metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m839-m840

A new MoVI Schiff base complex: methanol[N′-(3-meth­­oxy-2-oxido­benzyl­­idene)benzohydrazidato]dioxido­molybdenum(VI)

aDepartment of Chemistry, Shahid Bahonar University, Kerman, Iran, and bEnvironmental Inorganic Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
*Correspondence e-mail: i_shoaie@yahoo.com

(Received 20 May 2011; accepted 26 May 2011; online 4 June 2011)

In the title benzil­idene Schiff base molybdenum(VI) complex, [Mo(C15H12N2O3)O2(CH3OH)], the MoVI ion is coordinated by two oxide O atoms and by two O atoms and one N atom of the tridentate N′-(3-meth­oxy-2-oxidobenzyl­idene)benzo­hydrazidate (L) Schiff base ligand. The methanol O atom completes the distorted octa­hedral configuration of the MoVI atom. Strong O—H⋯N hydrogen bonds form a C(5) chain around a 21 screw axis. Weak C—H—O hydrogen bonds are also present.

Related literature

For general background, see: Alizadeh et al. (1999[Alizadeh, N., Ershad, S., Naeimi, H., Sharghi, H. & Shamsipur, M. (1999). Pol. J. Chem. 73, 915-925.]); Ambroziak et al. (2004[Ambroziak, K., Pelech, R., Milchert, E., Dziembowska, T. & Rozwadowski, Z. (2004). J. Mol. Catal. A, 211, 9-16.]); Archer & Wang (1990[Archer, R. D. & Wang, B. (1990). Inorg. Chem. 29, 39-43.]); Bagherzadeh & Amini (2009[Bagherzadeh, M. & Amini, M. (2009). Inorg. Chem. Commun. 12, 21-25.]); Bagherzadeh et al. (2008[Bagherzadeh, M., Tahsini, L., Latifi, R., Ellern, A. & Woo, L. K. (2008). Inorg. Chim. Acta, 361, 2019-2024.]); Bhatia et al. (1981[Bhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773-1779.]); Bindlish et al. (1978[Bindlish, J. M., Bhatia, S. C., Gautam, P. & Jain, P. C. (1978). Indian J. Chem. Sect. A, 16, 279-282.]); Blake et al. (1995[Blake, A. B., Chipperfield, J. R., Hussain, W., Paschke, R. & Sinn, E. (1995). Inorg. Chem. 34, 1125-1129.]); Chang et al. (1998[Chang, S., Jones, L., Wang, C., Henling, L. M. & Grubbs, R. H. (1998). Organometallics, 17, 3460-3465.]); Costamagna et al. (1992[Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67-88.]); Dhar & Taploo (1982[Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501-506.]); Hatefi et al. (2009[Hatefi, M., Moghadam, M., Sheikhshoaei, I., Mirkhani, V., Tangestaninejad, S., Mohammadpoor-Baltork, I. & Kargar, H. (2009). Appl. Catal. A, 370, 66-71.]); Holm (1990[Holm, R. H. (1990). Coord. Chem. Rev. 100, 183-221.]); Jalali-Heravi et al. (1999[Jalali-Heravi, M., Khandar, A. A. & Sheikshoaie, I. (1999). Spectrochim. Acta Part A, 55, 2537-2544.]); Johnson et al. (1996[Johnson, C. P., Atwood, J. L., Steed, J. W., Bauer, C. B. & Rogers, R. D. (1996). Inorg. Chem. 35, 2602-2610.]); Maurya et al. (1997[Maurya, R. C., Mishra, D. D., Rao, N. S., Verma, R. & Rao, N. N. (1997). Indian J. Chem. Sect A, 36, 599-601.]); Sheikhshoaie & Fabian (2009[Sheikhshoaie, I. & Fabian, W. M. F. (2009). Curr. Org. Chem. 13, 149-171.]); Yamada (1999[Yamada, S. (1999). Coord. Chem. Rev. 190-192, 537-555.]). For details of the synthesis, see: Perrin et al. (1990[Perrin, D. D., Armarego, W. L. & Perrin, D. R. (1990). Purification of Laboratory Chemicals, 2nd ed. New York: Pergamon.]). For related structures, see: Dinda et al. (2006[Dinda, R., Ghosh, S., Falvello, L. R., Tomas, M. & Mak, T. C. W. (2006). Polyhedron, 25, 2375-2382.]); Glowiak et al. (2003[Glowiak, T., Jerzykiewicz, L., Sobczak, J. M. & Ziolkowski, J. J. (2003). Inorg. Chim. Acta, 356, 387-392.]); Liimatainen et al. (2000[Liimatainen, J., Lehtonen, A. & Sillanpaa, R. (2000). Polyhedron, 19, 1133-1138.]); Monadi et al. (2009[Monadi, N., Sheikhshoaie, I., Rezaeifard, A. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1124-m1125.]); Niaz et al. (2010[Niaz, M., Iran, S. & Abdolreza, R. (2010). Acta Cryst. E66, m202.]); Pramaniky et al. (2007[Pramaniky, N. R., Ghoshz, S., Raychaudhuriy, T. K., Chaudhurix, S., Drew, M. G. B. & Mandal, S. S. S. (2007). J. Coord. Chem. 60, 2177-2190.]); Rao et al. (1999[Rao, S. N., Munshi, K. N., Rao, N. N., Bhadbhade, M. M. & Suresh, E. (1999). Polyhedron, 18, 2491-2497.]); Rezaeifard et al. (2010[Rezaeifard, A., Sheikhshoaie, I., Monadi, N. & Stoeckli-Evans, H. (2010). Eur. J. Inorg. Chem. pp. 799-806.]); Saeednia et al. (2009[Saeednia, S., Sheikhshoaie, I. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1591.]); Sheikhshoaie et al. (2009[Sheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733-738.]); Vrdoljak et al. (2010[Vrdoljak, V., Dilovic, L., Rubcic, M., Pavelic, S. K., Kralj, M., Matkovic-Catogovic, D., Piantanida, I., Novak, P., Rozman, A. & Cindric, M. (2010). Eur. J. Med. Chem. 45, 38-48.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C15H12N2O3)O2(CH4O)]

  • Mr = 428.25

  • Monoclinic, C 2/c

  • a = 29.400 (13) Å

  • b = 8.553 (4) Å

  • c = 14.391 (6) Å

  • β = 112.993 (8)°

  • V = 3331 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 173 K

  • 0.58 × 0.54 × 0.46 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.368, Tmax = 0.703

  • 27788 measured reflections

  • 5867 independent reflections

  • 4401 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.01

  • 5867 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 1.38 e Å−3

  • Δρmin = −1.80 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mo1—O1 2.0281 (19)
Mo1—O2 1.9391 (17)
Mo1—O4 1.7096 (18)
Mo1—O5 1.7093 (19)
Mo1—N1 2.248 (2)
Mo1—O1M 2.3374 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1M—H1M⋯N2i 0.84 1.87 2.700 (3) 173
C1M—H1BM⋯O1ii 0.98 2.58 3.402 (3) 141
C6—H6⋯O4iii 0.95 2.53 3.450 (3) 162
C11—H11⋯O1 0.95 2.44 2.767 (3) 100
C15—H15⋯O1Mii 0.95 2.54 3.427 (3) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SADABS (Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The condensation products of primary amines and aldehydes or ketones (RCH=NR'), where R and R' represent alkyl and /or aryl constituents), are called Schiff bases (Dhar & Taploo, 1982); they play an important role in inorganic chemistry (Blake et al., 1995; Johnson et al.,1996; Alizadeh et al., 1999) as they easily form stable complexes with most transition metal ions. Transition metal compounds containing the Schiff base ligands have been of interest for many years (Yamada, 1999; Chang et al., 1998; Archer & Wang, 1990; Sheikhshoaie & Fabian, 2009; Jalali-Heravi et al., 1999). Many complexes play an important role in the developing of coordination chemistry related to catalytic (Holm, 1990; Rao et al., 1999; Bagherzadeh et al., 2008; Ambroziak et al., 2004; Bagherzadeh & Amini, 2009; Hatefi et al., 2009) and enzymatic reactions (Bindlish et al., 1978; Bhatia et al., 1981; Costamagna et al., 1992). High valent metal oxo species have demonstrated the ability to catalyze the oxidation of a variety of organic substrates, via homogeneous as well as heterogeneous routes (Holm, 1990; Maurya et al., 1997). In particular, the Mo-catalyzed alkene to epoxide conversion has received most attention. In the course of our studies on transition metal Schiff base complexes (Sheikhshoaie et al., 2009; Monadi et al., 2009), we have synthesized a dioxo molybdenium complex with a tridentate ligand (L) and the crystal structure of the title complex (I) is presented here.

The molecular structure of (I) is shown in Fig. 1. and the selected bond distances and angles are given in Table 1. The calculated bond valence by PLATON (version 91110: Spek, 2009) for Mo atom is 5.89, i.e. it exhibits the oxidation state +VI. Mo atom is surrounded by two O atoms and one N atom of the tridentate Schiff base ligand 3-methoxysalicylidenbenzoyl hydrazine in a distorted octahedral configuration. The Mo—O distances of the oxo ligands (O4 and O5) are significantly shorter [average 1.7094 (18) Å] than the corresponding distances to the O atoms of the tridentate ligands (O1 and O2) [average 1.98 (6) Å]. The Mo—N distance is longer [2.248 (2) Å] and the distance to methanol O atom is longest.

The aromatic ring C1/C2/C3/C4/C5/C6 is slightly distorted (χ2 = 56.6), while the phenyl ring C10/C11/C12/C13/C14/C15 is planar (χ2 = 4.7); the dihedral angle between them is 23.09 (12)o.

There are strong hydrogen bonds present between the hydroxy group of methanol and N2i atom in an adjacent complex [symmetry code: (i):-x + 1/2,y + 1/2,-z + 1/2] forming thus a C(5) chain around 21 screw axis, see Fig.2. There are also weak hydrogen bonds of the type in the C—H—O hydrogen bonds present, see Table 2. Fig. 3 shows the packing of the complexes in the unit cell, but there are no π-π interactions present.

Comparison with other similar structures is presented in Table 3. In all complexes molybdenum atom is coordinated by two oxo oxygen atoms, one nitrogen atom of C=N group and one oxygen atom from solvent (methanol or ethanol). In all these complexes, the longest bond from the solvent coordination indicates the most labile site available for substitution. In addition, in all the investigated complexes the bonds between molybdenium atom and nitrogen atom of imine group (C=N) are long (average: 2.26 (2) Å). Two oxo oxygen atoms are almost in cis position towards each other in all the cases [the average of the O=Mo=O angles: 106.1 (5)°]. The angles of N—Mo=O in the complexes indicate that one of the oxo oxygen atoms is in cis and the other one is in trans position toward nitrogen atom of imine group. The coordination geometry around Mo atoms is highly distorted octahedral in [MoO2(L) (solvent)] complexes, where (L) is a tridentate ligand containing an imine group and MeOH or EtOH as a solvent. Table 4 provides a comparison of important frequencies in the IR spectra of (I) and some dioxo-molybdenum(VI) complexes.

Related literature top

For general background [to what? please subdivide this part as appropriate], see: Alizadeh et al. (1999); Ambroziak et al. (2004); Archer & Wang (1990); Bagherzadeh & Amini (2009); Bagherzadeh et al. (2008); Bhatia et al. (1981); Bindlish et al. (1978); Blake et al. (1995); Chang et al. (1998); Costamagna et al. (1992); Dhar & Taploo (1982); Hatefi et al. (2009); Holm (1990); Jalali-Heravi, Khandar & Sheikshoaie (1999); Johnson et al. (1996); Maurya et al. (1997); Sheikhshoaie & Fabian (2009); Yamada (1999). For details of the synthesis, see: Perrin et al. (1990). For related structures, see: Dinda et al. (2006); Glowiak et al. (2003); Liimatainen et al. (2000); Monadi et al. (2009); Niaz et al. (2010); Pramaniky et al. (2007); Rao et al. (1999); Rezaeifard et al. (2010); Saeednia et al. (2009); Sheikhshoaie et al. (2009); Vrdoljak et al. (2010).

Experimental top

All reagents were used assupplied by Fluka and Merck without further purification. Solvents used for the reaction were purified and dried by conventional methods (Perrin et al., 1990).

NMR spectra were obtained on a BRUKER AVANCE DRX500 (500 MHz) spectrometer. Proton chemical shifts δ are reported in p.p.m. relative to an internal standard of Me4Si. Elemental analyses were performed by using Heraeus CHN-O-RAPID elemental analyzer. IR spectra were recorded in KBr pellets using Shimadzu 435 spectrophotometer.

Synthesis of ligand (L): To a solution of 0.136 g(0.001 mol) benzohydrazide in 20 ml e thanol was added a solution of 0.152 g(0.001 mol) 3-methoxysalicylaldehyde in 10 ml e thanol, and refluxed for 5 h. The solvent was evaporated on a rotatory evaporator and the solid dissolved in 10 ml me thanol and filtered off. The filtrate was left overnight to give yellow crystals. Yield: 202 mg (75%). Anal. Calc. for C15H14N2O3: C, 66.66; H, 5.18; N, 10.37. Found: C, 66.79; H, 5.20; N, 10.39%. IR (KBr, cm-1) νmax 1652.9 (s, C=O), 1614 (m, C=N). 1H NMR: (d6-DMSO): δ 3.81 (s, 3H, methoxy group), δ 6.84–7.96 (m, 8H, ArH), δ 8.671 (s, 1H, –CH=N– group), δ 11.02 (s, 1H, OH group), δ 12.09 (s, 1H, NH group).

Synthesis of the title metal complex (I) [Mo O2(L)(CH3OH)]: The title dioxomolybdenum(VI) complex was prepared by mixing MoO2(acac)2 (acac=.acetylacetonate) with the ligand in a 1:1 molar ratio using 30 ml dry methanol as a solvent, followed by refluxing the solution for 4 h. Deeply orange crystals were collected by filtration and dried in the room temperature, yield: 83%. 1H NMR: δ 3.80 (s, 3H, metoxy group), δ 7.006–8.01 (m, 8 H, Ar H), δ 8.92 (s, 1H, –CH=N– group), δ 4.08–4.11 (s, 1H, OH methanol group); δ 3.16 (d, 3H CH3 in methanol). IR spectra are presented in Table 4 [frequencies ν(N—H) and ν(C=O) were not observed].

Refinement top

Aromatic hydrogen atoms were refined isotropically with Uiso(H) = 1.2Ueq(C), and their positions were constrained to an ideal geometry using an appropriate riding model, (C—H = 0.95 Å). For methyl groups, O—C—H angles (109.5°) were kept fixed, while the torsion angle was allowed to refine with the starting positions based on the circular Fourier synthesis averaged using the local 3-fold axis with Uiso(H)= 1.5Ueq(C) and a constrained C—H distance of 0.98Å was applied. For hydroxy group, the O—H distance (0.84 Å) and C—O—H angle (109.5°) were kept fixed, while the torsion angle was allowed to refine with the starting position based on the maximum on the circular Fourier synthesis, Uiso(H)= 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003) and SADABS (Sheldrick, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom numbering scheme for (I), with atomic displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen-pattern (dashed lines) in (I). C(5) chains are formed in the b-direction. Symmetry code: (i):-x + 1/2,y + 1/2,-z + 1/2.
[Figure 3] Fig. 3. Content of the unit cell for (I) in projection along the b axis.
methanol[N'-(3-methoxy-2- oxidobenzylidene)benzohydrazidato]dioxidomolybdenum(VI) top
Crystal data top
[Mo(C15H12N2O3)O2(CH4O)]F(000) = 1728
Mr = 428.25Dx = 1.708 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5066 reflections
a = 29.400 (13) Åθ = 2.5–32.3°
b = 8.553 (4) ŵ = 0.82 mm1
c = 14.391 (6) ÅT = 173 K
β = 112.993 (8)°Block, orange
V = 3331 (2) Å30.58 × 0.54 × 0.46 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
5867 independent reflections
Radiation source: fine-focus sealed tube4401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scansθmax = 32.8°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 4343
Tmin = 0.368, Tmax = 0.703k = 1212
27788 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0566P)2 + 2.343P]
where P = (Fo2 + 2Fc2)/3
5867 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 1.38 e Å3
0 restraintsΔρmin = 1.80 e Å3
Crystal data top
[Mo(C15H12N2O3)O2(CH4O)]V = 3331 (2) Å3
Mr = 428.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.400 (13) ŵ = 0.82 mm1
b = 8.553 (4) ÅT = 173 K
c = 14.391 (6) Å0.58 × 0.54 × 0.46 mm
β = 112.993 (8)°
Data collection top
Bruker SMART CCD
diffractometer
5867 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4401 reflections with I > 2σ(I)
Tmin = 0.368, Tmax = 0.703Rint = 0.065
27788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.01Δρmax = 1.38 e Å3
5867 reflectionsΔρmin = 1.80 e Å3
229 parameters
Special details top

Experimental. Data were collected at 173 K using a Siemens SMART CCD diffractometer equipped with LT-2 A cooling device. A full sphere of reciprocal space was scanned by 0.3° steps in ω with a crystal–to–detector distance of 3.97 cm, 1 second per frame. Preliminary orientation matrix was obtained from the first 100 frames using SMART (Bruker, 2003). The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the position of 5066 reflections with I>10σ(I) after integration of all the frames data using SAINT (Bruker, 2003).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.169567 (7)0.55438 (2)0.093970 (13)0.01640 (7)
O10.23804 (6)0.54087 (18)0.09191 (12)0.0191 (3)
O20.11949 (6)0.47242 (19)0.13716 (13)0.0209 (3)
O30.02944 (7)0.4772 (2)0.13247 (15)0.0299 (4)
O40.17354 (6)0.74754 (19)0.12674 (13)0.0244 (4)
O50.13736 (7)0.5485 (2)0.03385 (13)0.0254 (4)
N10.19324 (7)0.3025 (2)0.11307 (13)0.0163 (3)
N20.24201 (7)0.2753 (2)0.12187 (14)0.0176 (4)
C10.11885 (8)0.1902 (3)0.12040 (16)0.0185 (4)
C20.09645 (8)0.3331 (3)0.12693 (16)0.0187 (4)
C30.04804 (9)0.3332 (3)0.12641 (17)0.0226 (4)
C40.02337 (9)0.1919 (3)0.11911 (19)0.0285 (5)
H40.00930.19180.11700.034*
C50.04618 (10)0.0501 (3)0.1148 (2)0.0282 (5)
H50.02910.04560.11110.034*
C60.09347 (9)0.0485 (3)0.11585 (19)0.0236 (5)
H60.10890.04820.11350.028*
C70.16837 (8)0.1801 (3)0.12059 (16)0.0189 (4)
H70.18320.07990.12640.023*
C80.02257 (10)0.4859 (4)0.1098 (2)0.0357 (6)
H8A0.04090.43390.04520.054*
H8B0.03270.59580.10530.054*
H8C0.02970.43400.16330.054*
C90.26226 (8)0.4068 (3)0.11017 (16)0.0171 (4)
C100.31418 (8)0.4117 (3)0.11898 (17)0.0186 (4)
C110.33256 (9)0.5503 (3)0.09429 (18)0.0212 (4)
H110.31150.63830.07060.025*
C120.38163 (10)0.5592 (3)0.1044 (2)0.0265 (5)
H120.39380.65320.08740.032*
C130.41308 (10)0.4306 (3)0.1396 (2)0.0279 (5)
H130.44660.43700.14700.033*
C140.39471 (9)0.2927 (3)0.1637 (2)0.0277 (5)
H140.41580.20480.18730.033*
C150.34575 (9)0.2829 (3)0.15337 (18)0.0228 (5)
H150.33360.18830.16970.027*
O1M0.21855 (6)0.51974 (19)0.26524 (12)0.0200 (3)
H1M0.22880.60390.29640.030*
C1M0.21418 (10)0.4038 (3)0.33394 (17)0.0240 (5)
H1AM0.23380.43590.40350.036*
H1BM0.22630.30300.32060.036*
H1CM0.17940.39350.32440.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01570 (10)0.01803 (10)0.01522 (9)0.00265 (7)0.00577 (7)0.00205 (7)
O10.0194 (8)0.0192 (8)0.0205 (7)0.0034 (6)0.0098 (6)0.0041 (6)
O20.0171 (8)0.0222 (8)0.0249 (8)0.0010 (6)0.0099 (7)0.0004 (6)
O30.0191 (9)0.0358 (10)0.0363 (10)0.0057 (7)0.0126 (8)0.0020 (8)
O40.0271 (9)0.0205 (8)0.0273 (9)0.0058 (7)0.0126 (7)0.0045 (7)
O50.0224 (9)0.0332 (10)0.0186 (8)0.0054 (7)0.0058 (7)0.0033 (7)
N10.0156 (9)0.0190 (8)0.0143 (8)0.0003 (7)0.0058 (7)0.0004 (6)
N20.0152 (8)0.0213 (9)0.0167 (8)0.0019 (7)0.0066 (7)0.0006 (7)
C10.0159 (10)0.0238 (11)0.0145 (9)0.0014 (8)0.0046 (8)0.0003 (8)
C20.0159 (10)0.0254 (11)0.0138 (9)0.0005 (8)0.0047 (8)0.0019 (8)
C30.0163 (10)0.0308 (12)0.0197 (10)0.0008 (9)0.0060 (8)0.0007 (9)
C40.0172 (11)0.0400 (14)0.0291 (12)0.0050 (10)0.0099 (10)0.0022 (11)
C50.0220 (12)0.0321 (13)0.0308 (13)0.0080 (10)0.0107 (10)0.0001 (10)
C60.0212 (11)0.0248 (11)0.0234 (11)0.0041 (9)0.0074 (9)0.0007 (9)
C70.0177 (10)0.0217 (10)0.0163 (9)0.0008 (8)0.0055 (8)0.0000 (8)
C80.0194 (12)0.0552 (18)0.0344 (14)0.0113 (12)0.0125 (11)0.0076 (13)
C90.0184 (10)0.0207 (10)0.0115 (8)0.0011 (8)0.0050 (8)0.0002 (7)
C100.0181 (10)0.0236 (11)0.0154 (9)0.0003 (8)0.0079 (8)0.0022 (8)
C110.0208 (11)0.0233 (11)0.0209 (10)0.0015 (9)0.0095 (9)0.0031 (9)
C120.0248 (12)0.0288 (12)0.0285 (12)0.0037 (10)0.0133 (10)0.0024 (10)
C130.0198 (11)0.0356 (14)0.0304 (13)0.0017 (10)0.0120 (10)0.0005 (10)
C140.0214 (12)0.0304 (13)0.0335 (13)0.0034 (10)0.0130 (10)0.0012 (10)
C150.0205 (11)0.0228 (11)0.0280 (12)0.0021 (9)0.0128 (9)0.0023 (9)
O1M0.0241 (8)0.0205 (8)0.0152 (7)0.0036 (6)0.0076 (6)0.0017 (6)
C1M0.0307 (13)0.0247 (11)0.0149 (10)0.0001 (9)0.0071 (9)0.0027 (8)
Geometric parameters (Å, º) top
Mo1—O12.0281 (19)C6—H60.9500
Mo1—O21.9391 (17)C7—H70.9500
Mo1—O41.7096 (18)C8—H8A0.9800
Mo1—O51.7093 (19)C8—H8B0.9800
Mo1—N12.248 (2)C8—H8C0.9800
Mo1—O1M2.3374 (18)C9—C101.482 (3)
O1—C91.321 (3)C10—C151.400 (3)
O2—C21.350 (3)C10—C111.404 (3)
O3—C31.364 (3)C11—C121.394 (4)
O3—C81.435 (3)C11—H110.9500
N1—C71.306 (3)C12—C131.399 (4)
N1—N21.409 (3)C12—H120.9500
N2—C91.313 (3)C13—C141.396 (4)
C1—C21.409 (3)C13—H130.9500
C1—C61.411 (3)C14—C151.391 (3)
C1—C71.457 (3)C14—H140.9500
C2—C31.420 (3)C15—H150.9500
C3—C41.392 (4)O1M—C1M1.441 (3)
C4—C51.399 (4)O1M—H1M0.8400
C4—H40.9500C1M—H1AM0.9800
C5—C61.384 (4)C1M—H1BM0.9800
C5—H50.9500C1M—H1CM0.9800
O4—Mo1—O5105.93 (8)N1—C7—H7118.5
O4—Mo1—O2103.86 (8)C1—C7—H7118.5
O5—Mo1—O299.42 (9)O3—C8—H8A109.5
O4—Mo1—O195.61 (7)O3—C8—H8B109.5
O5—Mo1—O196.80 (8)H8A—C8—H8B109.5
O2—Mo1—O1150.03 (7)O3—C8—H8C109.5
O4—Mo1—N1155.24 (8)H8A—C8—H8C109.5
O5—Mo1—N196.81 (7)H8B—C8—H8C109.5
O2—Mo1—N181.49 (7)N2—C9—O1122.2 (2)
O1—Mo1—N171.67 (6)N2—C9—C10121.1 (2)
C9—O1—Mo1120.49 (14)O1—C9—C10116.7 (2)
C2—O2—Mo1134.07 (14)C15—C10—C11119.1 (2)
C3—O3—C8116.8 (2)C15—C10—C9121.7 (2)
C7—N1—N2116.36 (18)C11—C10—C9119.2 (2)
C7—N1—Mo1128.46 (15)C12—C11—C10120.3 (2)
N2—N1—Mo1115.13 (13)C12—C11—H11119.9
C9—N2—N1110.11 (18)C10—C11—H11119.9
C2—C1—C6119.7 (2)C11—C12—C13120.4 (2)
C2—C1—C7122.9 (2)C11—C12—H12119.8
C6—C1—C7117.3 (2)C13—C12—H12119.8
O2—C2—C1123.0 (2)C14—C13—C12119.3 (2)
O2—C2—C3117.3 (2)C14—C13—H13120.4
C1—C2—C3119.6 (2)C12—C13—H13120.4
O3—C3—C4125.4 (2)C15—C14—C13120.6 (2)
O3—C3—C2115.2 (2)C15—C14—H14119.7
C4—C3—C2119.4 (2)C13—C14—H14119.7
C3—C4—C5120.8 (2)C14—C15—C10120.4 (2)
C3—C4—H4119.6C14—C15—H15119.8
C5—C4—H4119.6C10—C15—H15119.8
C6—C5—C4120.3 (2)C1M—O1M—H1M109.5
C6—C5—H5119.9O1M—C1M—H1AM109.5
C4—C5—H5119.9O1M—C1M—H1BM109.5
C5—C6—C1120.2 (2)H1AM—C1M—H1BM109.5
C5—C6—H6119.9O1M—C1M—H1CM109.5
C1—C6—H6119.9H1AM—C1M—H1CM109.5
N1—C7—C1123.0 (2)H1BM—C1M—H1CM109.5
O4—Mo1—O1—C9152.56 (16)O2—C2—C3—C4178.1 (2)
O5—Mo1—O1—C9100.61 (16)C1—C2—C3—C40.2 (3)
O2—Mo1—O1—C921.8 (2)O3—C3—C4—C5179.1 (2)
N1—Mo1—O1—C95.67 (15)C2—C3—C4—C51.6 (4)
O4—Mo1—O2—C2174.04 (19)C3—C4—C5—C61.2 (4)
O5—Mo1—O2—C264.9 (2)C4—C5—C6—C10.6 (4)
O1—Mo1—O2—C256.9 (3)C2—C1—C6—C51.9 (3)
N1—Mo1—O2—C230.6 (2)C7—C1—C6—C5179.6 (2)
O4—Mo1—N1—C7120.7 (2)N2—N1—C7—C1175.46 (18)
O5—Mo1—N1—C782.56 (19)Mo1—N1—C7—C11.8 (3)
O2—Mo1—N1—C715.99 (19)C2—C1—C7—N19.5 (3)
O1—Mo1—N1—C7177.5 (2)C6—C1—C7—N1172.0 (2)
O4—Mo1—N1—N256.6 (2)N1—N2—C9—O10.6 (3)
O5—Mo1—N1—N2100.14 (14)N1—N2—C9—C10178.14 (18)
O2—Mo1—N1—N2161.31 (14)Mo1—O1—C9—N25.8 (3)
O1—Mo1—N1—N25.20 (13)Mo1—O1—C9—C10173.01 (14)
C7—N1—N2—C9178.27 (19)N2—C9—C10—C158.8 (3)
Mo1—N1—N2—C94.1 (2)O1—C9—C10—C15170.0 (2)
Mo1—O2—C2—C130.2 (3)N2—C9—C10—C11172.5 (2)
Mo1—O2—C2—C3151.97 (17)O1—C9—C10—C118.6 (3)
C6—C1—C2—O2176.2 (2)C15—C10—C11—C120.3 (3)
C7—C1—C2—O22.2 (3)C9—C10—C11—C12178.3 (2)
C6—C1—C2—C31.5 (3)C10—C11—C12—C130.2 (4)
C7—C1—C2—C3179.9 (2)C11—C12—C13—C140.5 (4)
C8—O3—C3—C412.9 (4)C12—C13—C14—C150.3 (4)
C8—O3—C3—C2166.5 (2)C13—C14—C15—C100.3 (4)
O2—C2—C3—O32.5 (3)C11—C10—C15—C140.5 (3)
C1—C2—C3—O3179.6 (2)C9—C10—C15—C14178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1M—H1M···N2i0.841.872.700 (3)173
C1M—H1BM···O1ii0.982.583.402 (3)141
C6—H6···O4iii0.952.533.450 (3)162
C11—H11···O10.952.442.767 (3)100
C15—H15···O1Mii0.952.543.427 (3)156
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Mo(C15H12N2O3)O2(CH4O)]
Mr428.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)29.400 (13), 8.553 (4), 14.391 (6)
β (°) 112.993 (8)
V3)3331 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.58 × 0.54 × 0.46
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.368, 0.703
No. of measured, independent and
observed [I > 2σ(I)] reflections
27788, 5867, 4401
Rint0.065
(sin θ/λ)max1)0.762
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.01
No. of reflections5867
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.38, 1.80

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003) and SADABS (Sheldrick, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Mo1—O12.0281 (19)Mo1—O51.7093 (19)
Mo1—O21.9391 (17)Mo1—N12.248 (2)
Mo1—O41.7096 (18)Mo1—O1M2.3374 (18)
O4—Mo1—O5105.93 (8)O5—Mo1—O196.80 (8)
O4—Mo1—O2103.86 (8)O2—Mo1—O1150.03 (7)
O5—Mo1—O299.42 (9)O4—Mo1—N1155.24 (8)
O4—Mo1—O195.61 (7)O5—Mo1—N196.81 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1M—H1M···N2i0.841.872.700 (3)173
C1M—H1BM···O1ii0.982.583.402 (3)141
C6—H6···O4iii0.952.533.450 (3)162
C11—H11···O10.952.442.767 (3)100
C15—H15···O1Mii0.952.543.427 (3)156
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z.
Comparison of MoO and Mo—N bond lengths (Å), N—MoO and OMoO (°) and Mo—O (solvent)1 interactions (Å) in some related dioxidomolybdenium(VI) complexes top
Cis-dioxo molybdenum complexMo=OMo-NMo–O(solv)1N—Mo=OO=Mo=O
[MoO2(bnms)(MeOH)I1.7092.2482.337155.24105.93
1.70996.81
[MoO2(sae)(MeOH)]a1.6972.2522.339158.9106.1
1.70494.2
[MoO2(cysS-OR)(MeOH)]b1.6992.2912.385160.8105.9
1.70992.5
[MoO2(hbhy)(EtOH)]c1.6962.2342.356158.44106.03
1.69993.84
[MoO2(doin)(MeOH)]d1.7002.2502.331159.54106.65
1.71493.16
[MoO2(hpmp)(MeOH)]e1.7032.2742.355159.38107.05
1.70993.07
[MoO2(hpemp)(MeOH)]f1.7072.2682.387159.81106.36
1.69993.53
[MoO2(moip)(MeOH)]g1.7002.2512.349158.82105.61
1.70295.01
[MoO2(ssh)(MeOH)]h1.6922.2342.349157.6106.4
1.70593.7
[MoO2(hmt)(MeOH)]i1.7272.2732.351156.41105.26
1.70495.29
MoO2(bhpd)(MeOH)j1.9882.2842.301160.49105.9
1.71790.93
Notes: (1) solvent = MeOH or EtOH. References: (I) this work; (a) Glowiak et al. (2003); (b) Liimatainen et al. (2000); (c) Dinda et al.(2006); (d) Niaz et al. (2010); (e) Sheikhshoaie et al. (2009); (f) Rezaeifard et al. (2010); (g) Saeednia et al. (2009); (h) Rao et al. (1999); (i) Vrdoljak et al. (2010); (j) Pramaniky et al. (2007).
Comparison of important absorption band frequencies (cm-1) in some related dioxidomolybdenium(VI) complexes top
Complexνs(MoO)1νs(MoO)2ν(CN)
[MoO2(bnms)(MeOH)I9399151627
[MoO2(sae)(MeOH)]a9289061641
[MoO2(cysS-OR)(MeOH)]b9959801626
[MoO2(hbhy)(EtOH)]c---
[MoO2(doin)(MeOH)]d---
[MoO2(hpmp)(MeOH)]e9249001638
[MoO2(hpemp)(MeOH)]f9209091638
[MoO2(moip)(MeOH)]g---
[MoO2(ssh)(MeOH)]h9399111637
[MoO2(hmt)(MeOH)]i9329011626
MoO2(bhpd)(MeOH)j9399141579
Notes: (1) ν symmetry; (2) ν asymmetry References: (I) this work; (a) Glowiak et al. (2003); (b) Liimatainen et al. (2000); (c) Dinda et al.(2006); (d) Niaz et al. (2010); (e) Sheikhshoaie et al. (2009); (f) Rezaeifard et al. (2010); (g) Saeednia et al. (2009); (h) Rao et al. (1999); (i) Vrdoljak et al. (2010); (j) Pramaniky et al. (2007).
 

Acknowledgements

This work was supported by the Shahid Bahonar University of Kerman.

References

First citationAlizadeh, N., Ershad, S., Naeimi, H., Sharghi, H. & Shamsipur, M. (1999). Pol. J. Chem. 73, 915–925.  CAS Google Scholar
First citationAmbroziak, K., Pelech, R., Milchert, E., Dziembowska, T. & Rozwadowski, Z. (2004). J. Mol. Catal. A, 211, 9–16.  CrossRef CAS Google Scholar
First citationArcher, R. D. & Wang, B. (1990). Inorg. Chem. 29, 39–43.  CrossRef CAS Web of Science Google Scholar
First citationBagherzadeh, M. & Amini, M. (2009). Inorg. Chem. Commun. 12, 21–25.  CrossRef CAS Google Scholar
First citationBagherzadeh, M., Tahsini, L., Latifi, R., Ellern, A. & Woo, L. K. (2008). Inorg. Chim. Acta, 361, 2019–2024.  CrossRef CAS Google Scholar
First citationBhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773–1779.  CSD CrossRef Web of Science Google Scholar
First citationBindlish, J. M., Bhatia, S. C., Gautam, P. & Jain, P. C. (1978). Indian J. Chem. Sect. A, 16, 279–282.  Google Scholar
First citationBlake, A. B., Chipperfield, J. R., Hussain, W., Paschke, R. & Sinn, E. (1995). Inorg. Chem. 34, 1125–1129.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, S., Jones, L., Wang, C., Henling, L. M. & Grubbs, R. H. (1998). Organometallics, 17, 3460–3465.  Web of Science CSD CrossRef CAS Google Scholar
First citationCostamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67–88.  CrossRef CAS Web of Science Google Scholar
First citationDhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506.  CAS Google Scholar
First citationDinda, R., Ghosh, S., Falvello, L. R., Tomas, M. & Mak, T. C. W. (2006). Polyhedron, 25, 2375–2382.  CSD CrossRef CAS Google Scholar
First citationGlowiak, T., Jerzykiewicz, L., Sobczak, J. M. & Ziolkowski, J. J. (2003). Inorg. Chim. Acta, 356, 387–392.  CAS Google Scholar
First citationHatefi, M., Moghadam, M., Sheikhshoaei, I., Mirkhani, V., Tangestaninejad, S., Mohammadpoor-Baltork, I. & Kargar, H. (2009). Appl. Catal. A, 370, 66–71.  CrossRef CAS Google Scholar
First citationHolm, R. H. (1990). Coord. Chem. Rev. 100, 183–221.  CrossRef CAS Google Scholar
First citationJalali-Heravi, M., Khandar, A. A. & Sheikshoaie, I. (1999). Spectrochim. Acta Part A, 55, 2537–2544.  Google Scholar
First citationJohnson, C. P., Atwood, J. L., Steed, J. W., Bauer, C. B. & Rogers, R. D. (1996). Inorg. Chem. 35, 2602–2610.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationLiimatainen, J., Lehtonen, A. & Sillanpaa, R. (2000). Polyhedron, 19, 1133–1138.  CrossRef CAS Google Scholar
First citationMaurya, R. C., Mishra, D. D., Rao, N. S., Verma, R. & Rao, N. N. (1997). Indian J. Chem. Sect A, 36, 599–601.  Google Scholar
First citationMonadi, N., Sheikhshoaie, I., Rezaeifard, A. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1124–m1125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNiaz, M., Iran, S. & Abdolreza, R. (2010). Acta Cryst. E66, m202.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerrin, D. D., Armarego, W. L. & Perrin, D. R. (1990). Purification of Laboratory Chemicals, 2nd ed. New York: Pergamon.  Google Scholar
First citationPramaniky, N. R., Ghoshz, S., Raychaudhuriy, T. K., Chaudhurix, S., Drew, M. G. B. & Mandal, S. S. S. (2007). J. Coord. Chem. 60, 2177–2190.  Google Scholar
First citationRao, S. N., Munshi, K. N., Rao, N. N., Bhadbhade, M. M. & Suresh, E. (1999). Polyhedron, 18, 2491–2497.  Web of Science CSD CrossRef CAS Google Scholar
First citationRezaeifard, A., Sheikhshoaie, I., Monadi, N. & Stoeckli-Evans, H. (2010). Eur. J. Inorg. Chem. pp. 799–806.  CrossRef Google Scholar
First citationSaeednia, S., Sheikhshoaie, I. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1591.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheikhshoaie, I. & Fabian, W. M. F. (2009). Curr. Org. Chem. 13, 149–171.  CrossRef CAS Google Scholar
First citationSheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733–738.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVrdoljak, V., Dilovic, L., Rubcic, M., Pavelic, S. K., Kralj, M., Matkovic-Catogovic, D., Piantanida, I., Novak, P., Rozman, A. & Cindric, M. (2010). Eur. J. Med. Chem. 45, 38–48.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYamada, S. (1999). Coord. Chem. Rev. 190–192, 537–555.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m839-m840
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds