organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-p-Tolyl-1,2,3,3a-tetra­hydro­benzo[e]pyrrolo­[2,1-b][1,3]oxazepin-10(5H)-one

aChemistry Department, Tongji University, Shanghai 200092, People's Republic of China
*Correspondence e-mail: tj_zrh@163.com

(Received 11 May 2011; accepted 31 May 2011; online 11 June 2011)

The structure of the title compound, C19H19NO2, contains a seven-membered ring, which is fused to one five- and one six-membered ring, and carries a tolyl substituent. The two benzene rings are oriented relative to each other at a dihedral angle of 86.90 (7)°. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to asymmetric photochemical reactions, see: Gould et al. (2001[Gould, I. R., Lenhard, J. R., Muenter, A. A., Godleski, S. A. & Farid, S. Y. (2001). Pure Appl. Chem. 73, 455-458.]); Grätzel (2001[Grätzel, M. (2001). Pure Appl. Chem. 73, 459-467.]); Korzeniewski & Zoladz (2001[Korzeniewski, B. & Zoladz, J. A. (2001). Biophys. Chem. 92, 17-34.]); Aubert et al. (2000[Aubert, C., Vos, M. H., Mathis, P., Eker, A. P. M. & Brettel, K. (2000). Nature (London), 405, 586-590.]). For related structures, see: Basarić et al. (2008[Basarić, N., Horvat, M., Mlinarić-Majerski, K., Zimmermann, E., Neudörfl, J. & Griesbeck, A. G. (2008). Org. Lett. 10, 3965-3968.]); Griesbeck et al. (1997[Griesbeck, A. G., Henz, A., Kramer, W., Lex, J., Nerowski, F., Oelgemöller, M., Peters, K. & Peters, E.-M. (1997). Helv. Chim. Acta, 80, 912-933.], 1999[Griesbeck, A. G., Nerowski, F. & Lex, J. (1999). J. Org. Chem. 64, 5213-5217.], 2002[Griesbeck, A. G., Heinrich, T., Oelgemöller, M., Heidtmann, A. & Molis, A. (2002). Helv. Chim. Acta, 85, 4561-4578.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19NO2

  • Mr = 293.35

  • Monoclinic, P 21 /c

  • a = 8.237 (3) Å

  • b = 16.868 (6) Å

  • c = 11.267 (4) Å

  • β = 100.851 (6)°

  • V = 1537.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.736, Tmax = 1.000

  • 13060 measured reflections

  • 3501 independent reflections

  • 2338 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.188

  • S = 1.01

  • 3501 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯O2i 0.96 2.42 3.354 (3) 163
C17—H17A⋯O2ii 0.98 2.38 3.357 (3) 174
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2004[Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Asymmetric photochemistry is one of the most important reactions in organic chemistry. Many compounds can be obtained in one step, but can not be synthesized in the ground state (Gould et al.,2001; Grätzel, 2001; Korzeniewski & Zoladz, 2001; Aubert et al., 2000). Benzophenone acylamide derivatives can form a seven-membered ring with high stereoselectivity through intramolecular photoinduced decarboxylation and cyclization (Basarić et al., 2008; Griesbeck et al., 1997; Griesbeck et al., 1999; Griesbeck et al., 2002). We report herein the crystal structure and synthesis of the title compound.

The structure of the title compound which contains a seven-membered ring, a five-membered ring and two six-membered rings is shown in Fig. 1. The dihedral angle between the two benzene rings is 86.90 (7)°. Atoms C13 and C17 of the title compound are chiral centers. There are weak C—H···O hydrogen bonds which link neighboring molecules to form a two-dimensional layer in the bc plane (Fig. 2).

Related literature top

For general background to asymmetric photochemical reactions, see: Gould et al. (2001); Grätzel (2001); Korzeniewski & Zoladz (2001); Aubert et al. (2000). For related structures, see: Basarić et al. (2008); Griesbeck et al. (1997, 1999, 2002).

Experimental top

The title compound was the main product from the photoreaction of (S)-1-(2-(4-methylbenzoyl) benzoyl)pyrrolidine-2-carboxylic acid under N2 for 10 h. The compound was purified by flash column chromatography (silica gel column, petroleum ether/ethyl acetate=3/1). Colorless crystals for the X-ray crystallographic studies were gained from slow evaporation of a dichloromethane solution.

Refinement top

The hydrogen atoms attached to carbon atoms were located by geometrical calculation using a riding model, with C—H distances: phenyl C-H = 0.93 Å; primary C-H = 0.96 Å, secondary C-H = 0.97 Å; tertiary C-H: 0.98 Å [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering scheme.
[Figure 2] Fig. 2. Partial packing view showing the C—H···O interactions and the formation of two-dimensional layer in the bc plane.
5-p-Tolyl-1,2,3,3a-tetrahydrobenzo[e]pyrrolo[2,1- b][1,3]oxazepin-10(5H)-one top
Crystal data top
C19H19NO2F(000) = 624
Mr = 293.35Dx = 1.267 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4317 reflections
a = 8.237 (3) Åθ = 2.2–27.5°
b = 16.868 (6) ŵ = 0.08 mm1
c = 11.267 (4) ÅT = 296 K
β = 100.851 (6)°Prism, colourless
V = 1537.6 (10) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3501 independent reflections
Radiation source: fine-focus sealed tube2338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.736, Tmax = 1.000k = 2121
13060 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.105P)2]
where P = (Fo2 + 2Fc2)/3
3501 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H19NO2V = 1537.6 (10) Å3
Mr = 293.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.237 (3) ŵ = 0.08 mm1
b = 16.868 (6) ÅT = 296 K
c = 11.267 (4) Å0.20 × 0.18 × 0.17 mm
β = 100.851 (6)°
Data collection top
Bruker APEXII area-detector
diffractometer
3501 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2338 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 1.000Rint = 0.030
13060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.01Δρmax = 0.46 e Å3
3501 reflectionsΔρmin = 0.22 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15809 (16)0.47030 (7)0.33133 (12)0.0557 (4)
N10.00869 (19)0.40627 (9)0.15419 (14)0.0512 (4)
C10.2534 (3)0.33184 (14)0.1825 (2)0.0753 (7)
H1A0.29360.27970.16590.113*
H1B0.34270.36990.18660.113*
O20.18305 (19)0.44457 (9)0.00756 (13)0.0663 (4)
C20.1855 (3)0.33170 (12)0.2983 (2)0.0704 (6)
H2A0.27350.33820.36810.106*
H2B0.12720.28270.30690.106*
C30.1049 (3)0.35569 (13)0.0862 (2)0.0673 (6)
H3A0.13930.38490.02100.101*
H3B0.04170.30960.05310.101*
C40.3496 (3)0.58920 (13)0.3392 (2)0.0637 (6)
H4A0.39950.61930.39140.096*
C50.4603 (3)0.79714 (14)0.5623 (2)0.0754 (7)
H5A0.49840.77990.64400.113*
H5B0.39370.84380.56220.113*
H5C0.55350.80890.52550.113*
C60.3713 (2)0.50009 (12)0.17358 (19)0.0583 (5)
H6A0.43620.47090.11240.087*
C70.4450 (3)0.54405 (13)0.2524 (2)0.0664 (6)
H7A0.55920.54290.24630.100*
C80.2897 (3)0.74206 (12)0.3717 (2)0.0595 (5)
H8A0.30330.79000.33410.089*
C90.2009 (2)0.68221 (12)0.30601 (19)0.0558 (5)
H9A0.15550.69060.22500.084*
C100.1795 (2)0.59058 (11)0.35038 (18)0.0536 (5)
H10A0.11670.62240.40920.080*
C110.3356 (3)0.66015 (12)0.54475 (18)0.0589 (5)
H11A0.38090.65220.62590.088*
C120.2000 (2)0.49935 (11)0.18561 (16)0.0470 (4)
C130.0680 (2)0.40196 (11)0.28510 (17)0.0529 (5)
H13A0.02370.39220.32740.079*
C140.3585 (2)0.73232 (11)0.49200 (19)0.0545 (5)
C150.2468 (3)0.59949 (12)0.47968 (18)0.0578 (5)
H15A0.23310.55160.51750.087*
C160.1782 (2)0.60969 (11)0.35837 (16)0.0463 (4)
C170.0854 (2)0.54463 (10)0.28326 (16)0.0463 (4)
H17A0.10670.55010.20100.069*
C180.1249 (2)0.44804 (11)0.10158 (17)0.0505 (5)
C190.1014 (2)0.54521 (10)0.27503 (16)0.0442 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0487 (8)0.0543 (8)0.0601 (9)0.0093 (6)0.0006 (6)0.0076 (6)
N10.0479 (9)0.0542 (8)0.0526 (9)0.0007 (7)0.0119 (7)0.0068 (7)
C10.0647 (14)0.0654 (13)0.0979 (19)0.0143 (11)0.0205 (13)0.0125 (12)
O20.0627 (9)0.0857 (11)0.0481 (8)0.0147 (8)0.0046 (7)0.0054 (7)
C20.0688 (14)0.0576 (12)0.0835 (16)0.0105 (10)0.0109 (12)0.0003 (11)
C30.0717 (14)0.0625 (12)0.0727 (15)0.0003 (11)0.0265 (12)0.0188 (11)
C40.0536 (12)0.0651 (12)0.0772 (15)0.0140 (10)0.0246 (11)0.0023 (11)
C50.0737 (15)0.0639 (13)0.0851 (17)0.0010 (11)0.0055 (13)0.0114 (12)
C60.0408 (10)0.0650 (12)0.0670 (13)0.0005 (9)0.0045 (9)0.0064 (10)
C70.0422 (11)0.0737 (13)0.0854 (16)0.0109 (10)0.0174 (11)0.0113 (12)
C80.0570 (12)0.0510 (10)0.0686 (13)0.0036 (9)0.0069 (10)0.0019 (10)
C90.0494 (11)0.0588 (11)0.0575 (12)0.0071 (9)0.0054 (9)0.0025 (9)
C100.0522 (11)0.0548 (10)0.0559 (11)0.0085 (9)0.0160 (9)0.0002 (9)
C110.0619 (12)0.0656 (12)0.0471 (11)0.0049 (10)0.0046 (9)0.0045 (9)
C120.0418 (10)0.0519 (10)0.0479 (10)0.0003 (8)0.0098 (8)0.0075 (8)
C130.0516 (11)0.0514 (10)0.0552 (12)0.0021 (8)0.0090 (9)0.0013 (9)
C140.0481 (11)0.0514 (10)0.0636 (13)0.0026 (8)0.0097 (9)0.0107 (9)
C150.0651 (13)0.0597 (11)0.0494 (11)0.0083 (10)0.0125 (9)0.0011 (9)
C160.0381 (9)0.0540 (10)0.0486 (10)0.0015 (7)0.0126 (8)0.0054 (8)
C170.0421 (10)0.0535 (10)0.0444 (10)0.0013 (8)0.0112 (8)0.0024 (8)
C180.0456 (10)0.0557 (10)0.0508 (11)0.0116 (8)0.0103 (8)0.0006 (9)
C190.0395 (9)0.0494 (9)0.0443 (10)0.0025 (7)0.0099 (7)0.0055 (8)
Geometric parameters (Å, º) top
O1—C131.416 (2)C6—C71.382 (3)
O1—C171.450 (2)C6—C121.391 (3)
N1—C181.347 (2)C6—H6A0.9300
N1—C131.466 (2)C7—H7A0.9300
N1—C31.474 (2)C8—C141.377 (3)
C1—C21.514 (4)C8—C91.378 (3)
C1—C31.528 (3)C8—H8A0.9300
C1—H1A0.9700C9—C161.386 (3)
C1—H1B0.9700C9—H9A0.9300
O2—C181.234 (2)C10—C191.388 (3)
C2—C131.520 (3)C10—H10A0.9300
C2—H2A0.9700C11—C141.383 (3)
C2—H2B0.9700C11—C151.385 (3)
C3—H3A0.9700C11—H11A0.9300
C3—H3B0.9700C12—C191.402 (3)
C4—C71.366 (3)C12—C181.500 (3)
C4—C101.383 (3)C13—H13A0.9800
C4—H4A0.9300C15—C161.388 (3)
C5—C141.509 (3)C15—H15A0.9300
C5—H5A0.9600C16—C171.504 (2)
C5—H5B0.9600C17—C191.524 (2)
C5—H5C0.9600C17—H17A0.9800
C13—O1—C17114.55 (13)C8—C9—C16121.24 (19)
C18—N1—C13123.97 (15)C8—C9—H9A119.4
C18—N1—C3123.30 (17)C16—C9—H9A119.4
C13—N1—C3112.62 (16)C4—C10—C19120.91 (19)
C2—C1—C3103.64 (19)C4—C10—H10A119.5
C2—C1—H1A111.0C19—C10—H10A119.5
C3—C1—H1A111.0C14—C11—C15121.61 (19)
C2—C1—H1B111.0C14—C11—H11A119.2
C3—C1—H1B111.0C15—C11—H11A119.2
H1A—C1—H1B109.0C6—C12—C19120.33 (18)
C1—C2—C13104.25 (19)C6—C12—C18118.34 (17)
C1—C2—H2A110.9C19—C12—C18121.32 (16)
C13—C2—H2A110.9O1—C13—N1112.46 (15)
C1—C2—H2B110.9O1—C13—C2108.58 (16)
C13—C2—H2B110.9N1—C13—C2102.88 (16)
H2A—C2—H2B108.9O1—C13—H13A110.9
N1—C3—C1102.74 (16)N1—C13—H13A110.9
N1—C3—H3A111.2C2—C13—H13A110.9
C1—C3—H3A111.2C8—C14—C11117.62 (18)
N1—C3—H3B111.2C8—C14—C5121.05 (19)
C1—C3—H3B111.2C11—C14—C5121.30 (19)
H3A—C3—H3B109.1C11—C15—C16120.43 (18)
C7—C4—C10120.74 (19)C11—C15—H15A119.8
C7—C4—H4A119.6C16—C15—H15A119.8
C10—C4—H4A119.6C9—C16—C15117.76 (17)
C14—C5—H5A109.5C9—C16—C17119.98 (17)
C14—C5—H5B109.5C15—C16—C17122.24 (16)
H5A—C5—H5B109.5O1—C17—C16106.89 (14)
C14—C5—H5C109.5O1—C17—C19111.69 (14)
H5A—C5—H5C109.5C16—C17—C19115.45 (14)
H5B—C5—H5C109.5O1—C17—H17A107.5
C7—C6—C12120.2 (2)C16—C17—H17A107.5
C7—C6—H6A119.9C19—C17—H17A107.5
C12—C6—H6A119.9O2—C18—N1123.04 (18)
C4—C7—C6119.7 (2)O2—C18—C12121.86 (18)
C4—C7—H7A120.1N1—C18—C12115.10 (16)
C6—C7—H7A120.1C10—C19—C12118.08 (17)
C14—C8—C9121.34 (19)C10—C19—C17123.07 (17)
C14—C8—H8A119.3C12—C19—C17118.83 (16)
C9—C8—H8A119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O2i0.962.423.354 (3)163
C17—H17A···O2ii0.982.383.357 (3)174
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H19NO2
Mr293.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.237 (3), 16.868 (6), 11.267 (4)
β (°) 100.851 (6)
V3)1537.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.736, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13060, 3501, 2338
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.188, 1.01
No. of reflections3501
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.22

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O2i0.962.423.354 (3)163.2
C17—H17A···O2ii0.982.383.357 (3)174.1
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China is gratefully acknowledged.

References

First citationAubert, C., Vos, M. H., Mathis, P., Eker, A. P. M. & Brettel, K. (2000). Nature (London), 405, 586–590.  Web of Science PubMed CAS Google Scholar
First citationBasarić, N., Horvat, M., Mlinarić-Majerski, K., Zimmermann, E., Neudörfl, J. & Griesbeck, A. G. (2008). Org. Lett. 10, 3965–3968.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGould, I. R., Lenhard, J. R., Muenter, A. A., Godleski, S. A. & Farid, S. Y. (2001). Pure Appl. Chem. 73, 455–458.  CrossRef CAS Google Scholar
First citationGrätzel, M. (2001). Pure Appl. Chem. 73, 459–467.  Google Scholar
First citationGriesbeck, A. G., Heinrich, T., Oelgemöller, M., Heidtmann, A. & Molis, A. (2002). Helv. Chim. Acta, 85, 4561–4578.  CrossRef CAS Google Scholar
First citationGriesbeck, A. G., Henz, A., Kramer, W., Lex, J., Nerowski, F., Oelgemöller, M., Peters, K. & Peters, E.-M. (1997). Helv. Chim. Acta, 80, 912–933.  CrossRef CAS Google Scholar
First citationGriesbeck, A. G., Nerowski, F. & Lex, J. (1999). J. Org. Chem. 64, 5213–5217.  Web of Science CSD CrossRef CAS Google Scholar
First citationKorzeniewski, B. & Zoladz, J. A. (2001). Biophys. Chem. 92, 17–34.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds