organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1636-o1637

7-Methyl-5,6,7,8-tetra­hydro-1-benzo­thieno[2,3-d]pyrimidin-4-amine

aDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, Karnataka, India, bDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, India, and cDepartment of Chemistry, Karnatak University, Dharwad 580 003, India
*Correspondence e-mail: noorsb@rediffmail.com

(Received 19 May 2011; accepted 1 June 2011; online 11 June 2011)

In the title compound, C11H13N3S, two of the C atoms of the cyclo­hexene ring and the methyl group attached to it are disordered over two sets of sites in a 0.544 (2):0.456 (2) ratio. The benzothiene and pyrimidine rings are almost coplanar with an angular tilt of 2.371 (9)° between them. The thio­phene ring is essentially planar (r.m.s. deviation 0.05 Å), while the cyclo­hexene ring in both the major- and minor-occupancy conformers adopts a half-chair conformation. In the crystal structure, pairs of intermolecular N—H⋯N hydrogen bonds involving the amino groups result in centrosymmetric head-to-head dimers about inversion centres, corresponding to an R22(8) graph-set motif. Further, N—H⋯N hydrogen bonding generates a two-dimensional hydrogen-bonded network perpendicular to the ac plane and running along the diagonal of the ac plane.

Related literature

For the preparation of the title compound, see: Shetty et al. (2009[Shetty, N. S., Lamani, R. S. & Khazi, I. A. M. (2009). J. Chem. Sci. 121, 301-307.]). For medicinal background, see: Brown (1983[Brown, D. J. (1983). Comprehensive Heterocyclic Chemistry, Vol. 2, pp. 57-156. Oxford: Pergamon Press.]); Heildelberg & Arafield (1963[Heildelberg, C. & Arafield, F. J. (1963). Cancer Res. 23, 1226-1231.]); De Clercq (1986a[De Clercq, E. (1986a). Anticancer Res. 6, 549-556.],b[De Clercq, E. (1986b). J. Med. Chem. 29, 1561-1569.]); Sishoo et al. (1983[Sishoo, C. J., Devani, M. B. & Bhadti, V. S. (1983). Indian Patent 151456.]). For related structures, see: Akkurt et al. (2008[Akkurt, M., Karaca, S., Asiri, A. M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o869.]); Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o3732-o3734.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13N3S

  • Mr = 219.30

  • Monoclinic, P 21 /n

  • a = 10.395 (4) Å

  • b = 8.422 (3) Å

  • c = 13.155 (5) Å

  • β = 110.015 (6)°

  • V = 1082.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 123 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.958

  • 6268 measured reflections

  • 2347 independent reflections

  • 1917 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.169

  • S = 0.84

  • 2347 reflections

  • 168 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.13 2.992 (3) 175
C7A—H7A⋯N2ii 0.98 (1) 2.47 (1) 3.400 (7) 158
C7B—H7B⋯S1iii 0.98 (1) 2.69 (1) 3.649 (1) 165
Symmetry codes: (i) -x, -y+2, -z; (ii) x, y-1, z; (iii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The pyrimidine ring is a frequent partner in polycyclic heterocyclic systems of biological significance (Brown, 1983). Many potential drugs have been modelled on these compounds, particularly in cancer and virus research (Heildelberg & Arafield, 1963; De Clercq, 1986a,b). These derivatives have been reported to possess analgesic, antipyretic, antianaphilactic and antiinflammatory activities. Also, some are clinically effective antiallergic, potentially antineoplastic agents, or have significant hypocholesterolemic activity (Sishoo et al., 1983). In the title compound, the fused Benzothieno and pyrimidine rings are substituted with amino and methyl groups. The C atoms C6, C7 and C11 are disordered over two sites (C6A/C6B, C7A/C7B and C11A/C11B) with site occupancy factors 0.544 (2) and 0.456 (2) resulting in minor and major conformers. The thiophene ring is essentially planar. The cyclohexene rings in both conformers is in a half-chair conformation with C7A and C7B 0.549 (4) and 0.506 (6) Å, respectively, displaced on the opposite sides from the plane formed by the rest of the ring C-atoms. In several benzothiophene derivatives the cyclohexyl ring adopts half-chair conformation (Akkurt et al., 2008; Harrison et al., 2006). The crystal structure is stabilized by two types of N—H···N intermolecular interactions (Table 1); N1—H1A···N2 hydrogen bonds forms centrosymmetric head-to-head dimers about inversion centres, corresponding to an R22(8) graph-set motif (Bernstein et al., 1995) while C7A—H7A···N2 hydrogen bonds generates two-dimensional hydrogen bonded network perpendicular to ac plane and running along the diagonal of ac plane (Fig. 2).

Related literature top

For the preparation of the title compound, see: Shetty et al. (2009). For medicinal background, see: Brown (1983); Heildelberg & Arafield (1963); De Clercq (1986a,b); Sishoo et al. (1983). For related structures, see: Akkurt et al. (2008); Harrison et al. (2006). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by following the procedure reported earlier (Shetty et al., 2009).

Refinement top

The bond distances of minor component of the disordered cyclohexene ring and the methyl group was restrained to C5—C6A = 1.489 (8); C6A—C7A = 1.424 (9); C7A—C8 = 1.503 (6); C7A—C11A = 1.556 (2) Å. The occupancies were refined individually for the C atoms C6, C7 and C11, the disordered atoms were grouped in Part 1 and Part 2 as Part 1: C6A, C7A and C11A with partial occupancy of 0.544 and part 2: C6B C7B and C11B with partial occupancy 0.456. In this way the occupancy disordered was modeled using the part command in SHELXL97. The H atoms were placed at calculated positions in the riding model approximation with N—H = 0.86 and C—H = 0.98 Å, and Uiso(H) = 1.2Ueq(N/C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1999) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H atoms not involved in hydrogen bonding have been excluded.
7-Methyl-5,6,7,8-tetrahydro-1-benzothieno[2,3-d]pyrimidin-4-amine top
Crystal data top
C11H13N3SF(000) = 464
Mr = 219.30Dx = 1.346 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2347 reflections
a = 10.395 (4) Åθ = 2.2–27.0°
b = 8.422 (3) ŵ = 0.27 mm1
c = 13.155 (5) ÅT = 123 K
β = 110.015 (6)°Block, yellow
V = 1082.0 (7) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2347 independent reflections
Radiation source: Enhance (Mo) X-ray Source1917 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SMART; Bruker, 1998) [is this correct?]
h = 1113
Tmin = 0.953, Tmax = 0.958k = 1010
6268 measured reflectionsl = 166
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.0936P)2 + 3.4562P]
where P = (Fo2 + 2Fc2)/3
2347 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C11H13N3SV = 1082.0 (7) Å3
Mr = 219.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.395 (4) ŵ = 0.27 mm1
b = 8.422 (3) ÅT = 123 K
c = 13.155 (5) Å0.18 × 0.16 × 0.16 mm
β = 110.015 (6)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2347 independent reflections
Absorption correction: multi-scan
(SMART; Bruker, 1998) [is this correct?]
1917 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.958Rint = 0.044
6268 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 0.84Δρmax = 0.71 e Å3
2347 reflectionsΔρmin = 0.41 e Å3
168 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3496 (3)0.4303 (3)0.0551 (2)0.0240 (6)
C20.3466 (3)0.6871 (3)0.1469 (2)0.0227 (6)
C30.2341 (3)0.6672 (3)0.0522 (2)0.0221 (5)
C40.1409 (3)0.7972 (3)0.0259 (2)0.0225 (5)
C50.1329 (3)0.4538 (3)0.1015 (2)0.0307 (7)
H5A0.04220.47440.09910.037*
H5B0.14110.51000.16330.037*
C6A0.1477 (10)0.2803 (11)0.1164 (9)0.036 (3)0.465 (19)
H6A10.06990.22980.10500.043*0.465 (19)
H6A20.13580.26540.19220.043*0.465 (19)
C7A0.2648 (6)0.1894 (7)0.0569 (5)0.0224 (17)0.544 (16)
H7A0.22740.13830.00610.027*0.544 (16)
C11A0.3087 (17)0.037 (2)0.1037 (13)0.029 (3)0.50 (5)
H11A0.22890.01520.15140.044*0.50 (5)
H11B0.35650.03290.04550.044*0.50 (5)
H11C0.36790.06610.14290.044*0.50 (5)
C6B0.1995 (8)0.3109 (6)0.1466 (5)0.021 (2)0.535 (19)
H6B10.12710.23310.17430.025*0.535 (19)
H6B20.21690.35340.20920.025*0.535 (19)
C7B0.2932 (8)0.2411 (11)0.1011 (8)0.035 (3)0.456 (16)
H7B0.35520.29220.13290.042*0.456 (16)
C11B0.3192 (18)0.072 (3)0.127 (2)0.042 (4)0.50 (5)
H11D0.29340.00070.08090.063*0.50 (5)
H11E0.41470.05890.11660.063*0.50 (5)
H11F0.26610.04960.20150.063*0.50 (5)
C80.3857 (3)0.2702 (3)0.0241 (2)0.0298 (6)
H8A0.42010.20450.08830.036*
H8B0.45800.28120.00630.036*
C90.2746 (3)0.9236 (3)0.1821 (2)0.0258 (6)
H90.28631.01240.22630.031*
C100.2379 (3)0.5173 (3)0.0000 (2)0.0231 (6)
N10.0301 (2)0.8031 (3)0.06281 (18)0.0273 (5)
H1A0.02350.88400.07450.033*
H1B0.01210.72600.10840.033*
N20.1624 (2)0.9225 (3)0.09383 (18)0.0244 (5)
N30.3714 (2)0.8140 (3)0.21457 (18)0.0250 (5)
S10.45432 (7)0.52481 (9)0.17184 (5)0.0273 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0243 (13)0.0236 (13)0.0217 (13)0.0006 (10)0.0046 (10)0.0007 (10)
C20.0237 (12)0.0205 (13)0.0204 (12)0.0013 (10)0.0028 (10)0.0030 (10)
C30.0232 (13)0.0226 (13)0.0174 (12)0.0003 (10)0.0032 (10)0.0014 (10)
C40.0237 (12)0.0210 (13)0.0189 (12)0.0002 (10)0.0022 (10)0.0024 (10)
C50.0312 (15)0.0245 (14)0.0254 (14)0.0031 (11)0.0043 (12)0.0028 (11)
C6A0.030 (4)0.036 (4)0.039 (5)0.004 (3)0.008 (4)0.017 (3)
C7A0.023 (3)0.019 (3)0.024 (3)0.003 (2)0.006 (2)0.005 (2)
C11A0.022 (4)0.017 (5)0.046 (6)0.000 (3)0.009 (3)0.001 (4)
C6B0.021 (4)0.016 (2)0.020 (3)0.001 (2)0.000 (2)0.0016 (19)
C7B0.035 (4)0.028 (4)0.037 (5)0.003 (3)0.006 (3)0.010 (4)
C11B0.035 (5)0.025 (7)0.068 (10)0.010 (5)0.020 (6)0.022 (6)
C80.0293 (14)0.0243 (14)0.0320 (15)0.0063 (11)0.0055 (12)0.0006 (11)
C90.0258 (13)0.0258 (14)0.0213 (13)0.0017 (11)0.0022 (11)0.0025 (10)
C100.0251 (13)0.0213 (13)0.0187 (12)0.0004 (10)0.0020 (10)0.0010 (10)
N10.0279 (12)0.0219 (12)0.0223 (11)0.0073 (9)0.0043 (9)0.0025 (9)
N20.0245 (11)0.0215 (11)0.0213 (11)0.0035 (9)0.0000 (9)0.0008 (9)
N30.0247 (11)0.0251 (12)0.0188 (11)0.0003 (9)0.0008 (9)0.0020 (9)
S10.0239 (4)0.0254 (4)0.0245 (4)0.0053 (3)0.0022 (3)0.0000 (3)
Geometric parameters (Å, º) top
C1—C101.354 (4)C7A—H7A0.9800
C1—C81.493 (4)C11A—H11A0.9600
C1—S11.741 (3)C11A—H11B0.9600
C2—N31.358 (3)C11A—H11C0.9600
C2—C31.397 (4)C6B—C7B1.120 (9)
C2—S11.725 (3)C6B—H6B10.9700
C3—C41.424 (4)C6B—H6B20.9700
C3—C101.443 (4)C7B—C11B1.51 (2)
C4—N11.331 (3)C7B—C81.616 (9)
C4—N21.351 (3)C7B—H7B0.9800
C5—C6A1.489 (8)C11B—H11D0.9600
C5—C101.504 (4)C11B—H11E0.9600
C5—C6B1.601 (7)C11B—H11F0.9600
C5—H5A0.9700C8—H8A0.9700
C5—H5B0.9700C8—H8B0.9700
C6A—C7A1.424 (9)C9—N31.323 (3)
C6A—H6A10.9700C9—N21.335 (3)
C6A—H6A20.9700C9—H90.9300
C7A—C81.503 (6)N1—H1A0.8600
C7A—C11A1.556 (19)N1—H1B0.8600
C10—C1—C8126.3 (2)C7B—C6B—H6B2105.5
C10—C1—S1112.8 (2)C5—C6B—H6B2105.5
C8—C1—S1120.9 (2)H6B1—C6B—H6B2106.1
N3—C2—C3126.3 (2)C6B—C7B—C11B124.3 (10)
N3—C2—S1122.3 (2)C6B—C7B—C8124.8 (6)
C3—C2—S1111.4 (2)C11B—C7B—C8106.6 (11)
C2—C3—C4114.6 (2)C6B—C7B—H7B96.9
C2—C3—C10112.2 (2)C11B—C7B—H7B96.9
C4—C3—C10133.2 (2)C8—C7B—H7B96.9
N1—C4—N2116.6 (2)C7B—C11B—H11D109.5
N1—C4—C3123.6 (2)C7B—C11B—H11E109.5
N2—C4—C3119.7 (2)H11D—C11B—H11E109.5
C6A—C5—C10112.9 (4)C7B—C11B—H11F109.5
C6A—C5—C6B30.2 (4)H11D—C11B—H11F109.5
C10—C5—C6B108.8 (3)H11E—C11B—H11F109.5
C6A—C5—H5A109.0C1—C8—C7A112.0 (3)
C10—C5—H5A109.0C1—C8—C7B107.3 (3)
C6B—C5—H5A134.1C7A—C8—C7B31.6 (3)
C6A—C5—H5B109.0C1—C8—H8A109.2
C10—C5—H5B109.0C7A—C8—H8A109.2
C6B—C5—H5B83.3C7B—C8—H8A135.6
H5A—C5—H5B107.8C1—C8—H8B109.2
C7A—C6A—C5124.2 (6)C7A—C8—H8B109.2
C7A—C6A—H6A1106.3C7B—C8—H8B82.5
C5—C6A—H6A1106.3H8A—C8—H8B107.9
C7A—C6A—H6A2106.3N3—C9—N2128.1 (3)
C5—C6A—H6A2106.3N3—C9—H9115.9
H6A1—C6A—H6A2106.4N2—C9—H9115.9
C6A—C7A—C8119.7 (5)C1—C10—C3112.1 (2)
C6A—C7A—C11A122.4 (7)C1—C10—C5120.7 (2)
C8—C7A—C11A111.5 (7)C3—C10—C5127.1 (2)
C6A—C7A—H7A98.4C4—N1—H1A120.0
C8—C7A—H7A98.4C4—N1—H1B120.0
C11A—C7A—H7A98.4H1A—N1—H1B120.0
C7B—C6B—C5127.1 (6)C9—N2—C4118.6 (2)
C7B—C6B—H6B1105.5C9—N3—C2112.6 (2)
C5—C6B—H6B1105.5C2—S1—C191.45 (13)
N3—C2—C3—C41.6 (4)C11B—C7B—C8—C1173.8 (11)
S1—C2—C3—C4179.64 (19)C6B—C7B—C8—C7A87.6 (14)
N3—C2—C3—C10179.1 (3)C11B—C7B—C8—C7A69.8 (12)
S1—C2—C3—C100.3 (3)C8—C1—C10—C3179.9 (3)
C2—C3—C4—N1177.7 (3)S1—C1—C10—C30.1 (3)
C10—C3—C4—N11.5 (5)C8—C1—C10—C51.8 (5)
C2—C3—C4—N23.1 (4)S1—C1—C10—C5178.3 (2)
C10—C3—C4—N2177.8 (3)C2—C3—C10—C10.1 (3)
C10—C5—C6A—C7A13.7 (15)C4—C3—C10—C1179.3 (3)
C6B—C5—C6A—C7A74.5 (12)C2—C3—C10—C5178.4 (3)
C5—C6A—C7A—C82.4 (17)C4—C3—C10—C52.5 (5)
C5—C6A—C7A—C11A152.0 (12)C6A—C5—C10—C114.0 (8)
C6A—C5—C6B—C7B85.2 (13)C6B—C5—C10—C118.1 (5)
C10—C5—C6B—C7B18.3 (13)C6A—C5—C10—C3164.1 (7)
C5—C6B—C7B—C11B153.1 (15)C6B—C5—C10—C3163.8 (4)
C5—C6B—C7B—C80.4 (19)N3—C9—N2—C40.7 (4)
C10—C1—C8—C7A17.7 (5)N1—C4—N2—C9178.0 (3)
S1—C1—C8—C7A162.3 (4)C3—C4—N2—C92.7 (4)
C10—C1—C8—C7B15.5 (6)N2—C9—N3—C20.8 (4)
S1—C1—C8—C7B164.5 (5)C3—C2—N3—C90.3 (4)
C6A—C7A—C8—C117.3 (10)S1—C2—N3—C9178.4 (2)
C11A—C7A—C8—C1169.9 (8)N3—C2—S1—C1179.2 (2)
C6A—C7A—C8—C7B70.1 (10)C3—C2—S1—C10.3 (2)
C11A—C7A—C8—C7B82.5 (10)C10—C1—S1—C20.2 (2)
C6B—C7B—C8—C116.5 (14)C8—C1—S1—C2179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.132.992 (3)175
C7A—H7A···N2ii0.98 (1)2.47 (1)3.400 (7)158
C7B—H7B···S1iii0.98 (1)2.69 (1)3.649 (1)165
Symmetry codes: (i) x, y+2, z; (ii) x, y1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H13N3S
Mr219.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)10.395 (4), 8.422 (3), 13.155 (5)
β (°) 110.015 (6)
V3)1082.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
(SMART; Bruker, 1998) [is this correct?]
Tmin, Tmax0.953, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
6268, 2347, 1917
Rint0.044
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.169, 0.84
No. of reflections2347
No. of parameters168
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.41

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.86002.13002.992 (3)175
C7A—H7A···N2ii0.980 (7)2.469 (3)3.400 (7)158
C7B—H7B···S1iii0.980 (1)2.693 (1)3.649 (1)165
Symmetry codes: (i) x, y+2, z; (ii) x, y1, z; (iii) x+1, y+1, z.
 

Acknowledgements

NSB is grateful to the University Grants Commission (UGC), India, for financial assistance, and to the Department of Science and Technology (DST), India, for the data-collection facility under the IRHPA-DST programme.

References

First citationAkkurt, M., Karaca, S., Asiri, A. M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o869.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrown, D. J. (1983). Comprehensive Heterocyclic Chemistry, Vol. 2, pp. 57–156. Oxford: Pergamon Press.  Google Scholar
First citationBruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Clercq, E. (1986a). Anticancer Res. 6, 549–556.  CAS PubMed Web of Science Google Scholar
First citationDe Clercq, E. (1986b). J. Med. Chem. 29, 1561–1569.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o3732–o3734.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeildelberg, C. & Arafield, F. J. (1963). Cancer Res. 23, 1226–1231.  PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, N. S., Lamani, R. S. & Khazi, I. A. M. (2009). J. Chem. Sci. 121, 301–307.  CrossRef CAS Google Scholar
First citationSishoo, C. J., Devani, M. B. & Bhadti, V. S. (1983). Indian Patent 151456.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1636-o1637
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds