organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-3-methyl-2-phenyl-3H-imidazo[4,5-b]pyridine

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC21, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, cDepartamento de Quimica Inorganica y Organica, ESTCE, Universitat Jaume I, E-12080 Castellon, Spain, dInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany, and eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: ouzidan@yahoo.fr

(Received 6 June 2011; accepted 8 June 2011; online 18 June 2011)

The two fused five- and six-membered rings building the mol­ecule of the title compound, C13H10BrN3, are approximately planar, the largest deviation from the mean plane being 0.004 (2) Å. The dihedral angle between the imidazo[4,5-b]pyridine mean plane and that of the phenyl ring is 41.84 (11)°. The structure is held together by slipped ππ stacking between symmetry-related mol­ecules, with an inter­planar distance of 3.583 (1) Å and a centroid–centroid vector of 3.670 (2) Å.

Related literature

For background regarding biological activity of imidazo[4,5-b]pyridines, see: Cristalli et al. (1995[Cristalli, G., Vittori, S., Eleuteri, A., Volpini, R., Camaioni, E., Lupidi, G., Mahmood, N., Bevilacqua, F. & Palu, G. (1995). J. Med. Chem. 38, 4019-4025.]); Bukowski & Kaliszan (1991[Bukowski, L. & Kaliszan, R. (1991). Arch. Pharm. 324, 121-127.]); Aridoss et al. (2006[Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 268-275.]); Bavetsias et al. (2007[Bavetsias, V., Sun, C., Bouloc, N., Reynisson, J., Workman, P., Linardopoulos, S. & McDonald, E. (2007). Bioorg. Med. Chem. Lett. 17, 6567-6571.]). For background to their pharmacological activity, see: Chen & Dost (1992[Chen, S. T. & Dost, G. (1992). US Patent 5 132 216.]); Weier et al. (1993[Weier, R. M., Khanna, I. K., Stealey, M. A. & Julien, J. (1993). US Patent 5 262 426.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10BrN3

  • Mr = 288.15

  • Orthorhombic, P b c a

  • a = 13.7138 (4) Å

  • b = 6.7088 (2) Å

  • c = 25.3217 (7) Å

  • V = 2329.68 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.51 mm−1

  • T = 298 K

  • 0.60 × 0.30 × 0.06 mm

Data collection
  • Bruker SMART CCD three-circle diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.227, Tmax = 0.825

  • 13535 measured reflections

  • 2378 independent reflections

  • 1804 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.04

  • 2378 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Heterocyclic ring systems having imidazo[4,5-b]pyridine nucleus can be considered as structural analogues of purines and have shown a diverse biological activity depending on the substituents of the heterocyclic ring. Their activity includes antiviral (Cristalli et al., 1995), anticancer (Bavetsias et al., 2007), tituberculostatic (Bukowski & Kaliszan, 1991) and antimitotic (Aridoss et al., 2006) actions. They have also been evaluated as antagonists of various biological receptors including angiotensin-II (Chen & Dost, 1992) and platelet activating factor (PAF) (Weier et al., 1993). Hence, the synthesis of imidazo[4,5-b]pyridine derivatives represents nowadays an important topic in organic synthesis.

The two fused five and six-membered rings are nearly planar with the maximum deviation of 0.004 (2) Å from N1. The dihedral angle between the imidazo[4,5-b]pyridine system and the phenyl ring is 41.84 (11)° (Fig. 1). The structure is held together by slipped π-π stacking between symmetry related molecules with interplanar distance of 3.583 (1) Å and centroid to centroid vector of 3.670 (2) Å resulting in a slippage of 0.79 Å.

Related literature top

For background regarding biological activities, see: Cristalli et al. (1995); Bukowski & Kaliszan (1991); Aridoss et al. (2006); Bavetsias et al. (2007). For background regarding pharmacological activities, see: Chen & Dost (1992); Weier et al. (1993).

Experimental top

To a solution of the 6-bromo-2-phenyl-1H-imidazo[4,5-b]pyridine (0.3 g, 1.09 mmol), potassium carbonate (0.2 g, 1.42 mmol) and tetra-n-butylammonium bromide (0.04 g, 0.1 mmol) in DMF (15 ml) was added methyl iodide (0.08 ml, 1.31 mmol). Stirring was continued at room temperature for 12 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. The compound was recrystallized from ethanol.

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.93 Å, and 0.96 Å for aromatic and methyl respectively and with Uiso(H) = 1.2 Ueq (aromatic) and Uiso(H) = 1.5 Ueq(methyl).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles of arbitrary radii.
6-Bromo-3-methyl-2-phenyl-3H-imidazo[4,5-b]pyridine top
Crystal data top
C13H10BrN3F(000) = 1152
Mr = 288.15Dx = 1.643 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5157 reflections
a = 13.7138 (4) Åθ = 3.0–29.6°
b = 6.7088 (2) ŵ = 3.51 mm1
c = 25.3217 (7) ÅT = 298 K
V = 2329.68 (12) Å3Platelet, colourless
Z = 80.60 × 0.30 × 0.06 mm
Data collection top
Bruker CCD three-circle
diffractometer
2378 independent reflections
Radiation source: fine-focus sealed tube1804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 017
Tmin = 0.227, Tmax = 0.825k = 08
13535 measured reflectionsl = 031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0361P)2 + 1.2509P]
where P = (Fo2 + 2Fc2)/3
2378 reflections(Δ/σ)max = 0.002
155 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C13H10BrN3V = 2329.68 (12) Å3
Mr = 288.15Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.7138 (4) ŵ = 3.51 mm1
b = 6.7088 (2) ÅT = 298 K
c = 25.3217 (7) Å0.60 × 0.30 × 0.06 mm
Data collection top
Bruker CCD three-circle
diffractometer
2378 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1804 reflections with I > 2σ(I)
Tmin = 0.227, Tmax = 0.825Rint = 0.047
13535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
2378 reflectionsΔρmin = 0.40 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.65259 (2)1.16657 (6)0.626463 (10)0.06788 (15)
N10.60483 (17)0.7251 (3)0.51723 (8)0.0509 (6)
N20.60942 (14)0.7570 (3)0.42245 (7)0.0396 (4)
N30.64274 (15)1.0833 (3)0.41558 (8)0.0425 (5)
C10.6160 (2)0.8347 (4)0.56091 (10)0.0528 (7)
H10.60930.77190.59340.063*
C20.63682 (17)1.0361 (4)0.56042 (9)0.0477 (6)
C30.64811 (18)1.1434 (4)0.51422 (10)0.0464 (6)
H30.66201.27900.51380.056*
C40.63692 (16)1.0313 (4)0.46819 (9)0.0385 (5)
C50.61634 (17)0.8291 (3)0.47310 (9)0.0386 (5)
C60.62568 (16)0.9162 (4)0.38966 (9)0.0369 (5)
C70.62409 (16)0.9055 (4)0.33165 (9)0.0378 (5)
C80.58108 (18)1.0590 (4)0.30370 (9)0.0463 (6)
H80.55251.16440.32180.056*
C90.5801 (2)1.0574 (5)0.24902 (10)0.0561 (7)
H90.55061.16100.23060.067*
C100.6226 (2)0.9037 (5)0.22203 (11)0.0590 (8)
H100.62170.90250.18530.071*
C110.6665 (2)0.7515 (6)0.24919 (12)0.0641 (8)
H110.69570.64760.23070.077*
C120.66776 (19)0.7512 (5)0.30402 (11)0.0531 (7)
H120.69780.64750.32220.064*
C130.5829 (2)0.5528 (4)0.40922 (12)0.0607 (8)
H13A0.54610.55180.37700.091*
H13B0.54410.49730.43720.091*
H13C0.64090.47460.40480.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0669 (2)0.0970 (3)0.03975 (18)0.00449 (16)0.00264 (12)0.01196 (14)
N10.0583 (14)0.0484 (13)0.0460 (12)0.0094 (11)0.0071 (10)0.0159 (10)
N20.0467 (11)0.0275 (10)0.0445 (11)0.0009 (9)0.0056 (9)0.0035 (9)
N30.0584 (13)0.0312 (10)0.0379 (10)0.0030 (9)0.0000 (9)0.0023 (9)
C10.0529 (15)0.0641 (19)0.0414 (14)0.0091 (14)0.0064 (11)0.0176 (13)
C20.0411 (13)0.0662 (19)0.0358 (12)0.0012 (12)0.0042 (10)0.0006 (12)
C30.0526 (15)0.0436 (15)0.0430 (13)0.0035 (11)0.0023 (11)0.0017 (11)
C40.0427 (13)0.0344 (13)0.0385 (12)0.0008 (10)0.0019 (9)0.0043 (10)
C50.0385 (12)0.0347 (12)0.0426 (12)0.0022 (10)0.0061 (10)0.0066 (10)
C60.0381 (12)0.0316 (12)0.0410 (12)0.0030 (10)0.0028 (10)0.0016 (10)
C70.0362 (11)0.0391 (13)0.0380 (12)0.0019 (10)0.0003 (9)0.0014 (10)
C80.0522 (14)0.0459 (15)0.0408 (13)0.0073 (12)0.0051 (11)0.0026 (11)
C90.0575 (16)0.071 (2)0.0402 (14)0.0032 (14)0.0022 (12)0.0109 (13)
C100.0541 (15)0.084 (2)0.0389 (14)0.0069 (16)0.0070 (12)0.0068 (14)
C110.0615 (19)0.071 (2)0.0594 (18)0.0084 (16)0.0145 (14)0.0249 (17)
C120.0514 (16)0.0528 (16)0.0551 (16)0.0114 (13)0.0018 (12)0.0064 (14)
C130.087 (2)0.0329 (14)0.0622 (17)0.0136 (14)0.0098 (15)0.0003 (13)
Geometric parameters (Å, º) top
Br1—C21.900 (3)C7—C81.382 (3)
N1—C51.327 (3)C7—C121.386 (4)
N1—C11.337 (3)C8—C91.385 (3)
N2—C61.371 (3)C8—H80.9300
N2—C51.374 (3)C9—C101.367 (4)
N2—C131.456 (3)C9—H90.9300
N3—C61.320 (3)C10—C111.371 (5)
N3—C41.380 (3)C10—H100.9300
C1—C21.381 (4)C11—C121.388 (4)
C1—H10.9300C11—H110.9300
C2—C31.382 (4)C12—H120.9300
C3—C41.395 (3)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.391 (3)C13—H13C0.9600
C6—C71.471 (3)
C5—N1—C1113.2 (2)C8—C7—C6118.8 (2)
C6—N2—C5106.23 (19)C12—C7—C6122.3 (2)
C6—N2—C13129.4 (2)C7—C8—C9120.7 (3)
C5—N2—C13124.3 (2)C7—C8—H8119.7
C6—N3—C4104.8 (2)C9—C8—H8119.7
N1—C1—C2123.7 (2)C10—C9—C8120.1 (3)
N1—C1—H1118.2C10—C9—H9119.9
C2—C1—H1118.2C8—C9—H9119.9
C1—C2—C3122.7 (2)C9—C10—C11119.9 (3)
C1—C2—Br1117.80 (19)C9—C10—H10120.1
C3—C2—Br1119.5 (2)C11—C10—H10120.1
C2—C3—C4114.5 (2)C10—C11—C12120.6 (3)
C2—C3—H3122.8C10—C11—H11119.7
C4—C3—H3122.8C12—C11—H11119.7
N3—C4—C5110.2 (2)C7—C12—C11119.9 (3)
N3—C4—C3131.6 (2)C7—C12—H12120.1
C5—C4—C3118.2 (2)C11—C12—H12120.1
N1—C5—N2126.4 (2)N2—C13—H13A109.5
N1—C5—C4127.7 (2)N2—C13—H13B109.5
N2—C5—C4105.9 (2)H13A—C13—H13B109.5
N3—C6—N2112.9 (2)N2—C13—H13C109.5
N3—C6—C7122.7 (2)H13A—C13—H13C109.5
N2—C6—C7124.3 (2)H13B—C13—H13C109.5
C8—C7—C12118.9 (2)

Experimental details

Crystal data
Chemical formulaC13H10BrN3
Mr288.15
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)13.7138 (4), 6.7088 (2), 25.3217 (7)
V3)2329.68 (12)
Z8
Radiation typeMo Kα
µ (mm1)3.51
Crystal size (mm)0.60 × 0.30 × 0.06
Data collection
DiffractometerBruker CCD three-circle
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.227, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
13535, 2378, 1804
Rint0.047
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.04
No. of reflections2378
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.40

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationAridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 268–275.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBavetsias, V., Sun, C., Bouloc, N., Reynisson, J., Workman, P., Linardopoulos, S. & McDonald, E. (2007). Bioorg. Med. Chem. Lett. 17, 6567–6571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBukowski, L. & Kaliszan, R. (1991). Arch. Pharm. 324, 121–127.  CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChen, S. T. & Dost, G. (1992). US Patent 5 132 216.  Google Scholar
First citationCristalli, G., Vittori, S., Eleuteri, A., Volpini, R., Camaioni, E., Lupidi, G., Mahmood, N., Bevilacqua, F. & Palu, G. (1995). J. Med. Chem. 38, 4019–4025.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeier, R. M., Khanna, I. K., Stealey, M. A. & Julien, J. (1993). US Patent 5 262 426.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds