organic compounds
[(5-Bromo-1H-indol-3-yl)methyl]dimethylazanium nitrate
aEducation Ministry Key Laboratory of Marine Chemistry and Technology, Ocean University of China, Qingdao, People's Republic of China
*Correspondence e-mail: crystalshuai@yahoo.com.cn
In the title compound, C11H14BrN2+·NO3−, intermolecular N—H⋯O and N—H⋯N hydrogen bonds link the protonated 5-bromogramine cation and the nitrate anions. Further N—H⋯O hydrogen bonds link the cation–anion pairs into a chain running parallel to [100]. C—H⋯O hydrogen bonds link the chains, forming a layer parallel to (001).
Related literature
For background to gramine ramification, see: Kon-ya et al. (1994); Rie et al. (1996); Li et al. (2008, 2009). For a related structure, see: Golubev & Kondrashev (1984).
Experimental
Crystal data
|
Data collection
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1999) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811020034/dn2690sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811020034/dn2690Isup3.hkl
Supporting information file. DOI: 10.1107/S1600536811020034/dn2690Isup3.cml
Eu(NO3)3.6H2O (0.2 mmol, 0.0892 g) was dissolved in CH3OH (5 ml), and then carefully layered onto a solution of 5-BrG (0.2 mmol, 0.0504 g) in C2H5OH (5 ml). After the solvent was evaporated to almost dry, pale-yellow block crystals suitable for X-ray analysis could be harvested.
For (I): C11H14BrN3O3 (316.15, %): calcd. C 41.97, H 2.716, N 12.95; found C 41.79, H 4.46, N 13.29.
X-ray powder diffraction pattern was recorded to check the solid-state phase purity of the bulky sample of compound (I). Supplementary Figure 3 shows the measured pattern and the simulated one on the basis of single-crystal analysis result.
All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) or 0.97 Å (methylene) and N—H = 0.86 Å (amido) or 0.91Å (amonium) with Uiso(H) = 1.2Ueq(Caromatic, Cmethylene or N) or Uiso(H) = 1.5Ueq(Cmethyl).
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1999) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. : A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atom are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. : Packing view of (I), showing the two-dimensional hydrogen-bonding layer. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. | |
Fig. 3. : The simulate X-ray powder diffraction pattern (upper) and the measured one (lower). |
C11H14BrN2+·NO3− | F(000) = 640 |
Mr = 316.16 | Dx = 1.615 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2128 reflections |
a = 9.1449 (2) Å | θ = 3.4–62.3° |
b = 10.8270 (3) Å | µ = 4.38 mm−1 |
c = 13.1344 (3) Å | T = 150 K |
V = 1300.46 (5) Å3 | Block, yellow |
Z = 4 | 0.50 × 0.42 × 0.40 mm |
Agilent Gemini S Ultra CCD diffractometer | 1713 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.022 |
Graphite monochromator | θmax = 62.4°, θmin = 5.3° |
Detector resolution: 16.0855 pixels mm-1 | h = −10→10 |
ϕ and ω scans | k = −12→11 |
2543 measured reflections | l = −14→13 |
1760 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0583P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.088 | (Δ/σ)max = 0.004 |
S = 1.07 | Δρmax = 0.60 e Å−3 |
1760 reflections | Δρmin = −0.77 e Å−3 |
164 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0131 (7) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 546 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.01 (3) |
C11H14BrN2+·NO3− | V = 1300.46 (5) Å3 |
Mr = 316.16 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 9.1449 (2) Å | µ = 4.38 mm−1 |
b = 10.8270 (3) Å | T = 150 K |
c = 13.1344 (3) Å | 0.50 × 0.42 × 0.40 mm |
Agilent Gemini S Ultra CCD diffractometer | 1713 reflections with I > 2σ(I) |
2543 measured reflections | Rint = 0.022 |
1760 independent reflections | θmax = 62.4° |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.088 | Δρmax = 0.60 e Å−3 |
S = 1.07 | Δρmin = −0.77 e Å−3 |
1760 reflections | Absolute structure: Flack (1983), 546 Friedel pairs |
164 parameters | Absolute structure parameter: −0.01 (3) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.08934 (5) | 0.37702 (4) | 0.62866 (4) | 0.0393 (2) | |
N1 | 0.0708 (3) | 0.7763 (3) | 0.2870 (2) | 0.0218 (7) | |
H1 | 0.1132 | 0.7060 | 0.3108 | 0.026* | |
N2 | −0.3723 (3) | 0.6214 (3) | 0.3766 (2) | 0.0293 (8) | |
H2D | −0.4617 | 0.6044 | 0.3618 | 0.035* | |
C1 | 0.0076 (5) | 0.7478 (4) | 0.1850 (3) | 0.0286 (9) | |
H1A | 0.0844 | 0.7227 | 0.1396 | 0.043* | |
H1B | −0.0396 | 0.8201 | 0.1584 | 0.043* | |
H1C | −0.0625 | 0.6823 | 0.1914 | 0.043* | |
C2 | 0.1875 (4) | 0.8720 (4) | 0.2783 (3) | 0.0308 (9) | |
H2A | 0.2598 | 0.8452 | 0.2302 | 0.046* | |
H2B | 0.2325 | 0.8840 | 0.3436 | 0.046* | |
H2C | 0.1451 | 0.9483 | 0.2557 | 0.046* | |
C3 | −0.0444 (4) | 0.8157 (4) | 0.3639 (3) | 0.0254 (8) | |
H3A | 0.0033 | 0.8342 | 0.4281 | 0.030* | |
H3B | −0.0909 | 0.8909 | 0.3401 | 0.030* | |
C4 | −0.1584 (4) | 0.7205 (4) | 0.3813 (3) | 0.0238 (8) | |
C5 | −0.2987 (4) | 0.7213 (4) | 0.3437 (3) | 0.0285 (9) | |
H5A | −0.3371 | 0.7822 | 0.3015 | 0.034* | |
C7 | −0.2829 (4) | 0.5507 (4) | 0.4374 (3) | 0.0218 (8) | |
C8 | −0.3083 (5) | 0.4384 (4) | 0.4854 (3) | 0.0284 (10) | |
H8A | −0.3982 | 0.3989 | 0.4796 | 0.034* | |
C9 | −0.1965 (5) | 0.3868 (4) | 0.5421 (3) | 0.0282 (9) | |
H9A | −0.2104 | 0.3119 | 0.5753 | 0.034* | |
C10 | −0.0612 (4) | 0.4490 (4) | 0.5491 (3) | 0.0245 (9) | |
C11 | −0.0335 (4) | 0.5599 (4) | 0.5012 (3) | 0.0225 (9) | |
H11A | 0.0564 | 0.5992 | 0.5075 | 0.027* | |
C12 | −0.1466 (4) | 0.6110 (4) | 0.4426 (3) | 0.0200 (8) | |
N3 | 0.2674 (4) | 0.5222 (3) | 0.3505 (2) | 0.0261 (8) | |
O1 | 0.3385 (4) | 0.4266 (3) | 0.3625 (3) | 0.0462 (8) | |
O2 | 0.3106 (3) | 0.6231 (3) | 0.3859 (2) | 0.0337 (7) | |
O3 | 0.1487 (3) | 0.5214 (3) | 0.3021 (2) | 0.0309 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0454 (3) | 0.0422 (3) | 0.0301 (3) | 0.0153 (2) | −0.0037 (2) | 0.0094 (2) |
N1 | 0.0305 (17) | 0.0202 (15) | 0.0147 (15) | 0.0011 (16) | −0.0007 (14) | 0.0015 (13) |
N2 | 0.0227 (16) | 0.045 (2) | 0.0204 (16) | −0.0014 (16) | −0.0035 (14) | −0.001 (2) |
C1 | 0.034 (2) | 0.034 (2) | 0.0178 (19) | 0.001 (2) | −0.0023 (18) | −0.0059 (19) |
C2 | 0.034 (2) | 0.031 (2) | 0.027 (2) | −0.008 (2) | 0.0046 (17) | 0.000 (2) |
C3 | 0.035 (2) | 0.0237 (18) | 0.0174 (18) | 0.0000 (17) | 0.0033 (19) | −0.0012 (18) |
C4 | 0.0308 (18) | 0.0285 (19) | 0.0122 (17) | 0.0027 (17) | 0.0021 (17) | −0.0017 (18) |
C5 | 0.031 (2) | 0.036 (2) | 0.019 (2) | 0.006 (2) | −0.0016 (16) | 0.0021 (18) |
C7 | 0.0233 (19) | 0.030 (2) | 0.0122 (17) | −0.0002 (18) | −0.0003 (16) | −0.0036 (17) |
C8 | 0.033 (2) | 0.033 (2) | 0.0193 (19) | −0.009 (2) | 0.0079 (17) | −0.0092 (19) |
C9 | 0.039 (2) | 0.026 (2) | 0.0192 (19) | 0.001 (2) | 0.0065 (17) | −0.0019 (19) |
C10 | 0.032 (2) | 0.026 (2) | 0.0149 (17) | 0.0044 (18) | 0.0018 (17) | 0.0002 (17) |
C11 | 0.0241 (19) | 0.029 (2) | 0.0146 (17) | −0.0013 (18) | 0.0012 (16) | −0.0061 (17) |
C12 | 0.0239 (17) | 0.0251 (19) | 0.0109 (16) | 0.0044 (18) | 0.0033 (14) | −0.0020 (17) |
N3 | 0.0270 (17) | 0.0253 (18) | 0.0260 (18) | −0.0015 (16) | 0.0049 (16) | 0.0003 (16) |
O1 | 0.0495 (18) | 0.0319 (16) | 0.057 (2) | 0.0126 (15) | −0.0092 (19) | −0.0028 (18) |
O2 | 0.0329 (15) | 0.0293 (14) | 0.0390 (17) | −0.0046 (13) | −0.0007 (13) | −0.0093 (17) |
O3 | 0.0260 (14) | 0.0357 (16) | 0.0311 (15) | 0.0003 (14) | −0.0033 (13) | −0.0038 (14) |
Br1—C10 | 1.896 (4) | C3—H3B | 0.9700 |
N1—C1 | 1.491 (5) | C4—C5 | 1.375 (5) |
N1—C2 | 1.492 (5) | C4—C12 | 1.437 (6) |
N1—C3 | 1.521 (5) | C5—H5A | 0.9300 |
N1—H1 | 0.9100 | C7—C8 | 1.389 (6) |
N2—C5 | 1.345 (6) | C7—C12 | 1.408 (5) |
N2—C7 | 1.376 (5) | C8—C9 | 1.382 (6) |
N2—H2D | 0.8600 | C8—H8A | 0.9300 |
C1—H1A | 0.9600 | C9—C10 | 1.412 (6) |
C1—H1B | 0.9600 | C9—H9A | 0.9300 |
C1—H1C | 0.9600 | C10—C11 | 1.379 (6) |
C2—H2A | 0.9600 | C11—C12 | 1.403 (5) |
C2—H2B | 0.9600 | C11—H11A | 0.9300 |
C2—H2C | 0.9600 | N3—O1 | 1.232 (4) |
C3—C4 | 1.484 (5) | N3—O2 | 1.251 (4) |
C3—H3A | 0.9700 | N3—O3 | 1.258 (4) |
C1—N1—C2 | 110.6 (3) | C5—C4—C12 | 106.1 (3) |
C1—N1—C3 | 112.8 (3) | C5—C4—C3 | 126.6 (4) |
C2—N1—C3 | 110.5 (3) | C12—C4—C3 | 127.3 (3) |
C1—N1—H1 | 107.6 | N2—C5—C4 | 110.3 (4) |
C2—N1—H1 | 107.6 | N2—C5—H5A | 124.9 |
C3—N1—H1 | 107.6 | C4—C5—H5A | 124.9 |
C5—N2—C7 | 109.7 (3) | N2—C7—C8 | 130.7 (4) |
C5—N2—H2D | 125.2 | N2—C7—C12 | 107.2 (3) |
C7—N2—H2D | 125.2 | C8—C7—C12 | 122.1 (4) |
N1—C1—H1A | 109.5 | C9—C8—C7 | 118.3 (4) |
N1—C1—H1B | 109.5 | C9—C8—H8A | 120.8 |
H1A—C1—H1B | 109.5 | C7—C8—H8A | 120.8 |
N1—C1—H1C | 109.5 | C8—C9—C10 | 119.4 (4) |
H1A—C1—H1C | 109.5 | C8—C9—H9A | 120.3 |
H1B—C1—H1C | 109.5 | C10—C9—H9A | 120.3 |
N1—C2—H2A | 109.5 | C11—C10—C9 | 123.1 (4) |
N1—C2—H2B | 109.5 | C11—C10—Br1 | 118.4 (3) |
H2A—C2—H2B | 109.5 | C9—C10—Br1 | 118.5 (3) |
N1—C2—H2C | 109.5 | C10—C11—C12 | 117.3 (4) |
H2A—C2—H2C | 109.5 | C10—C11—H11A | 121.4 |
H2B—C2—H2C | 109.5 | C12—C11—H11A | 121.4 |
C4—C3—N1 | 113.2 (3) | C11—C12—C7 | 119.7 (4) |
C4—C3—H3A | 108.9 | C11—C12—C4 | 133.5 (4) |
N1—C3—H3A | 108.9 | C7—C12—C4 | 106.8 (3) |
C4—C3—H3B | 108.9 | O1—N3—O2 | 121.3 (3) |
N1—C3—H3B | 108.9 | O1—N3—O3 | 121.0 (3) |
H3A—C3—H3B | 107.8 | O2—N3—O3 | 117.8 (3) |
C1—N1—C3—C4 | 59.5 (4) | C8—C9—C10—Br1 | 179.3 (3) |
C2—N1—C3—C4 | −176.1 (3) | C9—C10—C11—C12 | −0.5 (5) |
N1—C3—C4—C5 | −103.6 (4) | Br1—C10—C11—C12 | 179.8 (3) |
N1—C3—C4—C12 | 78.1 (5) | C10—C11—C12—C7 | 2.0 (5) |
C7—N2—C5—C4 | 0.0 (5) | C10—C11—C12—C4 | −178.5 (4) |
C12—C4—C5—N2 | −0.3 (4) | N2—C7—C12—C11 | 179.2 (3) |
C3—C4—C5—N2 | −178.8 (4) | C8—C7—C12—C11 | −2.7 (5) |
C5—N2—C7—C8 | −177.6 (4) | N2—C7—C12—C4 | −0.5 (4) |
C5—N2—C7—C12 | 0.3 (4) | C8—C7—C12—C4 | 177.7 (3) |
N2—C7—C8—C9 | 179.4 (4) | C5—C4—C12—C11 | −179.1 (4) |
C12—C7—C8—C9 | 1.7 (6) | C3—C4—C12—C11 | −0.6 (7) |
C7—C8—C9—C10 | −0.2 (6) | C5—C4—C12—C7 | 0.5 (4) |
C8—C9—C10—C11 | −0.4 (6) | C3—C4—C12—C7 | 179.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.91 | 2.24 | 3.041 (4) | 146 |
N1—H1···O3 | 0.91 | 2.03 | 2.857 (4) | 151 |
N1—H1···N3 | 0.91 | 2.49 | 3.391 (5) | 169 |
N2—H2D···O2i | 0.86 | 2.12 | 2.902 (4) | 152 |
N2—H2D···O1i | 0.86 | 2.65 | 3.388 (4) | 144 |
C1—H1B···O3ii | 0.96 | 2.45 | 3.293 (5) | 146 |
C3—H3B···O3ii | 0.97 | 2.40 | 3.259 (5) | 147 |
Symmetry codes: (i) x−1, y, z; (ii) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C11H14BrN2+·NO3− |
Mr | 316.16 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 150 |
a, b, c (Å) | 9.1449 (2), 10.8270 (3), 13.1344 (3) |
V (Å3) | 1300.46 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 4.38 |
Crystal size (mm) | 0.50 × 0.42 × 0.40 |
Data collection | |
Diffractometer | Agilent Gemini S Ultra CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2543, 1760, 1713 |
Rint | 0.022 |
θmax (°) | 62.4 |
(sin θ/λ)max (Å−1) | 0.575 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.088, 1.07 |
No. of reflections | 1760 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.60, −0.77 |
Absolute structure | Flack (1983), 546 Friedel pairs |
Absolute structure parameter | −0.01 (3) |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.91 | 2.24 | 3.041 (4) | 146 |
N1—H1···O3 | 0.91 | 2.03 | 2.857 (4) | 151 |
N1—H1···N3 | 0.91 | 2.49 | 3.391 (5) | 169 |
N2—H2D···O2i | 0.86 | 2.12 | 2.902 (4) | 152 |
N2—H2D···O1i | 0.86 | 2.65 | 3.388 (4) | 144 |
C1—H1B···O3ii | 0.96 | 2.45 | 3.293 (5) | 146 |
C3—H3B···O3ii | 0.97 | 2.40 | 3.259 (5) | 147 |
Symmetry codes: (i) x−1, y, z; (ii) −x, y+1/2, −z+1/2. |
Acknowledgements
We acknowledge the support of the Postdoctoral Innovation Foundation of Shandong Province, the National Natural Science Foundation of China (No. 51003099) and the Special Foundation for Young Teachers of Ocean University of China (No. 201013017).
References
Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kon-ya, K., Shimidzu, N., Adachi, K. & Miki, W. (1994). Fish. Sci. 60, 773–775. CAS Google Scholar
Golubev, S. N. & Kondrashev, Yu. D. (1984). Zh. Strukt. Khim., 25, 145–149. CAS Google Scholar
Li, X., Yu, L.-M., Jiang, X.-H., Xia, S.-W. & Zhao, H.-Z. (2009). Chin. J. Oceanol. Limnol. 27, 309–316. CrossRef CAS Google Scholar
Li, X., Yu, L.-M., Wang, B.-J., Xia, S.-W. & Zhao, H.-Z. (2008). Acta Chem. Sinica, 66, 2507-2512 CAS Google Scholar
Rie, H., Hideo, O., Atsuya, M., Hideo, O., Mamoru, E., Wataru, M. & Kazumi, K. (1996). Chem. Abstr. 124, 343108. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, gramine ramification was shown to be very efficient in preventing recruitment of larval settlement. Many compounds such as 2,5,6-Tribromo-1-methylgramine (Kon-ya et al., 1994; Li et al., 2008; Li et al. 2009) and 5,6-dichlorogramine (Rie et al., 1996) have been reported. Here we report the synthesis and structure of the title compound (I).
The asymmetric unit contains one protonated 5-bromo-gramine and one NO3¯ anion linked by a bifurcated N—H···O hydrogen bonds (Table 1, Fig. 1). Futhermore, intermolecular N—H···O hydrogen bonds link the cation-anion couple to form a one-dimensional chain running parallel to the [100] direction (Table 1). These chains are further connected through C—H···O hydrogen bonds to form layer parallel to the (0 0 1) plane (Table 1, Fig. 2).