organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(5-Bromo-1H-indol-3-yl)meth­yl]di­methyl­aza­nium nitrate

aEducation Ministry Key Laboratory of Marine Chemistry and Technology, Ocean University of China, Qingdao, People's Republic of China
*Correspondence e-mail: crystalshuai@yahoo.com.cn

(Received 17 May 2011; accepted 26 May 2011; online 18 June 2011)

In the title compound, C11H14BrN2+·NO3, inter­molecular N—H⋯O and N—H⋯N hydrogen bonds link the proton­ated 5-bromo­gramine cation and the nitrate anions. Further N—H⋯O hydrogen bonds link the cation–anion pairs into a chain running parallel to [100]. C—H⋯O hydrogen bonds link the chains, forming a layer parallel to (001).

Related literature

For background to gramine ramification, see: Kon-ya et al. (1994[Kon-ya, K., Shimidzu, N., Adachi, K. & Miki, W. (1994). Fish. Sci. 60, 773-775.]); Rie et al. (1996[Rie, H., Hideo, O., Atsuya, M., Hideo, O., Mamoru, E., Wataru, M. & Kazumi, K. (1996). Chem. Abstr. 124, 343108.]); Li et al. (2008[Li, X., Yu, L.-M., Wang, B.-J., Xia, S.-W. & Zhao, H.-Z. (2008). Acta Chem. Sinica, 66, 2507-2512], 2009[Li, X., Yu, L.-M., Jiang, X.-H., Xia, S.-W. & Zhao, H.-Z. (2009). Chin. J. Oceanol. Limnol. 27, 309-316.]). For a related structure, see: Golubev & Kondrashev (1984[Golubev, S. N. & Kondrashev, Yu. D. (1984). Zh. Strukt. Khim., 25, 145-149.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14BrN2+·NO3

  • Mr = 316.16

  • Orthorhombic, P 21 21 21

  • a = 9.1449 (2) Å

  • b = 10.8270 (3) Å

  • c = 13.1344 (3) Å

  • V = 1300.46 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.38 mm−1

  • T = 150 K

  • 0.50 × 0.42 × 0.40 mm

Data collection
  • Agilent Gemini S Ultra CCD diffractometer

  • 2543 measured reflections

  • 1760 independent reflections

  • 1713 reflections with I > 2σ(I)

  • Rint = 0.022

  • θmax = 62.4°

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.07

  • 1760 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.77 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 546 Friedel pairs

  • Flack parameter: −0.01 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.91 2.24 3.041 (4) 146
N1—H1⋯O3 0.91 2.03 2.857 (4) 151
N1—H1⋯N3 0.91 2.49 3.391 (5) 169
N2—H2D⋯O2i 0.86 2.12 2.902 (4) 152
N2—H2D⋯O1i 0.86 2.65 3.388 (4) 144
C1—H1B⋯O3ii 0.96 2.45 3.293 (5) 146
C3—H3B⋯O3ii 0.97 2.40 3.259 (5) 147
Symmetry codes: (i) x-1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, gramine ramification was shown to be very efficient in preventing recruitment of larval settlement. Many compounds such as 2,5,6-Tribromo-1-methylgramine (Kon-ya et al., 1994; Li et al., 2008; Li et al. 2009) and 5,6-dichlorogramine (Rie et al., 1996) have been reported. Here we report the synthesis and structure of the title compound (I).

The asymmetric unit contains one protonated 5-bromo-gramine and one NO3¯ anion linked by a bifurcated N—H···O hydrogen bonds (Table 1, Fig. 1). Futhermore, intermolecular N—H···O hydrogen bonds link the cation-anion couple to form a one-dimensional chain running parallel to the [100] direction (Table 1). These chains are further connected through C—H···O hydrogen bonds to form layer parallel to the (0 0 1) plane (Table 1, Fig. 2).

Related literature top

For background to gramine ramification, see: Kon-ya et al. (1994); Rie et al. (1996); Li et al. (2008, 2009). For a related structure, see: Golubev et al. (1984).

Experimental top

Eu(NO3)3.6H2O (0.2 mmol, 0.0892 g) was dissolved in CH3OH (5 ml), and then carefully layered onto a solution of 5-BrG (0.2 mmol, 0.0504 g) in C2H5OH (5 ml). After the solvent was evaporated to almost dry, pale-yellow block crystals suitable for X-ray analysis could be harvested.

For (I): C11H14BrN3O3 (316.15, %): calcd. C 41.97, H 2.716, N 12.95; found C 41.79, H 4.46, N 13.29.

X-ray powder diffraction pattern was recorded to check the solid-state phase purity of the bulky sample of compound (I). Supplementary Figure 3 shows the measured pattern and the simulated one on the basis of single-crystal analysis result.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) or 0.97 Å (methylene) and N—H = 0.86 Å (amido) or 0.91Å (amonium) with Uiso(H) = 1.2Ueq(Caromatic, Cmethylene or N) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1999) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atom are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. : Packing view of (I), showing the two-dimensional hydrogen-bonding layer. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
[Figure 3] Fig. 3. : The simulate X-ray powder diffraction pattern (upper) and the measured one (lower).
[(5-Bromo-1H-indol-3-yl)methyl]dimethylazanium nitrate top
Crystal data top
C11H14BrN2+·NO3F(000) = 640
Mr = 316.16Dx = 1.615 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 2128 reflections
a = 9.1449 (2) Åθ = 3.4–62.3°
b = 10.8270 (3) ŵ = 4.38 mm1
c = 13.1344 (3) ÅT = 150 K
V = 1300.46 (5) Å3Block, yellow
Z = 40.50 × 0.42 × 0.40 mm
Data collection top
Agilent Gemini S Ultra CCD
diffractometer
1713 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 62.4°, θmin = 5.3°
Detector resolution: 16.0855 pixels mm-1h = 1010
ϕ and ω scansk = 1211
2543 measured reflectionsl = 1413
1760 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0583P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max = 0.004
S = 1.07Δρmax = 0.60 e Å3
1760 reflectionsΔρmin = 0.77 e Å3
164 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0131 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 546 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (3)
Crystal data top
C11H14BrN2+·NO3V = 1300.46 (5) Å3
Mr = 316.16Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.1449 (2) ŵ = 4.38 mm1
b = 10.8270 (3) ÅT = 150 K
c = 13.1344 (3) Å0.50 × 0.42 × 0.40 mm
Data collection top
Agilent Gemini S Ultra CCD
diffractometer
1713 reflections with I > 2σ(I)
2543 measured reflectionsRint = 0.022
1760 independent reflectionsθmax = 62.4°
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.60 e Å3
S = 1.07Δρmin = 0.77 e Å3
1760 reflectionsAbsolute structure: Flack (1983), 546 Friedel pairs
164 parametersAbsolute structure parameter: 0.01 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.08934 (5)0.37702 (4)0.62866 (4)0.0393 (2)
N10.0708 (3)0.7763 (3)0.2870 (2)0.0218 (7)
H10.11320.70600.31080.026*
N20.3723 (3)0.6214 (3)0.3766 (2)0.0293 (8)
H2D0.46170.60440.36180.035*
C10.0076 (5)0.7478 (4)0.1850 (3)0.0286 (9)
H1A0.08440.72270.13960.043*
H1B0.03960.82010.15840.043*
H1C0.06250.68230.19140.043*
C20.1875 (4)0.8720 (4)0.2783 (3)0.0308 (9)
H2A0.25980.84520.23020.046*
H2B0.23250.88400.34360.046*
H2C0.14510.94830.25570.046*
C30.0444 (4)0.8157 (4)0.3639 (3)0.0254 (8)
H3A0.00330.83420.42810.030*
H3B0.09090.89090.34010.030*
C40.1584 (4)0.7205 (4)0.3813 (3)0.0238 (8)
C50.2987 (4)0.7213 (4)0.3437 (3)0.0285 (9)
H5A0.33710.78220.30150.034*
C70.2829 (4)0.5507 (4)0.4374 (3)0.0218 (8)
C80.3083 (5)0.4384 (4)0.4854 (3)0.0284 (10)
H8A0.39820.39890.47960.034*
C90.1965 (5)0.3868 (4)0.5421 (3)0.0282 (9)
H9A0.21040.31190.57530.034*
C100.0612 (4)0.4490 (4)0.5491 (3)0.0245 (9)
C110.0335 (4)0.5599 (4)0.5012 (3)0.0225 (9)
H11A0.05640.59920.50750.027*
C120.1466 (4)0.6110 (4)0.4426 (3)0.0200 (8)
N30.2674 (4)0.5222 (3)0.3505 (2)0.0261 (8)
O10.3385 (4)0.4266 (3)0.3625 (3)0.0462 (8)
O20.3106 (3)0.6231 (3)0.3859 (2)0.0337 (7)
O30.1487 (3)0.5214 (3)0.3021 (2)0.0309 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0454 (3)0.0422 (3)0.0301 (3)0.0153 (2)0.0037 (2)0.0094 (2)
N10.0305 (17)0.0202 (15)0.0147 (15)0.0011 (16)0.0007 (14)0.0015 (13)
N20.0227 (16)0.045 (2)0.0204 (16)0.0014 (16)0.0035 (14)0.001 (2)
C10.034 (2)0.034 (2)0.0178 (19)0.001 (2)0.0023 (18)0.0059 (19)
C20.034 (2)0.031 (2)0.027 (2)0.008 (2)0.0046 (17)0.000 (2)
C30.035 (2)0.0237 (18)0.0174 (18)0.0000 (17)0.0033 (19)0.0012 (18)
C40.0308 (18)0.0285 (19)0.0122 (17)0.0027 (17)0.0021 (17)0.0017 (18)
C50.031 (2)0.036 (2)0.019 (2)0.006 (2)0.0016 (16)0.0021 (18)
C70.0233 (19)0.030 (2)0.0122 (17)0.0002 (18)0.0003 (16)0.0036 (17)
C80.033 (2)0.033 (2)0.0193 (19)0.009 (2)0.0079 (17)0.0092 (19)
C90.039 (2)0.026 (2)0.0192 (19)0.001 (2)0.0065 (17)0.0019 (19)
C100.032 (2)0.026 (2)0.0149 (17)0.0044 (18)0.0018 (17)0.0002 (17)
C110.0241 (19)0.029 (2)0.0146 (17)0.0013 (18)0.0012 (16)0.0061 (17)
C120.0239 (17)0.0251 (19)0.0109 (16)0.0044 (18)0.0033 (14)0.0020 (17)
N30.0270 (17)0.0253 (18)0.0260 (18)0.0015 (16)0.0049 (16)0.0003 (16)
O10.0495 (18)0.0319 (16)0.057 (2)0.0126 (15)0.0092 (19)0.0028 (18)
O20.0329 (15)0.0293 (14)0.0390 (17)0.0046 (13)0.0007 (13)0.0093 (17)
O30.0260 (14)0.0357 (16)0.0311 (15)0.0003 (14)0.0033 (13)0.0038 (14)
Geometric parameters (Å, º) top
Br1—C101.896 (4)C3—H3B0.9700
N1—C11.491 (5)C4—C51.375 (5)
N1—C21.492 (5)C4—C121.437 (6)
N1—C31.521 (5)C5—H5A0.9300
N1—H10.9100C7—C81.389 (6)
N2—C51.345 (6)C7—C121.408 (5)
N2—C71.376 (5)C8—C91.382 (6)
N2—H2D0.8600C8—H8A0.9300
C1—H1A0.9600C9—C101.412 (6)
C1—H1B0.9600C9—H9A0.9300
C1—H1C0.9600C10—C111.379 (6)
C2—H2A0.9600C11—C121.403 (5)
C2—H2B0.9600C11—H11A0.9300
C2—H2C0.9600N3—O11.232 (4)
C3—C41.484 (5)N3—O21.251 (4)
C3—H3A0.9700N3—O31.258 (4)
C1—N1—C2110.6 (3)C5—C4—C12106.1 (3)
C1—N1—C3112.8 (3)C5—C4—C3126.6 (4)
C2—N1—C3110.5 (3)C12—C4—C3127.3 (3)
C1—N1—H1107.6N2—C5—C4110.3 (4)
C2—N1—H1107.6N2—C5—H5A124.9
C3—N1—H1107.6C4—C5—H5A124.9
C5—N2—C7109.7 (3)N2—C7—C8130.7 (4)
C5—N2—H2D125.2N2—C7—C12107.2 (3)
C7—N2—H2D125.2C8—C7—C12122.1 (4)
N1—C1—H1A109.5C9—C8—C7118.3 (4)
N1—C1—H1B109.5C9—C8—H8A120.8
H1A—C1—H1B109.5C7—C8—H8A120.8
N1—C1—H1C109.5C8—C9—C10119.4 (4)
H1A—C1—H1C109.5C8—C9—H9A120.3
H1B—C1—H1C109.5C10—C9—H9A120.3
N1—C2—H2A109.5C11—C10—C9123.1 (4)
N1—C2—H2B109.5C11—C10—Br1118.4 (3)
H2A—C2—H2B109.5C9—C10—Br1118.5 (3)
N1—C2—H2C109.5C10—C11—C12117.3 (4)
H2A—C2—H2C109.5C10—C11—H11A121.4
H2B—C2—H2C109.5C12—C11—H11A121.4
C4—C3—N1113.2 (3)C11—C12—C7119.7 (4)
C4—C3—H3A108.9C11—C12—C4133.5 (4)
N1—C3—H3A108.9C7—C12—C4106.8 (3)
C4—C3—H3B108.9O1—N3—O2121.3 (3)
N1—C3—H3B108.9O1—N3—O3121.0 (3)
H3A—C3—H3B107.8O2—N3—O3117.8 (3)
C1—N1—C3—C459.5 (4)C8—C9—C10—Br1179.3 (3)
C2—N1—C3—C4176.1 (3)C9—C10—C11—C120.5 (5)
N1—C3—C4—C5103.6 (4)Br1—C10—C11—C12179.8 (3)
N1—C3—C4—C1278.1 (5)C10—C11—C12—C72.0 (5)
C7—N2—C5—C40.0 (5)C10—C11—C12—C4178.5 (4)
C12—C4—C5—N20.3 (4)N2—C7—C12—C11179.2 (3)
C3—C4—C5—N2178.8 (4)C8—C7—C12—C112.7 (5)
C5—N2—C7—C8177.6 (4)N2—C7—C12—C40.5 (4)
C5—N2—C7—C120.3 (4)C8—C7—C12—C4177.7 (3)
N2—C7—C8—C9179.4 (4)C5—C4—C12—C11179.1 (4)
C12—C7—C8—C91.7 (6)C3—C4—C12—C110.6 (7)
C7—C8—C9—C100.2 (6)C5—C4—C12—C70.5 (4)
C8—C9—C10—C110.4 (6)C3—C4—C12—C7179.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.912.243.041 (4)146
N1—H1···O30.912.032.857 (4)151
N1—H1···N30.912.493.391 (5)169
N2—H2D···O2i0.862.122.902 (4)152
N2—H2D···O1i0.862.653.388 (4)144
C1—H1B···O3ii0.962.453.293 (5)146
C3—H3B···O3ii0.972.403.259 (5)147
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H14BrN2+·NO3
Mr316.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)9.1449 (2), 10.8270 (3), 13.1344 (3)
V3)1300.46 (5)
Z4
Radiation typeCu Kα
µ (mm1)4.38
Crystal size (mm)0.50 × 0.42 × 0.40
Data collection
DiffractometerAgilent Gemini S Ultra CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2543, 1760, 1713
Rint0.022
θmax (°)62.4
(sin θ/λ)max1)0.575
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.07
No. of reflections1760
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.77
Absolute structureFlack (1983), 546 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.912.243.041 (4)146
N1—H1···O30.912.032.857 (4)151
N1—H1···N30.912.493.391 (5)169
N2—H2D···O2i0.862.122.902 (4)152
N2—H2D···O1i0.862.653.388 (4)144
C1—H1B···O3ii0.962.453.293 (5)146
C3—H3B···O3ii0.972.403.259 (5)147
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge the support of the Postdoctoral Innovation Foundation of Shandong Province, the National Natural Science Foundation of China (No. 51003099) and the Special Foundation for Young Teachers of Ocean University of China (No. 201013017).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKon-ya, K., Shimidzu, N., Adachi, K. & Miki, W. (1994). Fish. Sci. 60, 773–775.  CAS Google Scholar
First citationGolubev, S. N. & Kondrashev, Yu. D. (1984). Zh. Strukt. Khim., 25, 145–149.  CAS Google Scholar
First citationLi, X., Yu, L.-M., Jiang, X.-H., Xia, S.-W. & Zhao, H.-Z. (2009). Chin. J. Oceanol. Limnol. 27, 309–316.  CrossRef CAS Google Scholar
First citationLi, X., Yu, L.-M., Wang, B.-J., Xia, S.-W. & Zhao, H.-Z. (2008). Acta Chem. Sinica, 66, 2507-2512  CAS Google Scholar
First citationRie, H., Hideo, O., Atsuya, M., Hideo, O., Mamoru, E., Wataru, M. & Kazumi, K. (1996). Chem. Abstr. 124, 343108.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds