metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m903-m904

Substitutional disorder in bis­­[(cyanato-κO)/hydroxido(0.5/0.5)](5,10,15,20-tetra­phenyl­porphyrinato-κ4N)tin(IV)

aDépartement de Chimie, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'Environnement, 5019 Monastir, Tunisia, bFaculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal, and cDepartamento de Química, FCT-UNL, 2829-516 Caparica, Portugal
*Correspondence e-mail: hnasri1@gmail.com

(Received 1 June 2011; accepted 3 June 2011; online 11 June 2011)

The title complex, [SnIV(C44H28N4)(CNO)(OH)], exhibits substitutional disorder of the OH and OCN axial ligands. Thus, the cyanato-O ligand and the hydroxyl group bonded to the central SnIV atom share statistically the axial position. The SnIV ion is hexa­coordinated by the four N atoms of the pyrrole rings of the tetra­phenyl­porphyrin (TPP) and the O atoms of the two disordered OCN and OH axial ligands. The equatorial tin–pyrrole N atom distance (Sn—Np) is 2.100 (2) Å and the axial Sn—O(OCN) or Sn—O(OH) bond length is 2.074 (2) Å.

Related literature

For a review of porphyrin complexes, see: Scheidt (2000[Scheidt, W. R. (2000). The Porphyrin Handbook, Vol. 3, edited by K. M. Kadish, R. M. Smith & R. Guilard, pp. 49-112. San Diego: Academic Press.]). For the synthesis of tin(IV) porphyrin species, see: Fallon et al. (2002[Fallon, G. D., Lee, M. A.-P., Langford, S. J. & Nichols, P. J. (2002). Org. Lett. 4, 1895-1998.]); Martelli et al. (2009[Martelli, C., Canning, J., Reimers, J. R., Sintic, M., Stocks, D., Khoury, T. & Crossley, M. J. (2009). J. Am. Chem. Soc. 131, 2925-2933.]). For comparative bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Smith et al. (1991[Smith, G., Arnold, D. P., Kennard, C. H. L. & Mak, T. C. W. (1991). Polyhedron, 10, 509-516.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C44H28N4)(CNO)(OH)]

  • Mr = 790.42

  • Monoclinic, P 21 /c

  • a = 11.2943 (6) Å

  • b = 12.6972 (7) Å

  • c = 13.0711 (7) Å

  • β = 114.251 (2)°

  • V = 1709.06 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.870, Tmax = 0.954

  • 27811 measured reflections

  • 5968 independent reflections

  • 5241 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.13

  • 5968 reflections

  • 250 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −1.34 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). Report ORNL-6895, Oak Ridge National Laboratory, Tennesse, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The search in the Cambridge Crystallographic Database (version 5.32 with addenda up to November 26, 2010; Allen, 2002) shows that the majority of the reported X-ray molecular structures of porphyrin tin(IV) complexes are hexa-coordinated type [SnIV(Porph)(X)2] for which X is an anionic unidentate ligand bonded to the tin(IV) ion through the oxygen atom. To the best of our knowledge, there is no X-ray molecular structure of a tin(IV) cyanato-O porphyrin species reported in the literature.

The bis{(cyanato-O)/(hydroxo)(0.5/0.5) }(5,10,15,20-tetraphenylporphyrin)tin(IV) complex [SnIV(C44H28N4)(OCN)(OH)] exhibits substitutional disorder of both thiocyanato-O and hydroxo ligands with equal occupancy factor of 0.5. The tin atom which is octahedrally coordinated lies on an inversion center (Fig. 1).

The equatorial tin–pyrrole N atom distance (Sn—Np) is 2.100 (2) Å which is normal for tin(IV) porphyrin species. The Sn—O(OH) distance is 2.088 (6) Å which is longer than the one of the related species [SnIV(TPP)(OH)2] (2.023 (4) Å) (Smith et al., 1991). The Sn—O(OCN) bond lengh value is 2.059 (8) Å which is close to those of related porphyrin species, i.e, for [SnIV(TTP)(OC6H5)2] (TTP is the meso-tetrakis(p-tolyl)porphyrin) (Fallon et al., 2002) the Sn—O(OPh) distance is 2.055 (2) Å.

There are no intermolecular or intramolecular hydrogen bonds in the structure of (I). The packing diagram for (I) (Fig.2) is simple; there is no evidence for intermolecular π -π bonding between the faces of the porphyrin cores in compound (I). The absence of the π-π interactions results mainly in the steric restrictions requirements of the phenyl groups that determine the packing environment.

Related literature top

For a review of porphyrin complexes, see: Scheidt (2000). For the synthesis of tin(IV) porphyrin species, see: Fallon et al. (2002); Martelli et al. (2009). For comparative bond lengths, see: Allen et al. (1987); Smith et al. (1991). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The reaction of the [SnIV(TPP)(OH)2] complex (30 mg, 0.037 mmol) (Martelli et al., 2009) with an excess of sodium cyanate, NaOCN (85 mg, 1.31 mmol) and 18-crown-6 (90 mg, 0.34 mmol) in dichloromethane (4 ml) give a pink-violet solution. Crystals of the title complex were obtained by diffusion of ether through the dichloromethane solution.

Refinement top

The position of the O atoms of the NCO and OH couldn't be separated and were located on the same site using the EXYZ and EADP commands within SHELXL-97 (Sheldrick, 2008).

Hydrogen atoms were placed using assumed geometrically idealized positions (C—H aromatic = 0.95 Å) and constrained to ride on their parent atoms, with U(H) = 1.2Ueq(C). The H atom pertaining to the hydroxo ligand could not be found in a difference Fourier but was introduced in idealized position and treated as riding with U(H) = 1.5Ueq(O)

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip 2010).

Figures top
[Figure 1] Fig. 1. A view of the structure of the complex [SnIV(C44H28N4)(OCN)(OH)] showing the atom numbering scheme. Displacement ellipsoids are drawn at 30%. The O atoms of the hydroxo axial ligands and the H atoms have been omitted for clarity. [Symmetry code: (i) -x + 1,-y, -z + 1]
[Figure 2] Fig. 2. A unit cell packing of the title complex viewed down the b axis. H atoms have been omitted for clarity.
bis[(cyanato-κO)/hydroxido(0.5/0.5)](5,10,15,20- tetraphenylporphyrinato-κ4N)tin(IV) top
Crystal data top
[Sn(C44H28N4)(CNO)(OH)]F(000) = 800
Mr = 790.42Dx = 1.536 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 27811 reflections
a = 11.2943 (6) Åθ = 2.6–32.2°
b = 12.6972 (7) ŵ = 0.80 mm1
c = 13.0711 (7) ÅT = 293 K
β = 114.251 (2)°Prism, purple
V = 1709.06 (16) Å30.20 × 0.18 × 0.12 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5968 independent reflections
Radiation source: fine-focus sealed tube5241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 32.2°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1615
Tmin = 0.870, Tmax = 0.954k = 018
27811 measured reflectionsl = 019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0357P)2 + 1.5751P]
where P = (Fo2 + 2Fc2)/3
5968 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 1.34 e Å3
Crystal data top
[Sn(C44H28N4)(CNO)(OH)]V = 1709.06 (16) Å3
Mr = 790.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.2943 (6) ŵ = 0.80 mm1
b = 12.6972 (7) ÅT = 293 K
c = 13.0711 (7) Å0.20 × 0.18 × 0.12 mm
β = 114.251 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5968 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
5241 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.954Rint = 0.028
27811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.13Δρmax = 0.73 e Å3
5968 reflectionsΔρmin = 1.34 e Å3
250 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.50000.00000.50000.02969 (7)
N20.50052 (16)0.15106 (14)0.43522 (13)0.0276 (3)
N10.63300 (16)0.04991 (14)0.65913 (13)0.0269 (3)
O10.65060 (16)0.03859 (15)0.45502 (15)0.0389 (4)0.50
N30.8546 (4)0.0655 (5)0.5244 (4)0.0513 (12)0.50
C230.7509 (6)0.0155 (5)0.4921 (5)0.0479 (13)0.50
O20.65060 (16)0.03859 (15)0.45502 (15)0.0389 (4)0.50
H2A0.69170.08830.49330.058*0.50
C10.68716 (18)0.01306 (15)0.75191 (15)0.0245 (3)
C20.78155 (19)0.04888 (16)0.84031 (15)0.0259 (4)
H20.83190.02620.91300.031*
C30.78367 (19)0.14687 (17)0.79813 (16)0.0274 (4)
H30.83600.20300.83650.033*
C40.68969 (18)0.14729 (16)0.68298 (16)0.0262 (4)
C50.66400 (19)0.23239 (16)0.60800 (16)0.0266 (4)
C60.57669 (19)0.23375 (16)0.49389 (16)0.0268 (4)
C70.55237 (19)0.32147 (16)0.41809 (17)0.0284 (4)
H70.59030.38780.43600.034*
C80.46382 (19)0.29004 (16)0.31546 (16)0.0279 (4)
H80.43100.33060.25050.033*
C90.43046 (18)0.18217 (16)0.32611 (15)0.0253 (4)
C100.65856 (18)0.11936 (16)0.75997 (15)0.0247 (3)
C110.73248 (19)0.17185 (16)0.87048 (15)0.0251 (3)
C120.8373 (2)0.23659 (18)0.88507 (17)0.0314 (4)
H120.86020.24830.82530.038*
C130.9080 (2)0.2840 (2)0.98771 (19)0.0376 (5)
H130.97780.32740.99640.045*
C140.8756 (2)0.2673 (2)1.07638 (18)0.0387 (5)
H140.92380.29861.14540.046*
C150.7702 (3)0.2033 (2)1.06295 (18)0.0393 (5)
H150.74750.19241.12290.047*
C160.6988 (2)0.15561 (19)0.96030 (17)0.0334 (4)
H160.62850.11280.95160.040*
C170.74361 (19)0.32920 (16)0.65294 (17)0.0280 (4)
C180.8459 (2)0.35026 (19)0.62357 (18)0.0341 (4)
H180.86210.30610.57400.041*
C190.9245 (2)0.4378 (2)0.6684 (2)0.0448 (6)
H190.99260.45220.64810.054*
C200.9024 (3)0.5030 (2)0.7422 (3)0.0563 (8)
H200.95600.56080.77250.068*
C210.8015 (4)0.4829 (2)0.7712 (3)0.0622 (9)
H210.78610.52750.82080.075*
C220.7216 (3)0.3962 (2)0.7270 (3)0.0490 (6)
H220.65300.38310.74720.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03022 (10)0.02873 (10)0.02008 (9)0.01209 (8)0.00016 (7)0.00446 (7)
N20.0283 (8)0.0275 (8)0.0206 (7)0.0088 (6)0.0037 (6)0.0030 (6)
N10.0266 (7)0.0268 (8)0.0208 (7)0.0068 (6)0.0031 (6)0.0026 (6)
O10.0350 (8)0.0416 (9)0.0396 (9)0.0014 (7)0.0149 (7)0.0072 (7)
N30.037 (2)0.076 (4)0.044 (2)0.013 (2)0.0184 (19)0.005 (2)
C230.048 (3)0.055 (3)0.040 (3)0.001 (2)0.017 (2)0.005 (2)
O20.0350 (8)0.0416 (9)0.0396 (9)0.0014 (7)0.0149 (7)0.0072 (7)
C10.0231 (8)0.0279 (9)0.0195 (7)0.0017 (7)0.0057 (6)0.0009 (6)
C20.0249 (8)0.0288 (9)0.0202 (7)0.0008 (7)0.0055 (6)0.0021 (7)
C30.0247 (8)0.0305 (10)0.0224 (8)0.0054 (7)0.0049 (7)0.0033 (7)
C40.0240 (8)0.0283 (9)0.0221 (8)0.0063 (7)0.0054 (6)0.0011 (7)
C50.0257 (8)0.0256 (9)0.0248 (8)0.0073 (7)0.0066 (7)0.0009 (7)
C60.0257 (8)0.0264 (9)0.0241 (8)0.0074 (7)0.0060 (7)0.0018 (7)
C70.0287 (9)0.0254 (9)0.0280 (9)0.0068 (7)0.0085 (7)0.0032 (7)
C80.0283 (9)0.0278 (9)0.0254 (8)0.0035 (7)0.0088 (7)0.0053 (7)
C90.0247 (8)0.0268 (9)0.0217 (7)0.0038 (7)0.0068 (6)0.0031 (6)
C100.0237 (8)0.0288 (9)0.0196 (7)0.0027 (7)0.0070 (6)0.0020 (6)
C110.0268 (8)0.0247 (8)0.0199 (7)0.0035 (7)0.0056 (6)0.0005 (6)
C120.0309 (9)0.0356 (11)0.0238 (8)0.0024 (8)0.0072 (7)0.0005 (7)
C130.0311 (10)0.0377 (12)0.0327 (10)0.0004 (9)0.0017 (8)0.0033 (9)
C140.0376 (11)0.0405 (12)0.0259 (9)0.0074 (10)0.0008 (8)0.0086 (8)
C150.0485 (13)0.0441 (13)0.0249 (9)0.0062 (11)0.0148 (9)0.0042 (9)
C160.0388 (11)0.0375 (11)0.0264 (9)0.0011 (9)0.0159 (8)0.0033 (8)
C170.0271 (8)0.0241 (9)0.0266 (8)0.0052 (7)0.0049 (7)0.0009 (7)
C180.0323 (10)0.0344 (11)0.0311 (10)0.0076 (8)0.0084 (8)0.0010 (8)
C190.0340 (11)0.0420 (13)0.0462 (13)0.0153 (10)0.0042 (10)0.0105 (11)
C200.0528 (16)0.0293 (12)0.0615 (18)0.0169 (11)0.0019 (13)0.0039 (12)
C210.067 (2)0.0404 (16)0.075 (2)0.0133 (14)0.0255 (18)0.0291 (15)
C220.0483 (14)0.0454 (15)0.0580 (16)0.0131 (12)0.0265 (13)0.0187 (12)
Geometric parameters (Å, º) top
Sn1—O2i2.0737 (18)C8—C91.442 (3)
Sn1—O1i2.0737 (18)C8—H80.9300
Sn1—O12.0737 (18)C9—C10i1.408 (3)
Sn1—N2i2.0976 (17)C10—C9i1.408 (3)
Sn1—N22.0976 (17)C10—C111.496 (3)
Sn1—N12.1018 (16)C11—C121.388 (3)
Sn1—N1i2.1018 (16)C11—C161.390 (3)
N2—C61.374 (2)C12—C131.386 (3)
N2—C91.375 (2)C12—H120.9300
N1—C41.368 (3)C13—C141.368 (4)
N1—C11.369 (2)C13—H130.9300
O1—C231.241 (6)C14—C151.391 (4)
O1—H2A0.8202C14—H140.9300
N3—C231.244 (7)C15—C161.389 (3)
C23—H2A1.4810C15—H150.9300
C1—C101.402 (3)C16—H160.9300
C1—C21.442 (3)C17—C181.385 (3)
C2—C31.365 (3)C17—C221.386 (3)
C2—H20.9300C18—C191.393 (3)
C3—C41.442 (3)C18—H180.9300
C3—H30.9300C19—C201.370 (5)
C4—C51.407 (3)C19—H190.9300
C5—C61.410 (3)C20—C211.364 (5)
C5—C171.494 (3)C20—H200.9300
C6—C71.440 (3)C21—C221.390 (4)
C7—C81.363 (3)C21—H210.9300
C7—H70.9300C22—H220.9300
O2i—Sn1—O1i0.00 (4)C5—C6—C7126.15 (18)
O2i—Sn1—O1180.0C8—C7—C6107.83 (17)
O1i—Sn1—O1180.0C8—C7—H7126.1
O2i—Sn1—N2i87.88 (7)C6—C7—H7126.1
O1i—Sn1—N2i87.88 (7)C7—C8—C9107.36 (17)
O1—Sn1—N2i92.12 (7)C7—C8—H8126.3
O2i—Sn1—N292.12 (7)C9—C8—H8126.3
O1i—Sn1—N292.12 (7)N2—C9—C10i125.74 (18)
O1—Sn1—N287.88 (7)N2—C9—C8108.13 (16)
N2i—Sn1—N2180.0C10i—C9—C8126.13 (17)
O2i—Sn1—N189.10 (7)C1—C10—C9i126.59 (17)
O1i—Sn1—N189.10 (7)C1—C10—C11116.56 (16)
O1—Sn1—N190.90 (7)C9i—C10—C11116.83 (17)
N2i—Sn1—N189.75 (6)C12—C11—C16119.03 (18)
N2—Sn1—N190.25 (6)C12—C11—C10120.18 (18)
O2i—Sn1—N1i90.90 (7)C16—C11—C10120.79 (19)
O1i—Sn1—N1i90.90 (7)C13—C12—C11120.7 (2)
O1—Sn1—N1i89.10 (7)C13—C12—H12119.7
N2i—Sn1—N1i90.25 (6)C11—C12—H12119.7
N2—Sn1—N1i89.75 (6)C14—C13—C12120.3 (2)
N1—Sn1—N1i180.0C14—C13—H13119.9
C6—N2—C9108.73 (16)C12—C13—H13119.9
C6—N2—Sn1125.33 (13)C13—C14—C15119.8 (2)
C9—N2—Sn1125.86 (13)C13—C14—H14120.1
C4—N1—C1109.20 (15)C15—C14—H14120.1
C4—N1—Sn1125.12 (13)C16—C15—C14120.2 (2)
C1—N1—Sn1125.33 (13)C16—C15—H15119.9
C23—O1—Sn1118.8 (3)C14—C15—H15119.9
C23—O1—H2A89.5C15—C16—C11120.0 (2)
Sn1—O1—H2A109.4C15—C16—H16120.0
O1—C23—N3175.3 (6)C11—C16—H16120.0
O1—C23—H2A33.6C18—C17—C22119.0 (2)
N3—C23—H2A144.8C18—C17—C5119.1 (2)
N1—C1—C10126.57 (17)C22—C17—C5121.9 (2)
N1—C1—C2107.80 (17)C17—C18—C19119.8 (2)
C10—C1—C2125.62 (17)C17—C18—H18120.1
C3—C2—C1107.66 (16)C19—C18—H18120.1
C3—C2—H2126.2C20—C19—C18120.7 (3)
C1—C2—H2126.2C20—C19—H19119.7
C2—C3—C4107.30 (17)C18—C19—H19119.7
C2—C3—H3126.3C21—C20—C19119.8 (2)
C4—C3—H3126.3C21—C20—H20120.1
N1—C4—C5126.31 (17)C19—C20—H20120.1
N1—C4—C3108.03 (17)C20—C21—C22120.5 (3)
C5—C4—C3125.64 (18)C20—C21—H21119.8
C4—C5—C6126.92 (18)C22—C21—H21119.8
C4—C5—C17116.08 (16)C17—C22—C21120.3 (3)
C6—C5—C17116.89 (17)C17—C22—H22119.9
N2—C6—C5125.89 (18)C21—C22—H22119.9
N2—C6—C7107.95 (16)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Sn(C44H28N4)(CNO)(OH)]
Mr790.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.2943 (6), 12.6972 (7), 13.0711 (7)
β (°) 114.251 (2)
V3)1709.06 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.870, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
27811, 5968, 5241
Rint0.028
(sin θ/λ)max1)0.749
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.13
No. of reflections5968
No. of parameters250
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 1.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip 2010).

 

Acknowledgements

We are grateful to the Fundacão para a Ciência e Tecnologia (FCT, Portugal) for support through projects SFRH/BPD/24889/2005 and PTDC/BIA-PRO/103980/2008 and for funding the purchase of the single-crystal diffractometer. We thank Paula Brandão from the Universidade de Aveiro for the crystal mounting and data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). Report ORNL-6895, Oak Ridge National Laboratory, Tennesse, USA.  Google Scholar
First citationFallon, G. D., Lee, M. A.-P., Langford, S. J. & Nichols, P. J. (2002). Org. Lett. 4, 1895–1998.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMartelli, C., Canning, J., Reimers, J. R., Sintic, M., Stocks, D., Khoury, T. & Crossley, M. J. (2009). J. Am. Chem. Soc. 131, 2925–2933.  Web of Science CrossRef PubMed CAS Google Scholar
First citationScheidt, W. R. (2000). The Porphyrin Handbook, Vol. 3, edited by K. M. Kadish, R. M. Smith & R. Guilard, pp. 49–112. San Diego: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Arnold, D. P., Kennard, C. H. L. & Mak, T. C. W. (1991). Polyhedron, 10, 509–516.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m903-m904
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds