organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Bromo­butano­yl)-N′-phen­ylthio­urea

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia.
*Correspondence e-mail: bohari@ukm.my

(Received 20 May 2011; accepted 6 June 2011; online 11 June 2011)

The asymmetric unit of the title compound, C11H13Br1N2O1S1, consists of two independent mol­ecules, which are linked by N—H⋯O hydrogen bonds, forming a dimer. Both mol­ecules maintain the trans--cis configuration with respect to the position of the butanoyl groups and benzene rings against the thiono group across the C—N bonds. The mol­ecule is stabilized by intra­molecular N—H⋯O hydrogen bonds. Inter­molecular N—H⋯S, C—H⋯S and C—H⋯π inter­actions also occur.

Related literature

For related structures of halocarbonyl thio­urea derivatives, see: Othman et al. (2010[Othman, E. A., Soh, S. K. C. & Yamin, B. M. (2010). Acta Cryst. E66, o628.]); Yamin et al. (2011[Yamin, B. M., Othman, N. E. A., Yusof, M. S. M. & Embong, F. (2011). Acta Cryst. E67, o419.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13BrN2OS

  • Mr = 301.20

  • Monoclinic, P 21 /c

  • a = 14.689 (3) Å

  • b = 10.349 (2) Å

  • c = 18.249 (4) Å

  • β = 111.220 (5)°

  • V = 2586.0 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.32 mm−1

  • T = 298 K

  • 0.50 × 0.33 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.287, Tmax = 0.732

  • 15722 measured reflections

  • 5077 independent reflections

  • 3076 reflections with I > 2/s(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.177

  • S = 1.01

  • 5077 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C6–C11 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.02 2.690 (6) 134
N4—H4⋯O2 0.86 2.03 2.687 (6) 133
N2—H2⋯O2 0.86 2.41 3.140 (5) 143
N4—H4⋯O1 0.86 2.33 3.049 (6) 142
N1—H1⋯S2i 0.86 2.53 3.386 (4) 173
C14—H14A⋯S2ii 0.97 2.78 3.711 (6) 160
N3—H3⋯S1iii 0.86 2.59 3.445 (4) 176
C2—H2ACg2 0.97 2.69 3.405 (8) 131
C13—H13ACg1 0.97 2.83 3.708 (6) 150
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].

Supporting information


Comment top

The title compound (I) is similar to previously reported N-(4-chlorobutanoyl)-N'-phenyl thiourea (Yamin et al., 2011), except the chlorine atom is replaced by bromine atom. The asymmetric unit also consists of two independent molecules linked by N-H···O hydrogen bonds forming a pseudo dimer (Fig. 1).

Both molecules are not planar. The thiourea fragments (C4/N1/C5/S1/N2/C6), (C15/N3/C16/S2/N4/C17) and the benzene rings, (C6—C11) and (C17—C22) are each planar with maximum deviation of 0.055 (4)Å for N3 atom from the least square plane. The dihedral angles between the benzene ring and thiourea fragment in each molecule are 71.9 (2)° and 82.2 (3)° respectively and comparable to those in the N-(4-chlorobutanoyl)-N'-phenyl thiourea (72.98 (10)°, 81.47 (14)°). Both molecules maintain the trans-cis configuration with respect to the butanoyl and benzene ring against the thiono group across their C—N bonds respectively.

There are intramolecular hydrogen bonds, N2—H2···O1, N4—H4···O2 and C3—H3A···Br1 forming two pseudo-six membered rings, [O1···H2/N2/C5/N1/C4], [O2···H4/N4/C16/N3/C15] and a pseudo-five membered rings, [Br1···H3A/C3/C2/C1] respectively. In the crystal structure, the molecules are linked by N1—H1···S2, N3—H3···S1 and N4—H4···O1 intermolecular hydrogen bonds (symmetry codes as in Table 1) to form trimers which are then liked by the N4—H4···O1 and N2—H2···O2 intramolecular hydrogen bonds (Table 1). In addition, there are also C2—H2A..π and C13—H13A..π bonds with the centeroid benzene rings Cg2 (C17—C22)and Cg1 (C6—C11)respectively. All these interactions build up a complicated three dimensional network (Table 1).

Related literature top

For related structures of halocarbonyl thiourea derivatives, see: Othman et al. (2010); Yamin et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

30 ml acetone solution of aniline (1.33 g, 14 mmol) was added into 30 ml acetone containing 4-bromobutanoyl chloride (2.60 g, 14 mmol) and ammonium thiocyanate (1.09 g, 14 mmol). The mixture was refluxed for 2 h. The solution was filtered and left to evaporate at room temperature. Colourless crytals were obtained after two days of slow evaporation. Yield 90%; m.p 392.3–393.2 K.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H= 0.93–0.97 Å(aromatic and methylene) and N—H= 0.86 Å(amino) with Uiso(H)=1.2Ueq(C or N). There are highest peak 1.26Å and deepest hole 0.93Å for Br1 atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom labeling scheme. Displacement ellipsods are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram.
N-(4-Bromobutanoyl)-N'-phenylthiourea top
Crystal data top
C11H13BrN2OSF(000) = 1216
Mr = 301.20Dx = 1.547 Mg m3
Monoclinic, P21/cMelting point = 392.3–393.2 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.689 (3) ÅCell parameters from 2780 reflections
b = 10.349 (2) Åθ = 1.5–26.0°
c = 18.249 (4) ŵ = 3.32 mm1
β = 111.220 (5)°T = 298 K
V = 2586.0 (10) Å3Block, colourless
Z = 80.50 × 0.33 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5077 independent reflections
Radiation source: fine-focus sealed tube3076 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.048
Detector resolution: 83.66 pixels mm-1θmax = 26.0°, θmin = 1.5°
ω scanh = 1718
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 129
Tmin = 0.287, Tmax = 0.732l = 2122
15722 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0843P)2 + 2.7585P]
where P = (Fo2 + 2Fc2)/3
5077 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
C11H13BrN2OSV = 2586.0 (10) Å3
Mr = 301.20Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.689 (3) ŵ = 3.32 mm1
b = 10.349 (2) ÅT = 298 K
c = 18.249 (4) Å0.50 × 0.33 × 0.10 mm
β = 111.220 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5077 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3076 reflections with I > 2/s(I)
Tmin = 0.287, Tmax = 0.732Rint = 0.048
15722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.01Δρmax = 0.89 e Å3
5077 reflectionsΔρmin = 0.75 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.00981 (7)0.72786 (12)1.00605 (6)0.1327 (4)
Br20.28595 (5)0.69236 (7)0.28367 (4)0.0784 (3)
S10.48380 (9)0.47455 (14)0.83458 (8)0.0528 (4)
S20.74841 (9)1.02020 (13)0.52423 (8)0.0513 (3)
O10.7046 (3)0.6521 (4)0.7416 (2)0.0615 (10)
O20.5743 (3)0.6931 (3)0.5762 (2)0.0555 (9)
N10.6510 (3)0.5574 (4)0.8311 (2)0.0458 (10)
H10.67020.53610.87990.055*
N20.5208 (3)0.5717 (4)0.7131 (2)0.0478 (10)
H20.56100.60680.69460.057*
N30.6000 (3)0.8661 (4)0.5094 (2)0.0427 (9)
H30.57360.90930.46660.051*
N40.7312 (3)0.8488 (4)0.6266 (2)0.0491 (10)
H40.69980.78690.63820.059*
C11.0005 (4)0.6481 (8)0.9059 (4)0.091 (2)
H1A1.04580.69060.88610.109*
H1B1.01930.55790.91480.109*
C20.8995 (4)0.6569 (7)0.8455 (4)0.0767 (19)
H2A0.88140.74740.83700.092*
H2B0.90030.62250.79630.092*
C30.8241 (4)0.5886 (6)0.8656 (3)0.0588 (14)
H3A0.82550.61940.91620.071*
H3B0.83990.49720.87090.071*
C40.7220 (4)0.6051 (5)0.8060 (3)0.0486 (12)
C50.5530 (3)0.5391 (4)0.7884 (3)0.0407 (11)
C60.4217 (3)0.5511 (5)0.6608 (3)0.0443 (11)
C70.3889 (4)0.4292 (6)0.6373 (3)0.0623 (15)
H70.42970.35840.65620.075*
C80.2944 (5)0.4120 (7)0.5851 (4)0.0777 (19)
H80.27130.32920.56880.093*
C90.2350 (4)0.5158 (8)0.5576 (4)0.080 (2)
H90.17120.50360.52300.096*
C100.2687 (4)0.6376 (7)0.5803 (4)0.0740 (18)
H100.22810.70840.56090.089*
C110.3631 (4)0.6559 (6)0.6324 (3)0.0576 (14)
H110.38660.73880.64790.069*
C120.2997 (4)0.6205 (6)0.3859 (3)0.0624 (15)
H12A0.25890.66900.40760.075*
H12B0.27720.53170.37920.075*
C130.4040 (4)0.6247 (5)0.4427 (3)0.0510 (12)
H13A0.40790.58290.49140.061*
H13B0.44470.57620.42080.061*
C140.4432 (4)0.7593 (5)0.4606 (3)0.0544 (13)
H14A0.39950.80940.47850.065*
H14B0.44370.79860.41240.065*
C150.5449 (3)0.7663 (5)0.5219 (3)0.0442 (11)
C160.6924 (3)0.9049 (4)0.5572 (3)0.0423 (11)
C170.8234 (4)0.8868 (5)0.6832 (3)0.0497 (12)
C180.9079 (4)0.8368 (7)0.6801 (4)0.0709 (17)
H180.90660.77860.64090.085*
C190.9966 (5)0.8749 (9)0.7373 (5)0.093 (2)
H191.05490.84260.73560.112*
C200.9985 (6)0.9573 (9)0.7942 (5)0.100 (3)
H201.05790.98100.83210.120*
C210.9142 (6)1.0065 (7)0.7972 (5)0.095 (2)
H210.91641.06430.83680.114*
C220.8253 (5)0.9712 (6)0.7417 (4)0.0694 (16)
H220.76751.00420.74390.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0786 (6)0.1732 (10)0.1102 (7)0.0418 (6)0.0091 (5)0.0171 (6)
Br20.0770 (5)0.0753 (5)0.0611 (4)0.0005 (3)0.0013 (3)0.0011 (3)
S10.0424 (7)0.0709 (9)0.0440 (7)0.0065 (6)0.0144 (6)0.0010 (6)
S20.0425 (7)0.0632 (8)0.0445 (7)0.0108 (6)0.0111 (6)0.0055 (6)
O10.044 (2)0.079 (3)0.053 (2)0.0140 (18)0.0074 (17)0.0128 (19)
O20.049 (2)0.054 (2)0.051 (2)0.0114 (17)0.0036 (17)0.0105 (17)
N10.036 (2)0.060 (3)0.036 (2)0.0008 (18)0.0054 (18)0.0018 (18)
N20.038 (2)0.060 (3)0.040 (2)0.0077 (19)0.0073 (18)0.0072 (19)
N30.035 (2)0.052 (2)0.035 (2)0.0029 (18)0.0048 (17)0.0031 (17)
N40.036 (2)0.059 (3)0.043 (2)0.0082 (19)0.0032 (18)0.0071 (19)
C10.041 (3)0.132 (6)0.096 (5)0.011 (4)0.021 (4)0.041 (5)
C20.041 (3)0.121 (6)0.063 (4)0.005 (3)0.013 (3)0.024 (4)
C30.046 (3)0.070 (4)0.052 (3)0.007 (3)0.008 (3)0.006 (3)
C40.041 (3)0.057 (3)0.043 (3)0.008 (2)0.009 (2)0.002 (2)
C50.041 (3)0.039 (3)0.040 (3)0.002 (2)0.012 (2)0.002 (2)
C60.034 (2)0.058 (3)0.036 (2)0.006 (2)0.007 (2)0.001 (2)
C70.057 (3)0.058 (3)0.060 (3)0.006 (3)0.006 (3)0.006 (3)
C80.068 (4)0.080 (5)0.071 (4)0.030 (4)0.008 (3)0.003 (3)
C90.039 (3)0.125 (6)0.059 (4)0.017 (4)0.002 (3)0.012 (4)
C100.042 (3)0.091 (5)0.079 (4)0.010 (3)0.010 (3)0.015 (4)
C110.051 (3)0.059 (3)0.061 (3)0.003 (3)0.018 (3)0.001 (3)
C120.051 (3)0.066 (4)0.061 (3)0.017 (3)0.010 (3)0.005 (3)
C130.044 (3)0.051 (3)0.051 (3)0.007 (2)0.009 (2)0.000 (2)
C140.044 (3)0.048 (3)0.060 (3)0.001 (2)0.006 (3)0.004 (2)
C150.039 (3)0.045 (3)0.046 (3)0.006 (2)0.013 (2)0.005 (2)
C160.038 (3)0.046 (3)0.042 (3)0.001 (2)0.012 (2)0.004 (2)
C170.043 (3)0.051 (3)0.045 (3)0.004 (2)0.004 (2)0.012 (2)
C180.047 (3)0.096 (5)0.065 (4)0.002 (3)0.014 (3)0.007 (3)
C190.043 (4)0.128 (7)0.095 (6)0.002 (4)0.008 (4)0.031 (5)
C200.068 (5)0.108 (6)0.084 (6)0.030 (5)0.020 (4)0.015 (5)
C210.090 (6)0.077 (5)0.080 (5)0.014 (4)0.014 (4)0.008 (4)
C220.065 (4)0.057 (4)0.068 (4)0.002 (3)0.002 (3)0.001 (3)
Geometric parameters (Å, º) top
Br1—C11.964 (8)C7—C81.383 (8)
Br2—C121.950 (6)C7—H70.9300
S1—C51.676 (5)C8—C91.360 (9)
S2—C161.680 (5)C8—H80.9300
O1—C41.211 (6)C9—C101.363 (9)
O2—C151.196 (6)C9—H90.9300
N1—C41.373 (6)C10—C111.382 (8)
N1—C51.380 (6)C10—H100.9300
N1—H10.8600C11—H110.9300
N2—C51.325 (6)C12—C131.508 (7)
N2—C61.437 (6)C12—H12A0.9700
N2—H20.8600C12—H12B0.9700
N3—C161.381 (6)C13—C141.497 (7)
N3—C151.381 (6)C13—H13A0.9700
N3—H30.8600C13—H13B0.9700
N4—C161.321 (6)C14—C151.510 (7)
N4—C171.429 (6)C14—H14A0.9700
N4—H40.8600C14—H14B0.9700
C1—C21.497 (8)C17—C181.364 (8)
C1—H1A0.9700C17—C221.372 (8)
C1—H1B0.9700C18—C191.399 (9)
C2—C31.467 (8)C18—H180.9300
C2—H2A0.9700C19—C201.337 (12)
C2—H2B0.9700C19—H190.9300
C3—C41.510 (7)C20—C211.357 (11)
C3—H3A0.9700C20—H200.9300
C3—H3B0.9700C21—C221.381 (9)
C6—C71.362 (7)C21—H210.9300
C6—C111.365 (7)C22—H220.9300
C4—N1—C5128.6 (4)C9—C10—C11120.0 (6)
C4—N1—H1115.7C9—C10—H10120.0
C5—N1—H1115.7C11—C10—H10120.0
C5—N2—C6123.1 (4)C6—C11—C10119.4 (6)
C5—N2—H2118.4C6—C11—H11120.3
C6—N2—H2118.4C10—C11—H11120.3
C16—N3—C15127.8 (4)C13—C12—Br2112.0 (4)
C16—N3—H3116.1C13—C12—H12A109.2
C15—N3—H3116.1Br2—C12—H12A109.2
C16—N4—C17122.6 (4)C13—C12—H12B109.2
C16—N4—H4118.7Br2—C12—H12B109.2
C17—N4—H4118.7H12A—C12—H12B107.9
C2—C1—Br1112.1 (5)C14—C13—C12113.0 (4)
C2—C1—H1A109.2C14—C13—H13A109.0
Br1—C1—H1A109.2C12—C13—H13A109.0
C2—C1—H1B109.2C14—C13—H13B109.0
Br1—C1—H1B109.2C12—C13—H13B109.0
H1A—C1—H1B107.9H13A—C13—H13B107.8
C3—C2—C1115.0 (5)C13—C14—C15113.9 (4)
C3—C2—H2A108.5C13—C14—H14A108.8
C1—C2—H2A108.5C15—C14—H14A108.8
C3—C2—H2B108.5C13—C14—H14B108.8
C1—C2—H2B108.5C15—C14—H14B108.8
H2A—C2—H2B107.5H14A—C14—H14B107.7
C2—C3—C4114.1 (5)O2—C15—N3123.6 (4)
C2—C3—H3A108.7O2—C15—C14123.2 (4)
C4—C3—H3A108.7N3—C15—C14113.2 (4)
C2—C3—H3B108.7N4—C16—N3117.6 (4)
C4—C3—H3B108.7N4—C16—S2123.9 (4)
H3A—C3—H3B107.6N3—C16—S2118.5 (3)
O1—C4—N1123.3 (5)C18—C17—C22120.7 (5)
O1—C4—C3123.4 (5)C18—C17—N4120.3 (5)
N1—C4—C3113.3 (4)C22—C17—N4118.9 (5)
N2—C5—N1117.3 (4)C17—C18—C19118.6 (7)
N2—C5—S1124.6 (4)C17—C18—H18120.7
N1—C5—S1118.0 (3)C19—C18—H18120.7
C7—C6—C11120.9 (5)C20—C19—C18120.7 (7)
C7—C6—N2120.2 (5)C20—C19—H19119.7
C11—C6—N2118.8 (5)C18—C19—H19119.7
C6—C7—C8119.3 (6)C19—C20—C21120.5 (7)
C6—C7—H7120.4C19—C20—H20119.7
C8—C7—H7120.4C21—C20—H20119.7
C9—C8—C7120.2 (6)C20—C21—C22120.4 (7)
C9—C8—H8119.9C20—C21—H21119.8
C7—C8—H8119.9C22—C21—H21119.8
C8—C9—C10120.3 (6)C17—C22—C21119.1 (7)
C8—C9—H9119.8C17—C22—H22120.5
C10—C9—H9119.8C21—C22—H22120.5
Br1—C1—C2—C362.8 (8)Br2—C12—C13—C1462.5 (6)
C1—C2—C3—C4176.7 (6)C12—C13—C14—C15175.7 (5)
C5—N1—C4—O18.4 (8)C16—N3—C15—O24.7 (8)
C5—N1—C4—C3169.5 (5)C16—N3—C15—C14174.8 (4)
C2—C3—C4—O111.4 (8)C13—C14—C15—O233.8 (7)
C2—C3—C4—N1170.7 (5)C13—C14—C15—N3146.7 (5)
C6—N2—C5—N1176.4 (4)C17—N4—C16—N3175.7 (4)
C6—N2—C5—S12.2 (7)C17—N4—C16—S24.1 (7)
C4—N1—C5—N20.5 (7)C15—N3—C16—N46.3 (7)
C4—N1—C5—S1178.3 (4)C15—N3—C16—S2173.9 (4)
C5—N2—C6—C771.4 (6)C16—N4—C17—C1885.2 (6)
C5—N2—C6—C11111.9 (5)C16—N4—C17—C2296.6 (6)
C11—C6—C7—C81.3 (8)C22—C17—C18—C191.0 (9)
N2—C6—C7—C8178.0 (5)N4—C17—C18—C19179.0 (5)
C6—C7—C8—C90.1 (9)C17—C18—C19—C200.9 (11)
C7—C8—C9—C100.9 (10)C18—C19—C20—C210.7 (12)
C8—C9—C10—C110.8 (10)C19—C20—C21—C220.5 (12)
C7—C6—C11—C101.4 (8)C18—C17—C22—C210.8 (9)
N2—C6—C11—C10178.1 (5)N4—C17—C22—C21178.9 (5)
C9—C10—C11—C60.3 (9)C20—C21—C22—C170.6 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C6–C11 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.022.690 (6)134
N4—H4···O20.862.032.687 (6)133
C3—H3A···Br10.972.843.321 (6)112
C14—H14B···Br20.972.863.293 (5)108
N2—H2···O20.862.413.140 (5)143
N4—H4···O10.862.333.049 (6)142
N1—H1···S2i0.862.533.386 (4)173
C14—H14A···S2ii0.972.783.711 (6)160
N3—H3···S1iii0.862.593.445 (4)176
C2—H2A···Cg20.972.693.405 (8)131
C13—H13A···Cg10.972.833.708 (6)150
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H13BrN2OS
Mr301.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.689 (3), 10.349 (2), 18.249 (4)
β (°) 111.220 (5)
V3)2586.0 (10)
Z8
Radiation typeMo Kα
µ (mm1)3.32
Crystal size (mm)0.50 × 0.33 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.287, 0.732
No. of measured, independent and
observed [I > 2/s(I)] reflections
15722, 5077, 3076
Rint0.048
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.177, 1.01
No. of reflections5077
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.75

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C6–C11 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.022.690 (6)134
N4—H4···O20.862.032.687 (6)133
C3—H3A···Br10.972.843.321 (6)112
N2—H2···O20.862.413.140 (5)143
N4—H4···O10.862.333.049 (6)142
N1—H1···S2i0.862.533.386 (4)173
C14—H14A···S2ii0.972.783.711 (6)160
N3—H3···S1iii0.862.593.445 (4)176
C2—H2A···Cg20.972.693.405 (8)131
C13—H13A···Cg10.972.833.708 (6)150
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia and Universiti Kebangsaan Malaysia for the research grant UKM-ST-06-FRGS0114–2009 and an NSF scholarship from the Ministry of Science, Technology and Innovation to NEAO.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOthman, E. A., Soh, S. K. C. & Yamin, B. M. (2010). Acta Cryst. E66, o628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M., Othman, N. E. A., Yusof, M. S. M. & Embong, F. (2011). Acta Cryst. E67, o419.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds