organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-2-{3-[1-(2,4-Di­fluoro­phen­yl)eth­yl]-1,3-thia­zolidin-2-yl­­idene}malono­nitrile

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: blessliulei@126.com

(Received 12 June 2011; accepted 17 June 2011; online 22 June 2011)

In the title compound, C14H11F2N3S, the heterocyclic five-membered ring has an envelope conformation. Although the mol­ecule is chiral, the compound is a racemate (R/S). There is a weak inter­molecular C—H⋯π inter­action but no classical hydrogen bonds are observed in the crystal structure.

Related literature

For the biological activity of thia­zoles and thia­zolidines, see: Melnikov et al. (1979[Melnikov, N. N., Grapov, A. F., Razvodovskaya, G. K., Abelentseva, G. M., Sedykh, A. S., Shapovalova, G. K. & Siforova, T. A. (1979). Jpn Patent JP 78103471.]); Kratt et al. (1986[Kratt, G., Salbeck, G., Bonin, W., Bauer, K., Bieringer, H. & Sachse, B. (1986). Patent DE 3505432.]). For the synthesis, see: Hense et al. (2002[Hense, A., Fischer, R., Gesing, E.-R., Herrmann, S., Kather, K., Lehr, S., Voigt, K., Riebel, H.-J., Jeschke, P. & Erdelen, C. (2002). Patent WO 2002096872.]). For a related structure, see: Xu et al. (2005[Xu, L.-Z., Yu, G.-P., Zhang, P.-Y. & Li, C.-L. (2005). Acta Cryst. E61, o2104-o2105.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358]).

[Scheme 1]

Experimental

Crystal data
  • C14H11F2N3S

  • Mr = 291.32

  • Triclinic, [P \overline 1]

  • a = 7.6886 (14) Å

  • b = 8.9854 (16) Å

  • c = 10.8188 (19) Å

  • α = 102.508 (2)°

  • β = 90.940 (2)°

  • γ = 112.861 (2)°

  • V = 668.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.32 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.922, Tmax = 0.931

  • 4810 measured reflections

  • 2332 independent reflections

  • 2049 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.08

  • 2338 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12BCg1i 0.96 2.94 3.848 (3) 158
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It has been reported that both thiazoles and thiazolidines have good and wide insecticidal, fungicidal, herbicidal and acaricidal activities (Melnikov, et al., 1979; Kratt et al., 1986). As part of our search for compounds with good herbicidal and fungicidal activity, the title compound, (I), was synthesized.

In (I) The heterocyclic five-membered ring (C1/C13/N1/C14/S1) has an envelope conformation on C13 with puckering parameters, Q(2)= 0.155 (3)Å and ϕ(2) = 108.1 (9)° (Cremer & Pople, 1975) (Fig. 1). The bond lengths and angles are within expected values for the thiazolidin ring (Xu, et al., 2005). The phenyl ring is twisted with respect to the thiazolidin ring with a torsion angle of 138.0 (2)°. No classical hydrogen bonds were found in the crystal, only van der Waals forces and a weak C-H···π interaction involving the Cg1 centroid of a symetry related phenyl ring (Table 1) stabilize the crystal structure.

Related literature top

For the biological activity of thiazoles and thiazolidines, see: Melnikov et al. (1979); Kratt et al. (1986). For the synthetis, see: Hense et al. (2002). For a related structure, see: Xu et al. (2005). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

2-(thiazolidin-2-ylidene)malononitrile 15.5 g (0.1 mol), potassium carbonate 13.8 g (0.1 mol) and acetonitrile 50 g are charged in a flask equipped with stirrer and reflux condenser. The mixture is heated to reflux, then 1-(1-chloroethyl)-2,4-difluorobenzene 17.7 g (0.1 mol) is droped in over 30 minutes. Keep refluxing for 12 h. Upon cooling at room temperature. The reaction mixture is filtered, and the solution is concentrated under reduced pressure to give the title compound (I) 27.2 g (92% yield). (Hense, et al., 2002). Single crystals suitable for X-ray measurement were obtained by recrystallization from the tetrahydrofuran solution of (I) at room temperature.

Refinement top

All C-bound H atoms were placed in calculated positions, with C—H = 0.95–1.00 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for the aryl and methylene H atoms and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (I), with the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
(±)-2-{3-[1-(2,4-Difluorophenyl)ethyl]-1,3-thiazolidin-2-ylidene}malononitrile top
Crystal data top
C14H11F2N3SZ = 2
Mr = 291.32F(000) = 300
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6886 (14) ÅCell parameters from 2422 reflections
b = 8.9854 (16) Åθ = 2.3–25.1°
c = 10.8188 (19) ŵ = 0.26 mm1
α = 102.508 (2)°T = 296 K
β = 90.940 (2)°Block, colorless
γ = 112.861 (2)°0.32 × 0.30 × 0.28 mm
V = 668.1 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2332 independent reflections
Radiation source: fine-focus sealed tube2049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.922, Tmax = 0.931k = 1010
4810 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.2818P]
where P = (Fo2 + 2Fc2)/3
2338 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H11F2N3Sγ = 112.861 (2)°
Mr = 291.32V = 668.1 (2) Å3
Triclinic, P1Z = 2
a = 7.6886 (14) ÅMo Kα radiation
b = 8.9854 (16) ŵ = 0.26 mm1
c = 10.8188 (19) ÅT = 296 K
α = 102.508 (2)°0.32 × 0.30 × 0.28 mm
β = 90.940 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2332 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2049 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.931Rint = 0.031
4810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
2338 reflectionsΔρmin = 0.31 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28619 (9)0.70036 (7)0.03503 (5)0.0493 (2)
F10.19221 (18)0.68270 (16)0.17886 (11)0.0523 (3)
F20.3465 (2)0.44311 (19)0.52735 (15)0.0678 (4)
C10.2408 (3)0.8531 (2)0.07280 (18)0.0345 (4)
C20.0263 (3)0.7988 (2)0.36404 (17)0.0357 (4)
N10.2234 (2)0.8236 (2)0.18869 (15)0.0364 (4)
C30.1633 (3)0.9200 (2)0.29655 (18)0.0361 (4)
H30.09440.97550.26090.043*
C40.1470 (3)0.6816 (2)0.30078 (18)0.0380 (4)
C50.2315 (3)0.9856 (2)0.03016 (18)0.0366 (4)
C60.2757 (3)0.5620 (3)0.3520 (2)0.0463 (5)
H60.39040.48520.30630.056*
C70.0653 (3)0.7939 (3)0.48932 (19)0.0419 (5)
H70.17850.87180.53650.050*
C80.2460 (3)0.9825 (3)0.1015 (2)0.0439 (5)
C90.2356 (3)1.1362 (3)0.10832 (19)0.0409 (5)
N20.2449 (3)1.2619 (2)0.1680 (2)0.0598 (6)
C100.2252 (3)0.5624 (3)0.4748 (2)0.0465 (5)
C110.0604 (3)0.6760 (3)0.5452 (2)0.0476 (5)
H110.03280.67460.62880.057*
C120.3374 (3)1.0542 (3)0.3821 (2)0.0504 (5)
H12A0.41021.00310.41560.076*
H12B0.29741.11610.45120.076*
H12C0.41401.12810.33350.076*
N30.2605 (3)0.9831 (3)0.20641 (19)0.0652 (6)
C130.2830 (4)0.6928 (3)0.2078 (2)0.0634 (7)
H13A0.40780.74280.25590.076*
H13B0.19440.62380.25580.076*
C140.2883 (5)0.5919 (4)0.0852 (3)0.0751 (8)
H14A0.17900.48610.06710.090*
H14B0.40230.57010.08610.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0637 (4)0.0392 (3)0.0472 (3)0.0227 (3)0.0196 (3)0.0102 (2)
F10.0570 (8)0.0552 (8)0.0364 (6)0.0142 (6)0.0043 (5)0.0111 (6)
F20.0685 (9)0.0637 (9)0.0746 (10)0.0176 (7)0.0297 (7)0.0388 (8)
C10.0313 (9)0.0328 (10)0.0370 (10)0.0098 (8)0.0066 (8)0.0092 (8)
C20.0404 (10)0.0367 (10)0.0332 (10)0.0181 (9)0.0077 (8)0.0097 (8)
N10.0428 (9)0.0359 (9)0.0375 (9)0.0193 (7)0.0116 (7)0.0158 (7)
C30.0417 (11)0.0346 (10)0.0340 (10)0.0163 (8)0.0056 (8)0.0101 (8)
C40.0446 (11)0.0404 (11)0.0309 (9)0.0195 (9)0.0052 (8)0.0075 (8)
C50.0398 (10)0.0346 (10)0.0347 (10)0.0121 (8)0.0055 (8)0.0124 (8)
C60.0435 (11)0.0400 (11)0.0509 (12)0.0129 (9)0.0093 (9)0.0089 (9)
C70.0447 (11)0.0467 (12)0.0337 (10)0.0174 (9)0.0045 (8)0.0104 (9)
C80.0458 (12)0.0423 (11)0.0413 (12)0.0132 (9)0.0045 (9)0.0142 (9)
C90.0464 (11)0.0390 (11)0.0422 (11)0.0167 (9)0.0106 (9)0.0205 (9)
N20.0860 (15)0.0423 (11)0.0621 (13)0.0318 (11)0.0249 (11)0.0224 (10)
C100.0529 (13)0.0453 (12)0.0490 (12)0.0220 (10)0.0229 (10)0.0212 (10)
C110.0592 (14)0.0574 (13)0.0353 (10)0.0283 (11)0.0140 (10)0.0192 (10)
C120.0515 (13)0.0445 (12)0.0461 (12)0.0094 (10)0.0007 (10)0.0120 (10)
N30.0812 (15)0.0721 (15)0.0408 (11)0.0256 (12)0.0064 (10)0.0205 (10)
C130.096 (2)0.0681 (16)0.0625 (15)0.0598 (16)0.0324 (14)0.0371 (13)
C140.124 (3)0.0629 (16)0.0657 (17)0.0628 (18)0.0195 (16)0.0223 (13)
Geometric parameters (Å, º) top
S1—C11.7490 (19)C6—C101.376 (3)
S1—C141.789 (3)C6—H60.9300
F1—C41.362 (2)C7—C111.387 (3)
F2—C101.359 (2)C7—H70.9300
C1—N11.335 (2)C8—N31.144 (3)
C1—C51.392 (3)C9—N21.148 (3)
C2—C41.386 (3)C10—C111.362 (3)
C2—C71.397 (3)C11—H110.9300
C2—C31.519 (3)C12—H12A0.9600
N1—C131.468 (3)C12—H12B0.9600
N1—C31.488 (2)C12—H12C0.9600
C3—C121.524 (3)C13—C141.447 (4)
C3—H30.9800C13—H13A0.9700
C4—C61.375 (3)C13—H13B0.9700
C5—C91.421 (3)C14—H14A0.9700
C5—C81.425 (3)C14—H14B0.9700
C1—S1—C1491.83 (11)C2—C7—H7119.1
N1—C1—C5129.40 (18)N3—C8—C5178.6 (2)
N1—C1—S1112.28 (14)N2—C9—C5176.8 (2)
C5—C1—S1118.31 (14)F2—C10—C11118.9 (2)
C4—C2—C7115.89 (18)F2—C10—C6118.0 (2)
C4—C2—C3120.40 (17)C11—C10—C6123.1 (2)
C7—C2—C3123.69 (18)C10—C11—C7118.5 (2)
C1—N1—C13114.67 (16)C10—C11—H11120.8
C1—N1—C3124.89 (15)C7—C11—H11120.8
C13—N1—C3120.28 (16)C3—C12—H12A109.5
N1—C3—C2108.53 (15)C3—C12—H12B109.5
N1—C3—C12110.00 (17)H12A—C12—H12B109.5
C2—C3—C12114.49 (16)C3—C12—H12C109.5
N1—C3—H3107.9H12A—C12—H12C109.5
C2—C3—H3107.9H12B—C12—H12C109.5
C12—C3—H3107.9C14—C13—N1109.3 (2)
F1—C4—C6117.54 (18)C14—C13—H13A109.8
F1—C4—C2118.02 (17)N1—C13—H13A109.8
C6—C4—C2124.43 (19)C14—C13—H13B109.8
C1—C5—C9125.92 (17)N1—C13—H13B109.8
C1—C5—C8117.88 (18)H13A—C13—H13B108.3
C9—C5—C8115.58 (17)C13—C14—S1109.04 (17)
C4—C6—C10116.3 (2)C13—C14—H14A109.9
C4—C6—H6121.8S1—C14—H14A109.9
C10—C6—H6121.8C13—C14—H14B109.9
C11—C7—C2121.7 (2)S1—C14—H14B109.9
C11—C7—H7119.1H14A—C14—H14B108.3
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the phenyl ring.
D—H···AD—HH···AD···AD—H···A
C12—H12B···Cg1i0.962.943.848 (3)158
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H11F2N3S
Mr291.32
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.6886 (14), 8.9854 (16), 10.8188 (19)
α, β, γ (°)102.508 (2), 90.940 (2), 112.861 (2)
V3)668.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.32 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.922, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
4810, 2332, 2049
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.08
No. of reflections2338
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.31

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the phenyl ring.
D—H···AD—HH···AD···AD—H···A
C12—H12B···Cg1i0.962.943.848 (3)158
Symmetry code: (i) x, y+2, z+1.
 

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHense, A., Fischer, R., Gesing, E.-R., Herrmann, S., Kather, K., Lehr, S., Voigt, K., Riebel, H.-J., Jeschke, P. & Erdelen, C. (2002). Patent WO 2002096872.  Google Scholar
First citationKratt, G., Salbeck, G., Bonin, W., Bauer, K., Bieringer, H. & Sachse, B. (1986). Patent DE 3505432.  Google Scholar
First citationMelnikov, N. N., Grapov, A. F., Razvodovskaya, G. K., Abelentseva, G. M., Sedykh, A. S., Shapovalova, G. K. & Siforova, T. A. (1979). Jpn Patent JP 78103471.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L.-Z., Yu, G.-P., Zhang, P.-Y. & Li, C.-L. (2005). Acta Cryst. E61, o2104–o2105.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds