metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sodium p-toluenesulfinate tetra­hydrate

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 31 May 2011; accepted 6 June 2011; online 11 June 2011)

The title compound, Na+·C7H7O2S·4H2O, is the hydrate of the sodium salt of para-toluene­sulfinic acid. The mol­ecular geometry around the sulfur atom is tetra­hedral with X–S–Y angles spanning a range of 102.23 (6)–110.04 (6)°. In the crystal, the water mol­ecules connect the sodium cations into chains along the b axis via O—H⋯O hydrogen bonds. An inter­molecular O—H⋯π inter­action is also observed.

Related literature

For the crystal structure of sodium para-toluene­sulfonate, see: Reinke & Rudershausen (1999[Reinke, H. & Rudershausen, S. (1999). Private communication (refcode HORSUC). CCDC, Cambridge, England.]). For details of graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • Na+·C7H7O2S·4H2O

  • Mr = 250.24

  • Monoclinic, P 21 /c

  • a = 15.9432 (19) Å

  • b = 6.1825 (7) Å

  • c = 12.2668 (15) Å

  • β = 100.166 (5)°

  • V = 1190.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 200 K

  • 0.53 × 0.39 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.826, Tmax = 1.000

  • 10741 measured reflections

  • 2846 independent reflections

  • 2554 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.087

  • S = 1.11

  • 2846 reflections

  • 162 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯O1 0.81 (1) 1.98 (1) 2.7885 (14) 173 (2)
O3—H32⋯O2i 0.81 (1) 2.02 (1) 2.8059 (16) 166 (2)
O4—H41⋯O2 0.80 (1) 2.16 (1) 2.9038 (15) 154 (2)
O4—H42⋯O3ii 0.81 (1) 1.99 (1) 2.7884 (15) 173 (2)
O5—H51⋯O1iii 0.80 (1) 1.99 (1) 2.7760 (15) 167 (2)
O5—H52⋯O2iv 0.80 (1) 2.16 (1) 2.9319 (15) 163 (2)
O6—H61⋯O1v 0.80 (1) 2.21 (2) 2.9528 (17) 154 (2)
O6—H62⋯Cgvi 0.79 (1) 2.89 (2) 3.3782 (17) 122 (2)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Multidentate ligands play a major role in the synthesis of coordination polymers and metal-organic framework compounds (MOFs). Especially derivatives of benzoic acid have found widespread use in this aspect and a variety of these coordination polymers have been characterized in solution and in the solid state. Owing to the desire to synthesize functionalized MOFs whose poresizes or even complete architectural set-ups might easily be influenced upon variation of external parameters such as pH value or the presence and concentration of molecules that might reside inside the pores of these MOFs, chelating ligands related to benzoic acid but with the ability to change their bonding behaviour are necessary. In this aspect, para-toluenesulfinic acid seemed of interest since it may act as neutral or anionic ligand, and even the sulfur atom may show donor action. In order to gather structural information to allow for the tailored synthesis of MOFs based on para-toluenesulfinic acid, we determined the crystal structure of its sodium salt. The crystal structure of the sodium salt of para-toluenesulfonic acid is apparent in the literature (Reinke & Rudershausen, 1999).

Taking into account the lone pair on the sulfur atom, the latter is present in a pseudo-tetrahedral molecular geometry. The X–S–Y angles span a range of 102.23 (6)–110.04 (6) °. The least-squares planes defined by the atoms of the aromatic system on the one hand and the SOO group on the other hand intersect at an angle of 64.47 (6) °. The sodium cation is coordinated by six water molecules (two of them symmetry-generated) of which two act as bridging ligands to the neighbouring sodium cation and thus foster the formation of a "sodium-acqua-polymer" chain along the crystallographic b axis (Fig. 2). The angles between two trans-orientated water molecules in the resultant [Na(H2O)6]+ octahedra were found adopting values between 163.96 (5) ° and 173.68 (4) °.

The crystal structure is dominated by hydrogen bonds. Except for one of the hydrogen atoms on one water molecule that is part of a O–H···π interaction, all of the water molecules take part in O–H···O hydrogen bonding. Each of the sulfinic acid group's O atoms acts as multifold acceptor. In terms of graph set analysis (Etter et al. (1990); Bernstein et al. (1995)), the description of the hydrogen bonding systems necessitates a DDDDDDDD descriptor on the unitary level. In total, the components of the crystal structure are connected to double layers perpendicular to the crystallographic a axis with the hydrophobic aromatic moieties forming the outer surfaces of these layers. π-Stacking is not a prominent feature of the crystal structure with the shortest distance between two aromatic systems found at 5.5359 (11) Å.

Related literature top

For the crystal structure of the para-toluenesulfonic acid sodium salt, see: Reinke & Rudershausen (1999). For details of graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The compound was obtained commercially (KEG). Crystals suitable for the X-ray diffraction study were obtained upon free evaporation of an aqueous solution thereof.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H-atoms of the water molecules were located on a difference Fourier map, and their O—H distances as well as their H–O–H angles were refined using DFIX instructions with one common free variable, with their U(H) set to 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level). Symmetry operators: i -x + 1, -y + 1, -z; ii -x + 1, -y + 2, -z. For reasons of clarity, only one of the sodium cations with its octahedral coordination of water molecules is depicted instead of the polymeric chain.
[Figure 2] Fig. 2. Polymeric chain of sodium cations and water molecules, viewed along [1 0 0].
Sodium p-toluenesulfinate tetrahydrate top
Crystal data top
Na+·C7H7O2S·4H2OF(000) = 528
Mr = 250.24Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7792 reflections
a = 15.9432 (19) Åθ = 2.6–27.4°
b = 6.1825 (7) ŵ = 0.31 mm1
c = 12.2668 (15) ÅT = 200 K
β = 100.166 (5)°Platelet, colourless
V = 1190.1 (2) Å30.53 × 0.39 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2846 independent reflections
Radiation source: fine-focus sealed tube2554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 28.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2120
Tmin = 0.826, Tmax = 1.000k = 58
10741 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.535P]
where P = (Fo2 + 2Fc2)/3
2846 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 0.72 e Å3
12 restraintsΔρmin = 0.23 e Å3
Crystal data top
Na+·C7H7O2S·4H2OV = 1190.1 (2) Å3
Mr = 250.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.9432 (19) ŵ = 0.31 mm1
b = 6.1825 (7) ÅT = 200 K
c = 12.2668 (15) Å0.53 × 0.39 × 0.21 mm
β = 100.166 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2846 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2554 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 1.000Rint = 0.025
10741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02912 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.72 e Å3
2846 reflectionsΔρmin = 0.23 e Å3
162 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.45418 (3)0.75184 (9)0.02242 (4)0.02500 (14)
O30.39909 (7)0.88972 (17)0.17974 (9)0.0287 (2)
H310.3681 (11)0.796 (2)0.1963 (17)0.043*
H320.3672 (11)0.990 (2)0.1611 (16)0.043*
O40.48457 (7)0.41959 (17)0.12242 (8)0.0274 (2)
H410.4404 (8)0.378 (3)0.1373 (15)0.041*
H420.5152 (10)0.417 (3)0.1824 (11)0.041*
O50.59271 (7)0.89815 (18)0.06769 (9)0.0293 (2)
H510.6176 (11)0.927 (3)0.1281 (11)0.044*
H520.6263 (11)0.846 (3)0.0338 (14)0.044*
O60.31527 (9)0.6560 (3)0.07052 (11)0.0501 (4)
H610.2992 (17)0.711 (4)0.1295 (14)0.075*
H620.2971 (16)0.537 (2)0.072 (2)0.075*
S10.25275 (2)0.41422 (5)0.14718 (3)0.02338 (10)
O10.30441 (6)0.54447 (17)0.24003 (8)0.0293 (2)
O20.31037 (7)0.26401 (18)0.09734 (9)0.0342 (2)
C10.19547 (8)0.2298 (2)0.22163 (11)0.0230 (3)
C20.17035 (9)0.2961 (2)0.31990 (12)0.0280 (3)
H20.18670.43420.35040.034*
C30.12128 (9)0.1588 (3)0.37294 (12)0.0306 (3)
H30.10420.20480.43960.037*
C40.09673 (8)0.0448 (2)0.33007 (12)0.0287 (3)
C50.12217 (9)0.1073 (2)0.23143 (13)0.0298 (3)
H50.10560.24510.20060.036*
C60.17114 (9)0.0278 (2)0.17743 (12)0.0271 (3)
H60.18790.01780.11050.032*
C70.04458 (11)0.1935 (3)0.38969 (15)0.0422 (4)
H7A0.07140.20480.46780.063*
H7B0.04160.33720.35550.063*
H7C0.01310.13490.38450.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0267 (3)0.0233 (3)0.0256 (3)0.0000 (2)0.0062 (2)0.0000 (2)
O30.0328 (5)0.0258 (5)0.0283 (5)0.0027 (4)0.0078 (4)0.0004 (4)
O40.0267 (5)0.0300 (5)0.0259 (5)0.0014 (4)0.0057 (4)0.0009 (4)
O50.0277 (5)0.0322 (6)0.0275 (5)0.0005 (4)0.0036 (4)0.0044 (4)
O60.0465 (7)0.0606 (9)0.0391 (6)0.0253 (7)0.0043 (5)0.0124 (6)
S10.02337 (17)0.02331 (18)0.02327 (17)0.00030 (12)0.00355 (12)0.00159 (12)
O10.0332 (5)0.0270 (5)0.0266 (5)0.0075 (4)0.0021 (4)0.0002 (4)
O20.0374 (6)0.0302 (5)0.0403 (6)0.0011 (4)0.0212 (5)0.0026 (4)
C10.0190 (6)0.0247 (6)0.0251 (6)0.0006 (5)0.0034 (5)0.0016 (5)
C20.0284 (7)0.0272 (7)0.0291 (7)0.0020 (5)0.0071 (5)0.0040 (5)
C30.0288 (7)0.0365 (8)0.0281 (7)0.0016 (6)0.0093 (5)0.0014 (6)
C40.0210 (6)0.0325 (7)0.0325 (7)0.0016 (5)0.0046 (5)0.0046 (6)
C50.0261 (7)0.0253 (7)0.0377 (8)0.0026 (5)0.0043 (6)0.0018 (6)
C60.0254 (6)0.0276 (7)0.0284 (6)0.0000 (5)0.0054 (5)0.0031 (5)
C70.0392 (9)0.0421 (9)0.0481 (9)0.0111 (7)0.0153 (7)0.0055 (8)
Geometric parameters (Å, º) top
Na1—O52.3604 (12)S1—O21.5094 (11)
Na1—O62.3801 (13)S1—O11.5142 (10)
Na1—O42.3977 (12)S1—C11.8062 (14)
Na1—O32.4127 (12)C1—C61.3893 (19)
Na1—O4i2.4178 (12)C1—C21.3971 (19)
Na1—O5ii2.4843 (12)C2—C31.391 (2)
Na1—Na1ii3.4837 (11)C2—H20.9500
O3—H310.810 (11)C3—C41.394 (2)
O3—H320.807 (11)C3—H30.9500
O4—Na1i2.4178 (12)C4—C51.397 (2)
O4—H410.801 (11)C4—C71.512 (2)
O4—H420.809 (12)C5—C61.389 (2)
O5—Na1ii2.4843 (12)C5—H50.9500
O5—H510.798 (11)C6—H60.9500
O5—H520.802 (11)C7—H7A0.9800
O6—H610.799 (12)C7—H7B0.9800
O6—H620.792 (12)C7—H7C0.9800
O5—Na1—O6163.96 (5)Na1—O5—Na1ii91.92 (4)
O5—Na1—O496.42 (4)Na1—O5—H51126.7 (14)
O6—Na1—O496.81 (5)Na1ii—O5—H51106.2 (15)
O5—Na1—O397.70 (4)Na1—O5—H52114.0 (14)
O6—Na1—O391.82 (5)Na1ii—O5—H52107.3 (15)
O4—Na1—O387.86 (4)H51—O5—H52107.7 (16)
O5—Na1—O4i81.86 (4)Na1—O6—H61116.7 (19)
O6—Na1—O4i90.07 (5)Na1—O6—H62123.4 (19)
O4—Na1—O4i85.93 (4)H61—O6—H62108 (2)
O3—Na1—O4i173.68 (4)O2—S1—O1110.04 (6)
O5—Na1—O5ii88.08 (4)O2—S1—C1102.39 (6)
O6—Na1—O5ii79.76 (5)O1—S1—C1102.23 (6)
O4—Na1—O5ii172.58 (4)C6—C1—C2119.84 (13)
O3—Na1—O5ii85.68 (4)C6—C1—S1120.09 (10)
O4i—Na1—O5ii100.59 (4)C2—C1—S1119.91 (10)
O5—Na1—Na1ii45.46 (3)C3—C2—C1119.68 (13)
O6—Na1—Na1ii121.63 (4)C3—C2—H2120.2
O4—Na1—Na1ii141.52 (4)C1—C2—H2120.2
O3—Na1—Na1ii92.13 (3)C2—C3—C4121.22 (13)
O4i—Na1—Na1ii92.01 (3)C2—C3—H3119.4
O5ii—Na1—Na1ii42.62 (3)C4—C3—H3119.4
O5—Na1—Na1i88.79 (3)C3—C4—C5118.14 (13)
O6—Na1—Na1i94.68 (5)C3—C4—C7120.58 (14)
O4—Na1—Na1i43.19 (3)C5—C4—C7121.27 (14)
O3—Na1—Na1i131.04 (4)C6—C5—C4121.35 (14)
O4i—Na1—Na1i42.74 (3)C6—C5—H5119.3
O5ii—Na1—Na1i143.21 (4)C4—C5—H5119.3
Na1ii—Na1—Na1i123.83 (3)C5—C6—C1119.76 (13)
Na1—O3—H31105.8 (15)C5—C6—H6120.1
Na1—O3—H32110.1 (14)C1—C6—H6120.1
H31—O3—H32103.7 (16)C4—C7—H7A109.5
Na1—O4—Na1i94.07 (4)C4—C7—H7B109.5
Na1—O4—H41106.7 (14)H7A—C7—H7B109.5
Na1i—O4—H41120.8 (14)C4—C7—H7C109.5
Na1—O4—H42121.2 (14)H7A—C7—H7C109.5
Na1i—O4—H42113.7 (14)H7B—C7—H7C109.5
H41—O4—H42101.5 (16)
O5—Na1—O4—Na1i81.33 (4)O1—S1—C1—C6151.45 (11)
O6—Na1—O4—Na1i89.58 (5)O2—S1—C1—C2147.07 (12)
O3—Na1—O4—Na1i178.84 (4)O1—S1—C1—C233.07 (12)
O4i—Na1—O4—Na1i0.0C6—C1—C2—C30.2 (2)
O5ii—Na1—O4—Na1i151.6 (3)S1—C1—C2—C3175.65 (11)
Na1ii—Na1—O4—Na1i88.11 (6)C1—C2—C3—C40.2 (2)
O6—Na1—O5—Na1ii40.5 (2)C2—C3—C4—C50.5 (2)
O4—Na1—O5—Na1ii174.08 (4)C2—C3—C4—C7179.01 (14)
O3—Na1—O5—Na1ii85.38 (4)C3—C4—C5—C60.5 (2)
O4i—Na1—O5—Na1ii100.98 (4)C7—C4—C5—C6179.03 (14)
O5ii—Na1—O5—Na1ii0.0C4—C5—C6—C10.2 (2)
Na1i—Na1—O5—Na1ii143.33 (4)C2—C1—C6—C50.2 (2)
O2—S1—C1—C637.45 (12)S1—C1—C6—C5175.66 (11)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O3—H31···O10.81 (1)1.98 (1)2.7885 (14)173 (2)
O3—H32···O2iii0.81 (1)2.02 (1)2.8059 (16)166 (2)
O4—H41···O20.80 (1)2.16 (1)2.9038 (15)154 (2)
O4—H42···O3iv0.81 (1)1.99 (1)2.7884 (15)173 (2)
O5—H51···O1v0.80 (1)1.99 (1)2.7760 (15)167 (2)
O5—H52···O2i0.80 (1)2.16 (1)2.9319 (15)163 (2)
O6—H61···O1vi0.80 (1)2.21 (2)2.9528 (17)154 (2)
O6—H62···Cgvii0.79 (1)2.89 (2)3.3782 (17)122 (2)
Symmetry codes: (i) x+1, y+1, z; (iii) x, y+1, z; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x, y+3/2, z1/2; (vii) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaNa+·C7H7O2S·4H2O
Mr250.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)15.9432 (19), 6.1825 (7), 12.2668 (15)
β (°) 100.166 (5)
V3)1190.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.53 × 0.39 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.826, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10741, 2846, 2554
Rint0.025
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.087, 1.11
No. of reflections2846
No. of parameters162
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.23

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O3—H31···O10.810 (11)1.983 (12)2.7885 (14)173.1 (19)
O3—H32···O2i0.807 (11)2.015 (12)2.8059 (16)166.4 (19)
O4—H41···O20.801 (11)2.162 (13)2.9038 (15)154.1 (18)
O4—H42···O3ii0.809 (12)1.985 (12)2.7884 (15)172.7 (19)
O5—H51···O1iii0.798 (11)1.994 (12)2.7760 (15)167 (2)
O5—H52···O2iv0.802 (11)2.155 (12)2.9319 (15)163.3 (19)
O6—H61···O1v0.799 (12)2.214 (15)2.9528 (17)154 (2)
O6—H62···Cgvi0.792 (12)2.89 (2)3.3782 (17)122 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z; (v) x, y+3/2, z1/2; (vi) x, y1/2, z3/2.
 

Acknowledgements

The authors thank Mrs Jaci Neil-Schutte for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationReinke, H. & Rudershausen, S. (1999). Private communication (refcode HORSUC). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds