metal-organic compounds
A new MoVI Schiff base complex: methanol[N′-(3-methoxy-2-oxidobenzylidene)benzohydrazidato]dioxidomolybdenum(VI)
aDepartment of Chemistry, Shahid Bahonar University, Kerman, Iran, and bEnvironmental Inorganic Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
*Correspondence e-mail: i_shoaie@yahoo.com
In the title benzilidene Schiff base molybdenum(VI) complex, [Mo(C15H12N2O3)O2(CH3OH)], the MoVI ion is coordinated by two oxide O atoms and by two O atoms and one N atom of the tridentate N′-(3-methoxy-2-oxidobenzylidene)benzohydrazidate (L) Schiff base ligand. The methanol O atom completes the distorted octahedral configuration of the MoVI atom. Strong O—H⋯N hydrogen bonds form a C(5) chain around a 21 screw axis. Weak C—H—O hydrogen bonds are also present.
Related literature
For general background, see: Alizadeh et al. (1999); Ambroziak et al. (2004); Archer & Wang (1990); Bagherzadeh & Amini (2009); Bagherzadeh et al. (2008); Bhatia et al. (1981); Bindlish et al. (1978); Blake et al. (1995); Chang et al. (1998); Costamagna et al. (1992); Dhar & Taploo (1982); Hatefi et al. (2009); Holm (1990); Jalali-Heravi et al. (1999); Johnson et al. (1996); Maurya et al. (1997); Sheikhshoaie & Fabian (2009); Yamada (1999). For details of the synthesis, see: Perrin et al. (1990). For related structures, see: Dinda et al. (2006); Glowiak et al. (2003); Liimatainen et al. (2000); Monadi et al. (2009); Niaz et al. (2010); Pramaniky et al. (2007); Rao et al. (1999); Rezaeifard et al. (2010); Saeednia et al. (2009); Sheikhshoaie et al. (2009); Vrdoljak et al. (2010).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT and SADABS (Sheldrick, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811020101/dn2692sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811020101/dn2692Isup2.hkl
All reagents were used assupplied by Fluka and Merck without further purification. Solvents used for the reaction were purified and dried by conventional methods (Perrin et al., 1990).
NMR spectra were obtained on a BRUKER AVANCE DRX500 (500 MHz) spectrometer. Proton chemical shifts δ are reported in p.p.m. relative to an internal standard of Me4Si. Elemental analyses were performed by using Heraeus CHN-O-RAPID elemental analyzer. IR spectra were recorded in KBr pellets using Shimadzu 435 spectrophotometer.
Synthesis of ligand (L): To a solution of 0.136 g(0.001 mol) benzohydrazide in 20 ml e thanol was added a solution of 0.152 g(0.001 mol) 3-methoxysalicylaldehyde in 10 ml e thanol, and refluxed for 5 h. The solvent was evaporated on a rotatory evaporator and the solid dissolved in 10 ml me thanol and filtered off. The filtrate was left overnight to give yellow crystals. Yield: 202 mg (75%). Anal. Calc. for C15H14N2O3: C, 66.66; H, 5.18; N, 10.37. Found: C, 66.79; H, 5.20; N, 10.39%. IR (KBr, cm-1) νmax 1652.9 (s, C=O), 1614 (m, C=N). 1H NMR: (d6-DMSO): δ 3.81 (s, 3H, methoxy group), δ 6.84–7.96 (m, 8H, ArH), δ 8.671 (s, 1H, –CH=N– group), δ 11.02 (s, 1H, OH group), δ 12.09 (s, 1H, NH group).
Synthesis of the title metal complex (I) [Mo O2(L)(CH3OH)]: The title dioxomolybdenum(VI) complex was prepared by mixing MoO2(acac)2 (acac=.acetylacetonate) with the ligand in a 1:1 molar ratio using 30 ml dry methanol as a solvent, followed by refluxing the solution for 4 h. Deeply orange crystals were collected by filtration and dried in the room temperature, yield: 83%. 1H NMR: δ 3.80 (s, 3H, metoxy group), δ 7.006–8.01 (m, 8 H, Ar H), δ 8.92 (s, 1H, –CH=N– group), δ 4.08–4.11 (s, 1H, OH methanol group); δ 3.16 (d, 3H CH3 in methanol). IR spectra are presented in Table 4 [frequencies ν(N—H) and ν(C=O) were not observed].
Aromatic hydrogen atoms were refined isotropically with Uiso(H) = 1.2Ueq(C), and their positions were constrained to an ideal geometry using an appropriate riding model, (C—H = 0.95 Å). For methyl groups, O—C—H angles (109.5°) were kept fixed, while the torsion angle was allowed to refine with the starting positions based on the circular Fourier synthesis averaged using the local 3-fold axis with Uiso(H)= 1.5Ueq(C) and a constrained C—H distance of 0.98Å was applied. For hydroxy group, the O—H distance (0.84 Å) and C—O—H angle (109.5°) were kept fixed, while the torsion angle was allowed to refine with the starting position based on the maximum on the circular Fourier synthesis, Uiso(H)= 1.5Ueq(O).
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003) and SADABS (Sheldrick, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[Mo(C15H12N2O3)O2(CH4O)] | F(000) = 1728 |
Mr = 428.25 | Dx = 1.708 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 5066 reflections |
a = 29.400 (13) Å | θ = 2.5–32.3° |
b = 8.553 (4) Å | µ = 0.82 mm−1 |
c = 14.391 (6) Å | T = 173 K |
β = 112.993 (8)° | Block, orange |
V = 3331 (2) Å3 | 0.58 × 0.54 × 0.46 mm |
Z = 8 |
Bruker SMART CCD diffractometer | 5867 independent reflections |
Radiation source: fine-focus sealed tube | 4401 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.065 |
ω scans | θmax = 32.8°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −43→43 |
Tmin = 0.368, Tmax = 0.703 | k = −12→12 |
27788 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0566P)2 + 2.343P] where P = (Fo2 + 2Fc2)/3 |
5867 reflections | (Δ/σ)max = 0.001 |
229 parameters | Δρmax = 1.38 e Å−3 |
0 restraints | Δρmin = −1.80 e Å−3 |
[Mo(C15H12N2O3)O2(CH4O)] | V = 3331 (2) Å3 |
Mr = 428.25 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 29.400 (13) Å | µ = 0.82 mm−1 |
b = 8.553 (4) Å | T = 173 K |
c = 14.391 (6) Å | 0.58 × 0.54 × 0.46 mm |
β = 112.993 (8)° |
Bruker SMART CCD diffractometer | 5867 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 4401 reflections with I > 2σ(I) |
Tmin = 0.368, Tmax = 0.703 | Rint = 0.065 |
27788 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.01 | Δρmax = 1.38 e Å−3 |
5867 reflections | Δρmin = −1.80 e Å−3 |
229 parameters |
Experimental. Data were collected at 173 K using a Siemens SMART CCD diffractometer equipped with LT-2 A cooling device. A full sphere of reciprocal space was scanned by 0.3° steps in ω with a crystal–to–detector distance of 3.97 cm, 1 second per frame. Preliminary orientation matrix was obtained from the first 100 frames using SMART (Bruker, 2003). The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the position of 5066 reflections with I>10σ(I) after integration of all the frames data using SAINT (Bruker, 2003). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.169567 (7) | 0.55438 (2) | 0.093970 (13) | 0.01640 (7) | |
O1 | 0.23804 (6) | 0.54087 (18) | 0.09191 (12) | 0.0191 (3) | |
O2 | 0.11949 (6) | 0.47242 (19) | 0.13716 (13) | 0.0209 (3) | |
O3 | 0.02944 (7) | 0.4772 (2) | 0.13247 (15) | 0.0299 (4) | |
O4 | 0.17354 (6) | 0.74754 (19) | 0.12674 (13) | 0.0244 (4) | |
O5 | 0.13736 (7) | 0.5485 (2) | −0.03385 (13) | 0.0254 (4) | |
N1 | 0.19324 (7) | 0.3025 (2) | 0.11307 (13) | 0.0163 (3) | |
N2 | 0.24201 (7) | 0.2753 (2) | 0.12187 (14) | 0.0176 (4) | |
C1 | 0.11885 (8) | 0.1902 (3) | 0.12040 (16) | 0.0185 (4) | |
C2 | 0.09645 (8) | 0.3331 (3) | 0.12693 (16) | 0.0187 (4) | |
C3 | 0.04804 (9) | 0.3332 (3) | 0.12641 (17) | 0.0226 (4) | |
C4 | 0.02337 (9) | 0.1919 (3) | 0.11911 (19) | 0.0285 (5) | |
H4 | −0.0093 | 0.1918 | 0.1170 | 0.034* | |
C5 | 0.04618 (10) | 0.0501 (3) | 0.1148 (2) | 0.0282 (5) | |
H5 | 0.0291 | −0.0456 | 0.1111 | 0.034* | |
C6 | 0.09347 (9) | 0.0485 (3) | 0.11585 (19) | 0.0236 (5) | |
H6 | 0.1089 | −0.0482 | 0.1135 | 0.028* | |
C7 | 0.16837 (8) | 0.1801 (3) | 0.12059 (16) | 0.0189 (4) | |
H7 | 0.1832 | 0.0799 | 0.1264 | 0.023* | |
C8 | −0.02257 (10) | 0.4859 (4) | 0.1098 (2) | 0.0357 (6) | |
H8A | −0.0409 | 0.4339 | 0.0452 | 0.054* | |
H8B | −0.0327 | 0.5958 | 0.1053 | 0.054* | |
H8C | −0.0297 | 0.4340 | 0.1633 | 0.054* | |
C9 | 0.26226 (8) | 0.4068 (3) | 0.11017 (16) | 0.0171 (4) | |
C10 | 0.31418 (8) | 0.4117 (3) | 0.11898 (17) | 0.0186 (4) | |
C11 | 0.33256 (9) | 0.5503 (3) | 0.09429 (18) | 0.0212 (4) | |
H11 | 0.3115 | 0.6383 | 0.0706 | 0.025* | |
C12 | 0.38163 (10) | 0.5592 (3) | 0.1044 (2) | 0.0265 (5) | |
H12 | 0.3938 | 0.6532 | 0.0874 | 0.032* | |
C13 | 0.41308 (10) | 0.4306 (3) | 0.1396 (2) | 0.0279 (5) | |
H13 | 0.4466 | 0.4370 | 0.1470 | 0.033* | |
C14 | 0.39471 (9) | 0.2927 (3) | 0.1637 (2) | 0.0277 (5) | |
H14 | 0.4158 | 0.2048 | 0.1873 | 0.033* | |
C15 | 0.34575 (9) | 0.2829 (3) | 0.15337 (18) | 0.0228 (5) | |
H15 | 0.3336 | 0.1883 | 0.1697 | 0.027* | |
O1M | 0.21855 (6) | 0.51974 (19) | 0.26524 (12) | 0.0200 (3) | |
H1M | 0.2288 | 0.6039 | 0.2964 | 0.030* | |
C1M | 0.21418 (10) | 0.4038 (3) | 0.33394 (17) | 0.0240 (5) | |
H1AM | 0.2338 | 0.4359 | 0.4035 | 0.036* | |
H1BM | 0.2263 | 0.3030 | 0.3206 | 0.036* | |
H1CM | 0.1794 | 0.3935 | 0.3244 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.01570 (10) | 0.01803 (10) | 0.01522 (9) | 0.00265 (7) | 0.00577 (7) | 0.00205 (7) |
O1 | 0.0194 (8) | 0.0192 (8) | 0.0205 (7) | 0.0034 (6) | 0.0098 (6) | 0.0041 (6) |
O2 | 0.0171 (8) | 0.0222 (8) | 0.0249 (8) | 0.0010 (6) | 0.0099 (7) | −0.0004 (6) |
O3 | 0.0191 (9) | 0.0358 (10) | 0.0363 (10) | 0.0057 (7) | 0.0126 (8) | 0.0020 (8) |
O4 | 0.0271 (9) | 0.0205 (8) | 0.0273 (9) | 0.0058 (7) | 0.0126 (7) | 0.0045 (7) |
O5 | 0.0224 (9) | 0.0332 (10) | 0.0186 (8) | 0.0054 (7) | 0.0058 (7) | 0.0033 (7) |
N1 | 0.0156 (9) | 0.0190 (8) | 0.0143 (8) | 0.0003 (7) | 0.0058 (7) | −0.0004 (6) |
N2 | 0.0152 (8) | 0.0213 (9) | 0.0167 (8) | 0.0019 (7) | 0.0066 (7) | −0.0006 (7) |
C1 | 0.0159 (10) | 0.0238 (11) | 0.0145 (9) | −0.0014 (8) | 0.0046 (8) | −0.0003 (8) |
C2 | 0.0159 (10) | 0.0254 (11) | 0.0138 (9) | 0.0005 (8) | 0.0047 (8) | 0.0019 (8) |
C3 | 0.0163 (10) | 0.0308 (12) | 0.0197 (10) | 0.0008 (9) | 0.0060 (8) | 0.0007 (9) |
C4 | 0.0172 (11) | 0.0400 (14) | 0.0291 (12) | −0.0050 (10) | 0.0099 (10) | 0.0022 (11) |
C5 | 0.0220 (12) | 0.0321 (13) | 0.0308 (13) | −0.0080 (10) | 0.0107 (10) | −0.0001 (10) |
C6 | 0.0212 (11) | 0.0248 (11) | 0.0234 (11) | −0.0041 (9) | 0.0074 (9) | −0.0007 (9) |
C7 | 0.0177 (10) | 0.0217 (10) | 0.0163 (9) | 0.0008 (8) | 0.0055 (8) | 0.0000 (8) |
C8 | 0.0194 (12) | 0.0552 (18) | 0.0344 (14) | 0.0113 (12) | 0.0125 (11) | 0.0076 (13) |
C9 | 0.0184 (10) | 0.0207 (10) | 0.0115 (8) | 0.0011 (8) | 0.0050 (8) | −0.0002 (7) |
C10 | 0.0181 (10) | 0.0236 (11) | 0.0154 (9) | −0.0003 (8) | 0.0079 (8) | −0.0022 (8) |
C11 | 0.0208 (11) | 0.0233 (11) | 0.0209 (10) | 0.0015 (9) | 0.0095 (9) | 0.0031 (9) |
C12 | 0.0248 (12) | 0.0288 (12) | 0.0285 (12) | −0.0037 (10) | 0.0133 (10) | 0.0024 (10) |
C13 | 0.0198 (11) | 0.0356 (14) | 0.0304 (13) | −0.0017 (10) | 0.0120 (10) | −0.0005 (10) |
C14 | 0.0214 (12) | 0.0304 (13) | 0.0335 (13) | 0.0034 (10) | 0.0130 (10) | 0.0012 (10) |
C15 | 0.0205 (11) | 0.0228 (11) | 0.0280 (12) | 0.0021 (9) | 0.0128 (9) | 0.0023 (9) |
O1M | 0.0241 (8) | 0.0205 (8) | 0.0152 (7) | −0.0036 (6) | 0.0076 (6) | −0.0017 (6) |
C1M | 0.0307 (13) | 0.0247 (11) | 0.0149 (10) | 0.0001 (9) | 0.0071 (9) | 0.0027 (8) |
Mo1—O1 | 2.0281 (19) | C6—H6 | 0.9500 |
Mo1—O2 | 1.9391 (17) | C7—H7 | 0.9500 |
Mo1—O4 | 1.7096 (18) | C8—H8A | 0.9800 |
Mo1—O5 | 1.7093 (19) | C8—H8B | 0.9800 |
Mo1—N1 | 2.248 (2) | C8—H8C | 0.9800 |
Mo1—O1M | 2.3374 (18) | C9—C10 | 1.482 (3) |
O1—C9 | 1.321 (3) | C10—C15 | 1.400 (3) |
O2—C2 | 1.350 (3) | C10—C11 | 1.404 (3) |
O3—C3 | 1.364 (3) | C11—C12 | 1.394 (4) |
O3—C8 | 1.435 (3) | C11—H11 | 0.9500 |
N1—C7 | 1.306 (3) | C12—C13 | 1.399 (4) |
N1—N2 | 1.409 (3) | C12—H12 | 0.9500 |
N2—C9 | 1.313 (3) | C13—C14 | 1.396 (4) |
C1—C2 | 1.409 (3) | C13—H13 | 0.9500 |
C1—C6 | 1.411 (3) | C14—C15 | 1.391 (3) |
C1—C7 | 1.457 (3) | C14—H14 | 0.9500 |
C2—C3 | 1.420 (3) | C15—H15 | 0.9500 |
C3—C4 | 1.392 (4) | O1M—C1M | 1.441 (3) |
C4—C5 | 1.399 (4) | O1M—H1M | 0.8400 |
C4—H4 | 0.9500 | C1M—H1AM | 0.9800 |
C5—C6 | 1.384 (4) | C1M—H1BM | 0.9800 |
C5—H5 | 0.9500 | C1M—H1CM | 0.9800 |
O4—Mo1—O5 | 105.93 (8) | N1—C7—H7 | 118.5 |
O4—Mo1—O2 | 103.86 (8) | C1—C7—H7 | 118.5 |
O5—Mo1—O2 | 99.42 (9) | O3—C8—H8A | 109.5 |
O4—Mo1—O1 | 95.61 (7) | O3—C8—H8B | 109.5 |
O5—Mo1—O1 | 96.80 (8) | H8A—C8—H8B | 109.5 |
O2—Mo1—O1 | 150.03 (7) | O3—C8—H8C | 109.5 |
O4—Mo1—N1 | 155.24 (8) | H8A—C8—H8C | 109.5 |
O5—Mo1—N1 | 96.81 (7) | H8B—C8—H8C | 109.5 |
O2—Mo1—N1 | 81.49 (7) | N2—C9—O1 | 122.2 (2) |
O1—Mo1—N1 | 71.67 (6) | N2—C9—C10 | 121.1 (2) |
C9—O1—Mo1 | 120.49 (14) | O1—C9—C10 | 116.7 (2) |
C2—O2—Mo1 | 134.07 (14) | C15—C10—C11 | 119.1 (2) |
C3—O3—C8 | 116.8 (2) | C15—C10—C9 | 121.7 (2) |
C7—N1—N2 | 116.36 (18) | C11—C10—C9 | 119.2 (2) |
C7—N1—Mo1 | 128.46 (15) | C12—C11—C10 | 120.3 (2) |
N2—N1—Mo1 | 115.13 (13) | C12—C11—H11 | 119.9 |
C9—N2—N1 | 110.11 (18) | C10—C11—H11 | 119.9 |
C2—C1—C6 | 119.7 (2) | C11—C12—C13 | 120.4 (2) |
C2—C1—C7 | 122.9 (2) | C11—C12—H12 | 119.8 |
C6—C1—C7 | 117.3 (2) | C13—C12—H12 | 119.8 |
O2—C2—C1 | 123.0 (2) | C14—C13—C12 | 119.3 (2) |
O2—C2—C3 | 117.3 (2) | C14—C13—H13 | 120.4 |
C1—C2—C3 | 119.6 (2) | C12—C13—H13 | 120.4 |
O3—C3—C4 | 125.4 (2) | C15—C14—C13 | 120.6 (2) |
O3—C3—C2 | 115.2 (2) | C15—C14—H14 | 119.7 |
C4—C3—C2 | 119.4 (2) | C13—C14—H14 | 119.7 |
C3—C4—C5 | 120.8 (2) | C14—C15—C10 | 120.4 (2) |
C3—C4—H4 | 119.6 | C14—C15—H15 | 119.8 |
C5—C4—H4 | 119.6 | C10—C15—H15 | 119.8 |
C6—C5—C4 | 120.3 (2) | C1M—O1M—H1M | 109.5 |
C6—C5—H5 | 119.9 | O1M—C1M—H1AM | 109.5 |
C4—C5—H5 | 119.9 | O1M—C1M—H1BM | 109.5 |
C5—C6—C1 | 120.2 (2) | H1AM—C1M—H1BM | 109.5 |
C5—C6—H6 | 119.9 | O1M—C1M—H1CM | 109.5 |
C1—C6—H6 | 119.9 | H1AM—C1M—H1CM | 109.5 |
N1—C7—C1 | 123.0 (2) | H1BM—C1M—H1CM | 109.5 |
O4—Mo1—O1—C9 | 152.56 (16) | O2—C2—C3—C4 | −178.1 (2) |
O5—Mo1—O1—C9 | −100.61 (16) | C1—C2—C3—C4 | −0.2 (3) |
O2—Mo1—O1—C9 | 21.8 (2) | O3—C3—C4—C5 | −179.1 (2) |
N1—Mo1—O1—C9 | −5.67 (15) | C2—C3—C4—C5 | 1.6 (4) |
O4—Mo1—O2—C2 | 174.04 (19) | C3—C4—C5—C6 | −1.2 (4) |
O5—Mo1—O2—C2 | 64.9 (2) | C4—C5—C6—C1 | −0.6 (4) |
O1—Mo1—O2—C2 | −56.9 (3) | C2—C1—C6—C5 | 1.9 (3) |
N1—Mo1—O2—C2 | −30.6 (2) | C7—C1—C6—C5 | −179.6 (2) |
O4—Mo1—N1—C7 | 120.7 (2) | N2—N1—C7—C1 | 175.46 (18) |
O5—Mo1—N1—C7 | −82.56 (19) | Mo1—N1—C7—C1 | −1.8 (3) |
O2—Mo1—N1—C7 | 15.99 (19) | C2—C1—C7—N1 | −9.5 (3) |
O1—Mo1—N1—C7 | −177.5 (2) | C6—C1—C7—N1 | 172.0 (2) |
O4—Mo1—N1—N2 | −56.6 (2) | N1—N2—C9—O1 | −0.6 (3) |
O5—Mo1—N1—N2 | 100.14 (14) | N1—N2—C9—C10 | 178.14 (18) |
O2—Mo1—N1—N2 | −161.31 (14) | Mo1—O1—C9—N2 | 5.8 (3) |
O1—Mo1—N1—N2 | 5.20 (13) | Mo1—O1—C9—C10 | −173.01 (14) |
C7—N1—N2—C9 | 178.27 (19) | N2—C9—C10—C15 | −8.8 (3) |
Mo1—N1—N2—C9 | −4.1 (2) | O1—C9—C10—C15 | 170.0 (2) |
Mo1—O2—C2—C1 | 30.2 (3) | N2—C9—C10—C11 | 172.5 (2) |
Mo1—O2—C2—C3 | −151.97 (17) | O1—C9—C10—C11 | −8.6 (3) |
C6—C1—C2—O2 | 176.2 (2) | C15—C10—C11—C12 | −0.3 (3) |
C7—C1—C2—O2 | −2.2 (3) | C9—C10—C11—C12 | 178.3 (2) |
C6—C1—C2—C3 | −1.5 (3) | C10—C11—C12—C13 | −0.2 (4) |
C7—C1—C2—C3 | −179.9 (2) | C11—C12—C13—C14 | 0.5 (4) |
C8—O3—C3—C4 | −12.9 (4) | C12—C13—C14—C15 | −0.3 (4) |
C8—O3—C3—C2 | 166.5 (2) | C13—C14—C15—C10 | −0.3 (4) |
O2—C2—C3—O3 | 2.5 (3) | C11—C10—C15—C14 | 0.5 (3) |
C1—C2—C3—O3 | −179.6 (2) | C9—C10—C15—C14 | −178.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1M—H1M···N2i | 0.84 | 1.87 | 2.700 (3) | 173 |
C1M—H1BM···O1ii | 0.98 | 2.58 | 3.402 (3) | 141 |
C6—H6···O4iii | 0.95 | 2.53 | 3.450 (3) | 162 |
C11—H11···O1 | 0.95 | 2.44 | 2.767 (3) | 100 |
C15—H15···O1Mii | 0.95 | 2.54 | 3.427 (3) | 156 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Mo(C15H12N2O3)O2(CH4O)] |
Mr | 428.25 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 173 |
a, b, c (Å) | 29.400 (13), 8.553 (4), 14.391 (6) |
β (°) | 112.993 (8) |
V (Å3) | 3331 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.82 |
Crystal size (mm) | 0.58 × 0.54 × 0.46 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.368, 0.703 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27788, 5867, 4401 |
Rint | 0.065 |
(sin θ/λ)max (Å−1) | 0.762 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.104, 1.01 |
No. of reflections | 5867 |
No. of parameters | 229 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.38, −1.80 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003) and SADABS (Sheldrick, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Mo1—O1 | 2.0281 (19) | Mo1—O5 | 1.7093 (19) |
Mo1—O2 | 1.9391 (17) | Mo1—N1 | 2.248 (2) |
Mo1—O4 | 1.7096 (18) | Mo1—O1M | 2.3374 (18) |
O4—Mo1—O5 | 105.93 (8) | O5—Mo1—O1 | 96.80 (8) |
O4—Mo1—O2 | 103.86 (8) | O2—Mo1—O1 | 150.03 (7) |
O5—Mo1—O2 | 99.42 (9) | O4—Mo1—N1 | 155.24 (8) |
O4—Mo1—O1 | 95.61 (7) | O5—Mo1—N1 | 96.81 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1M—H1M···N2i | 0.84 | 1.87 | 2.700 (3) | 173 |
C1M—H1BM···O1ii | 0.98 | 2.58 | 3.402 (3) | 141 |
C6—H6···O4iii | 0.95 | 2.53 | 3.450 (3) | 162 |
C11—H11···O1 | 0.95 | 2.44 | 2.767 (3) | 100 |
C15—H15···O1Mii | 0.95 | 2.54 | 3.427 (3) | 156 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, y−1, z. |
Cis-dioxo molybdenum complex | Mo=O | Mo-N | Mo–O(solv)1 | N—Mo=O | O=Mo=O | |
[MoO2(bnms)(MeOH)I | 1.709 | 2.248 | 2.337 | 155.24 | 105.93 | |
1.709 | 96.81 | |||||
[MoO2(sae)(MeOH)]a | 1.697 | 2.252 | 2.339 | 158.9 | 106.1 | |
1.704 | 94.2 | |||||
[MoO2(cysS-OR)(MeOH)]b | 1.699 | 2.291 | 2.385 | 160.8 | 105.9 | |
1.709 | 92.5 | |||||
[MoO2(hbhy)(EtOH)]c | 1.696 | 2.234 | 2.356 | 158.44 | 106.03 | |
1.699 | 93.84 | |||||
[MoO2(doin)(MeOH)]d | 1.700 | 2.250 | 2.331 | 159.54 | 106.65 | |
1.714 | 93.16 | |||||
[MoO2(hpmp)(MeOH)]e | 1.703 | 2.274 | 2.355 | 159.38 | 107.05 | |
1.709 | 93.07 | |||||
[MoO2(hpemp)(MeOH)]f | 1.707 | 2.268 | 2.387 | 159.81 | 106.36 | |
1.699 | 93.53 | |||||
[MoO2(moip)(MeOH)]g | 1.700 | 2.251 | 2.349 | 158.82 | 105.61 | |
1.702 | 95.01 | |||||
[MoO2(ssh)(MeOH)]h | 1.692 | 2.234 | 2.349 | 157.6 | 106.4 | |
1.705 | 93.7 | |||||
[MoO2(hmt)(MeOH)]i | 1.727 | 2.273 | 2.351 | 156.41 | 105.26 | |
1.704 | 95.29 | |||||
MoO2(bhpd)(MeOH)j | 1.988 | 2.284 | 2.301 | 160.49 | 105.9 | |
1.717 | 90.93 |
Notes: (1) solvent = MeOH or EtOH. References: (I) this work; (a) Glowiak et al. (2003); (b) Liimatainen et al. (2000); (c) Dinda et al.(2006); (d) Niaz et al. (2010); (e) Sheikhshoaie et al. (2009); (f) Rezaeifard et al. (2010); (g) Saeednia et al. (2009); (h) Rao et al. (1999); (i) Vrdoljak et al. (2010); (j) Pramaniky et al. (2007). |
Complex | νs(Mo═O)1 | νs(Mo═O)2 | ν(C═N) | |
[MoO2(bnms)(MeOH)I | 939 | 915 | 1627 | |
[MoO2(sae)(MeOH)]a | 928 | 906 | 1641 | |
[MoO2(cysS-OR)(MeOH)]b | 995 | 980 | 1626 | |
[MoO2(hbhy)(EtOH)]c | - | - | - | |
[MoO2(doin)(MeOH)]d | - | - | - | |
[MoO2(hpmp)(MeOH)]e | 924 | 900 | 1638 | |
[MoO2(hpemp)(MeOH)]f | 920 | 909 | 1638 | |
[MoO2(moip)(MeOH)]g | - | - | - | |
[MoO2(ssh)(MeOH)]h | 939 | 911 | 1637 | |
[MoO2(hmt)(MeOH)]i | 932 | 901 | 1626 | |
MoO2(bhpd)(MeOH)j | 939 | 914 | 1579 |
Notes: (1) ν symmetry; (2) ν asymmetry References: (I) this work; (a) Glowiak et al. (2003); (b) Liimatainen et al. (2000); (c) Dinda et al.(2006); (d) Niaz et al. (2010); (e) Sheikhshoaie et al. (2009); (f) Rezaeifard et al. (2010); (g) Saeednia et al. (2009); (h) Rao et al. (1999); (i) Vrdoljak et al. (2010); (j) Pramaniky et al. (2007). |
Acknowledgements
This work was supported by the Shahid Bahonar University of Kerman.
References
Alizadeh, N., Ershad, S., Naeimi, H., Sharghi, H. & Shamsipur, M. (1999). Pol. J. Chem. 73, 915–925. CAS Google Scholar
Ambroziak, K., Pelech, R., Milchert, E., Dziembowska, T. & Rozwadowski, Z. (2004). J. Mol. Catal. A, 211, 9–16. CrossRef CAS Google Scholar
Archer, R. D. & Wang, B. (1990). Inorg. Chem. 29, 39–43. CrossRef CAS Web of Science Google Scholar
Bagherzadeh, M. & Amini, M. (2009). Inorg. Chem. Commun. 12, 21–25. CrossRef CAS Google Scholar
Bagherzadeh, M., Tahsini, L., Latifi, R., Ellern, A. & Woo, L. K. (2008). Inorg. Chim. Acta, 361, 2019–2024. CrossRef CAS Google Scholar
Bhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773–1779. CSD CrossRef Web of Science Google Scholar
Bindlish, J. M., Bhatia, S. C., Gautam, P. & Jain, P. C. (1978). Indian J. Chem. Sect. A, 16, 279–282. Google Scholar
Blake, A. B., Chipperfield, J. R., Hussain, W., Paschke, R. & Sinn, E. (1995). Inorg. Chem. 34, 1125–1129. CSD CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chang, S., Jones, L., Wang, C., Henling, L. M. & Grubbs, R. H. (1998). Organometallics, 17, 3460–3465. Web of Science CSD CrossRef CAS Google Scholar
Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67–88. CrossRef CAS Web of Science Google Scholar
Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506. CAS Google Scholar
Dinda, R., Ghosh, S., Falvello, L. R., Tomas, M. & Mak, T. C. W. (2006). Polyhedron, 25, 2375–2382. CSD CrossRef CAS Google Scholar
Glowiak, T., Jerzykiewicz, L., Sobczak, J. M. & Ziolkowski, J. J. (2003). Inorg. Chim. Acta, 356, 387–392. CAS Google Scholar
Hatefi, M., Moghadam, M., Sheikhshoaei, I., Mirkhani, V., Tangestaninejad, S., Mohammadpoor-Baltork, I. & Kargar, H. (2009). Appl. Catal. A, 370, 66–71. CrossRef CAS Google Scholar
Holm, R. H. (1990). Coord. Chem. Rev. 100, 183–221. CrossRef CAS Google Scholar
Jalali-Heravi, M., Khandar, A. A. & Sheikshoaie, I. (1999). Spectrochim. Acta Part A, 55, 2537–2544. Google Scholar
Johnson, C. P., Atwood, J. L., Steed, J. W., Bauer, C. B. & Rogers, R. D. (1996). Inorg. Chem. 35, 2602–2610. CSD CrossRef PubMed CAS Web of Science Google Scholar
Liimatainen, J., Lehtonen, A. & Sillanpaa, R. (2000). Polyhedron, 19, 1133–1138. CrossRef CAS Google Scholar
Maurya, R. C., Mishra, D. D., Rao, N. S., Verma, R. & Rao, N. N. (1997). Indian J. Chem. Sect A, 36, 599–601. Google Scholar
Monadi, N., Sheikhshoaie, I., Rezaeifard, A. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1124–m1125. Web of Science CSD CrossRef IUCr Journals Google Scholar
Niaz, M., Iran, S. & Abdolreza, R. (2010). Acta Cryst. E66, m202. Web of Science CSD CrossRef IUCr Journals Google Scholar
Perrin, D. D., Armarego, W. L. & Perrin, D. R. (1990). Purification of Laboratory Chemicals, 2nd ed. New York: Pergamon. Google Scholar
Pramaniky, N. R., Ghoshz, S., Raychaudhuriy, T. K., Chaudhurix, S., Drew, M. G. B. & Mandal, S. S. S. (2007). J. Coord. Chem. 60, 2177–2190. Google Scholar
Rao, S. N., Munshi, K. N., Rao, N. N., Bhadbhade, M. M. & Suresh, E. (1999). Polyhedron, 18, 2491–2497. Web of Science CSD CrossRef CAS Google Scholar
Rezaeifard, A., Sheikhshoaie, I., Monadi, N. & Stoeckli-Evans, H. (2010). Eur. J. Inorg. Chem. pp. 799–806. CrossRef Google Scholar
Saeednia, S., Sheikhshoaie, I. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1591. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheikhshoaie, I. & Fabian, W. M. F. (2009). Curr. Org. Chem. 13, 149–171. CrossRef CAS Google Scholar
Sheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733–738. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vrdoljak, V., Dilovic, L., Rubcic, M., Pavelic, S. K., Kralj, M., Matkovic-Catogovic, D., Piantanida, I., Novak, P., Rozman, A. & Cindric, M. (2010). Eur. J. Med. Chem. 45, 38–48. Web of Science CrossRef PubMed CAS Google Scholar
Yamada, S. (1999). Coord. Chem. Rev. 190–192, 537–555. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The condensation products of primary amines and aldehydes or ketones (RCH=NR'), where R and R' represent alkyl and /or aryl constituents), are called Schiff bases (Dhar & Taploo, 1982); they play an important role in inorganic chemistry (Blake et al., 1995; Johnson et al.,1996; Alizadeh et al., 1999) as they easily form stable complexes with most transition metal ions. Transition metal compounds containing the Schiff base ligands have been of interest for many years (Yamada, 1999; Chang et al., 1998; Archer & Wang, 1990; Sheikhshoaie & Fabian, 2009; Jalali-Heravi et al., 1999). Many complexes play an important role in the developing of coordination chemistry related to catalytic (Holm, 1990; Rao et al., 1999; Bagherzadeh et al., 2008; Ambroziak et al., 2004; Bagherzadeh & Amini, 2009; Hatefi et al., 2009) and enzymatic reactions (Bindlish et al., 1978; Bhatia et al., 1981; Costamagna et al., 1992). High valent metal oxo species have demonstrated the ability to catalyze the oxidation of a variety of organic substrates, via homogeneous as well as heterogeneous routes (Holm, 1990; Maurya et al., 1997). In particular, the Mo-catalyzed alkene to epoxide conversion has received most attention. In the course of our studies on transition metal Schiff base complexes (Sheikhshoaie et al., 2009; Monadi et al., 2009), we have synthesized a dioxo molybdenium complex with a tridentate ligand (L) and the crystal structure of the title complex (I) is presented here.
The molecular structure of (I) is shown in Fig. 1. and the selected bond distances and angles are given in Table 1. The calculated bond valence by PLATON (version 91110: Spek, 2009) for Mo atom is 5.89, i.e. it exhibits the oxidation state +VI. Mo atom is surrounded by two O atoms and one N atom of the tridentate Schiff base ligand 3-methoxysalicylidenbenzoyl hydrazine in a distorted octahedral configuration. The Mo—O distances of the oxo ligands (O4 and O5) are significantly shorter [average 1.7094 (18) Å] than the corresponding distances to the O atoms of the tridentate ligands (O1 and O2) [average 1.98 (6) Å]. The Mo—N distance is longer [2.248 (2) Å] and the distance to methanol O atom is longest.
The aromatic ring C1/C2/C3/C4/C5/C6 is slightly distorted (χ2 = 56.6), while the phenyl ring C10/C11/C12/C13/C14/C15 is planar (χ2 = 4.7); the dihedral angle between them is 23.09 (12)o.
There are strong hydrogen bonds present between the hydroxy group of methanol and N2i atom in an adjacent complex [symmetry code: (i):-x + 1/2,y + 1/2,-z + 1/2] forming thus a C(5) chain around 21 screw axis, see Fig.2. There are also weak hydrogen bonds of the type in the C—H—O hydrogen bonds present, see Table 2. Fig. 3 shows the packing of the complexes in the unit cell, but there are no π-π interactions present.
Comparison with other similar structures is presented in Table 3. In all complexes molybdenum atom is coordinated by two oxo oxygen atoms, one nitrogen atom of C=N group and one oxygen atom from solvent (methanol or ethanol). In all these complexes, the longest bond from the solvent coordination indicates the most labile site available for substitution. In addition, in all the investigated complexes the bonds between molybdenium atom and nitrogen atom of imine group (C=N) are long (average: 2.26 (2) Å). Two oxo oxygen atoms are almost in cis position towards each other in all the cases [the average of the O=Mo=O angles: 106.1 (5)°]. The angles of N—Mo=O in the complexes indicate that one of the oxo oxygen atoms is in cis and the other one is in trans position toward nitrogen atom of imine group. The coordination geometry around Mo atoms is highly distorted octahedral in [MoO2(L) (solvent)] complexes, where (L) is a tridentate ligand containing an imine group and MeOH or EtOH as a solvent. Table 4 provides a comparison of important frequencies in the IR spectra of (I) and some dioxo-molybdenum(VI) complexes.