—C9123.4 (3)C44—O4—H4A112.4
N2—C10—H10118.3C44—O4B—H4A107.8
C9—C10—H10118.3C41—C42—C37120.3 (2)
N2—C11—C7121.1 (3)C41—C42—H42119.8
N2—C11—C12118.5 (2)C37—C42—H42119.8
C7—C11—C12120.4 (3)N13—N12—C45115.8 (2)
N1—C12—C4121.5 (3)N12—N13—C53112.3 (2)
N1—C12—C11119.3 (2)C51—O6—H6A114.1
C4—C12—C11119.2 (3)C52—O7—H6A113.3
N3—C13—C14123.3 (3)C60—O10—H10A104.8
N3—C13—H13118.3C59—O11—H10A104.9
C14—C13—H13118.3C50—C45—C46119.4 (2)
C15—C14—C13118.7 (3)C50—C45—N12114.6 (2)
C15—C14—H14120.6C46—C45—N12125.9 (2)
C13—C14—H14120.6C45—C46—C47118.4 (3)
C14—C15—C16120.1 (3)C45—C46—H46120.8
C14—C15—H15120.0C47—C46—H46120.8
C16—C15—H15120.0C46—C47—C48123.0 (3)
C15—C16—C24117.9 (3)C46—C47—H47118.5
C15—C16—C17123.2 (3)C48—C47—H47118.5
C24—C16—C17118.9 (3)C47—C48—C49118.5 (2)
C18—C17—C16121.0 (3)C47—C48—C51112.5 (3)
C18—C17—H17119.5C49—C48—C51128.9 (3)
C16—C17—H17119.5C50—C49—C48117.3 (2)
C17—C18—C19122.4 (3)C50—C49—C52114.5 (2)
C17—C18—H18118.8C48—C49—C52128.1 (2)
C19—C18—H18118.8C45—C50—C49123.3 (2)
C23—C19—C20117.2 (3)C45—C50—H50118.4
C23—C19—C18118.6 (3)C49—C50—H50118.4
C20—C19—C18124.1 (3)O5—C51—O6121.7 (3)
C21—C20—C19119.8 (3)O5—C51—C48119.4 (3)
C21—C20—H20120.1O6—C51—C48118.8 (3)
C19—C20—H20120.1O8—C52—O7122.8 (3)
C20—C21—C22118.6 (3)O8—C52—C49115.9 (2)
C20—C21—H21120.7O7—C52—C49121.3 (3)
C22—C21—H21120.7C54—C53—C58119.8 (2)
N4—C22—C21124.2 (3)C54—C53—N13124.1 (2)
N4—C22—H22117.9C58—C53—N13116.1 (2)
C21—C22—H22117.9C53—C54—C55118.8 (2)
N4—C23—C19122.2 (3)C53—C54—H54120.6
N4—C23—C24118.7 (2)C55—C54—H54120.6
C19—C23—C24119.1 (3)C54—C55—C56123.2 (3)
N3—C24—C16121.7 (2)C54—C55—H55118.4
N3—C24—C23118.5 (2)C56—C55—H55118.4
C16—C24—C23119.8 (2)C55—C56—C57118.1 (2)
N5—C25—C26123.1 (4)C55—C56—C59114.0 (3)
N5—C25—H25118.5C57—C56—C59127.8 (2)
C26—C25—H25118.5C58—C57—C56117.9 (2)
C27—C26—C25119.0 (4)C58—C57—C60113.7 (2)
C27—C26—H26120.5C56—C57—C60128.5 (2)
C25—C26—H26120.5C53—C58—C57122.2 (2)
C26—C27—C28120.6 (4)C53—C58—H58118.9
C26—C27—H27119.7C57—C58—H58118.9
C28—C27—H27119.7O12—C59—O11122.1 (3)
C27—C28—C36117.4 (4)O12—C59—C56117.3 (3)
C27—C28—C29123.8 (4)O11—C59—C56120.6 (3)
C36—C28—C29118.7 (4)O9—C60—O10120.9 (3)
C30—C29—C28120.9 (4)O9—C60—C57119.1 (3)
C30—C29—H29119.5O10—C60—C57119.9 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O71.151.242.386 (4)174
O10—H10A···O111.101.412.367 (4)141

Experimental details

Crystal data
Chemical formula[Cd(C12H8N2)3](C16H8N2O8)·0.5C16H10N2O8·CH4O
Mr1220.43
Crystal system, space groupTriclinic, p1
Temperature (K)298
a, b, c (Å)13.6902 (9), 13.7659 (9), 16.9518 (11)
α, β, γ (°)79.022 (1), 73.492 (1), 64.439 (1)
V3)2754.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.23 × 0.16 × 0.07
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.900, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
21086, 10030, 8170
Rint0.021
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.103, 1.07
No. of reflections9876
No. of parameters775
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.29

Computer programs: APEX2 (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (van der Sluis & Spek, 1990; Spek, 2003), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006, 2010), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O71.151.242.386 (4)174.3
O10—H10A···O111.101.412.367 (4)140.5
 

Acknowledgements

We express our thanks for the great contribution of Professor Matthias Zeller to the refinement. The authors acknowledge financial assistance from Sichuan University of Science and Engineering, the Institute of Functionalized Materials (grant Nos. 2009xjkpL003 and 2010XJKYL005), the Education Committee of Sichuan Province (grant No. 09ZA057), and the Committee of Science and Technology of Sichuan Province (grant No. 2010GZ0130).

References

First citationBanerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, F., O'Keffe, M. & Yaghi, O. M. (2008). Science, 319, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBreneman, G. L. & Parker, O. J. (1993). Polyhedron, 12, 891–895.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLiu, J. Q. (2011). J. Coord. Chem. 64, 1503–1512.  CrossRef CAS Google Scholar
First citationLiu, J. Q., Huang, Y. S., Zhao, Y. Y. & Jia, Z. B. (2011). Cryst. Growth Des. 11, 569–574.  CSD CrossRef CAS Google Scholar
First citationLiu, J. Q., Jia, Z. B. & Wang, Y. Y. (2011). J. Mol. Struct. 987, 126–131.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m867-m868
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds