metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[3,3′-Dihy­dr­oxy-3,3′-bis­­(pyridin-3-yl-κN)-1,1′-(pyridine-2,6-di­yl)dipropan-1-one](nitrato-κ2O,O′)silver(I)

aDepartment of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
*Correspondence e-mail: jianyud@mail.ustc.edu.cn

(Received 25 May 2011; accepted 28 May 2011; online 11 June 2011)

In the title compound, a new macrocyclic metal complex, [Ag(NO3)(C21H15N3O4)], all non-H atoms are in a close-to-planar geometry (except for the nitrate anion), with a maximum out-of-plane deviation of 0.327 (6) Å for a pyridine C atom. The dihedral angle between the least-squares plane through the [3,3′-dihy­droxy-3,3′-bis­(pyridin-3-yl)-1,1′-(pyridine-2,6-di­yl)dipropan-1-one]silver(I) fragment and the nitrate anion is 31.29 (13)°. The mol­ecular structure is stabilized by several inter- and intra­molecular O—H⋯O and C—H⋯O hydrogen bonds. The AgI atom is coordinated by two pyridine N atoms and two O atoms of the nitrate anion in a geometry intermediate between tetrahedral and square-planar.

Related literature

For general background, see: Zou et al. (2011[Zou, P., Liu, Y., Hou, G.-F. & Gao, J.-S. (2011). Acta Cryst. E67, m692.]), and references therein. For the synthesis of the ligand, see: Xi et al. (2008[Xi, Z. X., Liu, F. H., Zhou, Y. B. & Chen, W. Z. (2008). Tetrahedron, 64, 4254-4259.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(NO3)(C21H15N3O4)]

  • Mr = 543.24

  • Triclinic, [P \overline 1]

  • a = 6.5972 (14) Å

  • b = 12.572 (3) Å

  • c = 12.731 (3) Å

  • α = 101.256 (3)°

  • β = 101.610 (3)°

  • γ = 96.454 (3)°

  • V = 1001.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 298 K

  • 0.33 × 0.27 × 0.19 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.721, Tmax = 0.824

  • 5286 measured reflections

  • 3478 independent reflections

  • 2396 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.06

  • 3478 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O7i 0.93 2.53 3.386 (6) 154
C12—H12⋯O7ii 0.93 2.51 3.143 (5) 126
C9—H9⋯O6iii 0.93 2.56 3.289 (6) 136
C4—H4A⋯O1iv 0.93 2.33 3.205 (5) 157
O4—H4⋯O3 0.82 1.85 2.572 (4) 147
O2—H2⋯O1 0.82 1.80 2.531 (4) 147
Symmetry codes: (i) -x+3, -y, -z+1; (ii) -x+3, -y, -z; (iii) x-1, y, z; (iv) -x, -y+1, -z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The bridging pyridyl compounds are useful ligands to construct metal-cyclic complexes. We here report the synthesis and crystal structure of a novel macrocyclic silver complex containing a bridging pyridyl compound.

The sixteen-component chelate ring is not seen very often. The 16-membered chelate ring composed of atoms Ag1, N2, C9, C10, C8, C7, C6, C5, N1, C1, C14, C15, C6, C18, C17 and N3 has a nearly planar conformation [maximum deviation = 0.117 (5) Å for atom C9]. The molecular structure is stabilized by several intermolecular and intramolecular hydrogen bonds (Table 1).

Bond lengths and angles in the title molecule (Fig. 1) are within normal ranges.

Related literature top

For general background, see: Zou et al. (2011), and references therein. For the synthesis of the ligand, see: Xi et al. (2008).

Experimental top

3,3'-(pyridine-2,6-diyl)bis(1-(pyridin-3-yl)propane-1,3-dione) was synthesized as the reference method (Xi et al., 2008). The title compound was prepared as the following method: 3,3'-(pyridine-2,6-diyl)bis(1-(pyridin-3-yl)propane-1,3-dione) (0.373 g, 1.0 mmol) and AgNO3 (0.168 g, 1.0 mmol) in 5 ml of DMF were stirred at room temperature for 12 h. The mixture was filtered and afforded the colourless solution. Colourless single crystals suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into the DMF solution.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.99 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SMART (Bruker, 2005); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[3,3'-Dihydroxy-3,3'-bis(pyridin-3-yl-κN)-1,1'-(pyridine-2,6- diyl)dipropan-1-one](nitrato-κ2O,O')silver(I) top
Crystal data top
[Ag(NO3)(C21H15N3O4)]Z = 2
Mr = 543.24F(000) = 544
Triclinic, P1Dx = 1.801 Mg m3
a = 6.5972 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.572 (3) ÅCell parameters from 2396 reflections
c = 12.731 (3) Åθ = 2.1–25°
α = 101.256 (3)°µ = 1.06 mm1
β = 101.610 (3)°T = 298 K
γ = 96.454 (3)°Block, colourless
V = 1001.7 (4) Å30.33 × 0.27 × 0.19 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3478 independent reflections
Radiation source: fine-focus sealed tube2396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.721, Tmax = 0.824k = 1412
5286 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.045P)2 + 0.3559P]
where P = (Fo2 + 2Fc2)/3
3478 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Ag(NO3)(C21H15N3O4)]γ = 96.454 (3)°
Mr = 543.24V = 1001.7 (4) Å3
Triclinic, P1Z = 2
a = 6.5972 (14) ÅMo Kα radiation
b = 12.572 (3) ŵ = 1.06 mm1
c = 12.731 (3) ÅT = 298 K
α = 101.256 (3)°0.33 × 0.27 × 0.19 mm
β = 101.610 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3478 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2396 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.824Rint = 0.021
5286 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.06Δρmax = 0.49 e Å3
3478 reflectionsΔρmin = 0.41 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag11.13449 (6)0.10254 (4)0.22826 (3)0.0692 (2)
N10.3450 (5)0.3863 (3)0.2614 (3)0.0450 (9)
N20.9937 (5)0.1445 (3)0.0679 (3)0.0488 (9)
N31.0707 (5)0.1360 (3)0.3959 (3)0.0521 (10)
N41.5330 (6)0.0178 (3)0.2232 (3)0.0557 (10)
O10.2448 (5)0.4261 (3)0.0112 (2)0.0634 (9)
O20.4881 (5)0.3291 (3)0.1132 (2)0.0656 (10)
H20.39330.36450.10450.098*
O30.3401 (5)0.3916 (3)0.5397 (3)0.0602 (9)
O40.6402 (5)0.2954 (3)0.6191 (2)0.0620 (9)
H40.54020.32860.61930.093*
O51.4447 (6)0.0098 (3)0.2916 (3)0.0869 (12)
O61.4707 (6)0.0916 (4)0.1789 (4)0.0944 (14)
O71.6850 (5)0.0217 (3)0.2017 (3)0.0801 (11)
C10.2705 (7)0.4022 (4)0.3526 (4)0.0477 (11)
C20.0891 (7)0.4478 (4)0.3574 (4)0.0577 (13)
H2A0.03740.45610.42080.069*
C30.0116 (7)0.4803 (4)0.2665 (4)0.0644 (14)
H30.13240.51160.26830.077*
C40.0641 (7)0.4669 (4)0.1741 (4)0.0562 (12)
H4A0.00140.49030.11290.067*
C50.2431 (6)0.4170 (4)0.1730 (3)0.0445 (11)
C60.3270 (6)0.3927 (4)0.0730 (4)0.0472 (11)
C70.4910 (6)0.3302 (4)0.0706 (3)0.0473 (11)
H70.55040.30850.13410.057*
C80.5655 (6)0.3005 (4)0.0214 (3)0.0457 (11)
C90.8255 (7)0.1952 (4)0.0628 (3)0.0489 (12)
H90.76320.20340.12260.059*
C100.7390 (6)0.2361 (4)0.0262 (3)0.0425 (10)
C110.8261 (7)0.2181 (4)0.1166 (4)0.0581 (13)
H110.77080.24240.17920.070*
C120.9963 (8)0.1633 (4)0.1130 (4)0.0618 (14)
H121.05700.15030.17330.074*
C131.0752 (7)0.1284 (4)0.0200 (4)0.0491 (11)
H131.19060.09200.01830.059*
C140.3917 (7)0.3682 (4)0.4490 (4)0.0502 (11)
C150.5630 (7)0.3115 (4)0.4354 (4)0.0528 (12)
H150.59660.29730.36700.063*
C160.6790 (7)0.2776 (4)0.5204 (4)0.0489 (11)
C170.9098 (7)0.1867 (4)0.4105 (4)0.0514 (12)
H170.82560.20170.34890.062*
C180.8581 (7)0.2187 (4)0.5100 (3)0.0472 (11)
C190.9853 (8)0.1955 (5)0.6011 (4)0.0709 (16)
H190.95840.21590.67060.085*
C201.1518 (8)0.1418 (5)0.5870 (4)0.0694 (15)
H201.23770.12520.64710.083*
C211.1907 (7)0.1131 (4)0.4856 (4)0.0576 (13)
H211.30340.07650.47740.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0654 (3)0.1031 (4)0.0590 (3)0.0484 (2)0.02162 (19)0.0377 (2)
N10.041 (2)0.044 (2)0.051 (2)0.0124 (17)0.0075 (17)0.0128 (18)
N20.048 (2)0.061 (3)0.048 (2)0.0243 (19)0.0163 (17)0.0234 (19)
N30.044 (2)0.069 (3)0.051 (2)0.018 (2)0.0092 (17)0.028 (2)
N40.047 (2)0.065 (3)0.059 (3)0.024 (2)0.0098 (19)0.019 (2)
O10.067 (2)0.082 (3)0.054 (2)0.0439 (19)0.0091 (16)0.0328 (18)
O20.073 (2)0.091 (3)0.0476 (19)0.046 (2)0.0133 (16)0.0331 (18)
O30.069 (2)0.070 (2)0.0487 (19)0.0200 (18)0.0253 (16)0.0144 (17)
O40.065 (2)0.087 (3)0.0440 (19)0.0267 (19)0.0216 (15)0.0224 (17)
O50.089 (3)0.103 (3)0.095 (3)0.037 (2)0.047 (2)0.044 (3)
O60.081 (3)0.125 (4)0.122 (3)0.060 (3)0.048 (2)0.084 (3)
O70.069 (2)0.112 (3)0.076 (2)0.058 (2)0.0250 (19)0.026 (2)
C10.050 (3)0.047 (3)0.047 (3)0.013 (2)0.014 (2)0.008 (2)
C20.055 (3)0.057 (3)0.062 (3)0.016 (3)0.020 (2)0.005 (3)
C30.048 (3)0.075 (4)0.071 (3)0.031 (3)0.013 (2)0.009 (3)
C40.044 (3)0.067 (3)0.061 (3)0.026 (2)0.011 (2)0.016 (3)
C50.041 (2)0.045 (3)0.048 (3)0.015 (2)0.005 (2)0.014 (2)
C60.043 (2)0.050 (3)0.052 (3)0.014 (2)0.008 (2)0.020 (2)
C70.042 (2)0.064 (3)0.042 (2)0.021 (2)0.0058 (19)0.026 (2)
C80.045 (2)0.053 (3)0.044 (3)0.017 (2)0.006 (2)0.022 (2)
C90.053 (3)0.063 (3)0.047 (3)0.031 (2)0.021 (2)0.025 (2)
C100.042 (2)0.046 (3)0.042 (2)0.011 (2)0.0092 (19)0.016 (2)
C110.064 (3)0.078 (4)0.048 (3)0.033 (3)0.019 (2)0.031 (3)
C120.068 (3)0.083 (4)0.051 (3)0.035 (3)0.029 (2)0.027 (3)
C130.044 (2)0.061 (3)0.049 (3)0.019 (2)0.016 (2)0.017 (2)
C140.051 (3)0.048 (3)0.052 (3)0.006 (2)0.013 (2)0.012 (2)
C150.056 (3)0.069 (3)0.043 (3)0.026 (3)0.015 (2)0.021 (2)
C160.051 (3)0.054 (3)0.044 (3)0.008 (2)0.014 (2)0.014 (2)
C170.048 (3)0.065 (3)0.046 (3)0.013 (2)0.005 (2)0.027 (2)
C180.046 (3)0.060 (3)0.041 (3)0.009 (2)0.009 (2)0.024 (2)
C190.078 (4)0.104 (5)0.050 (3)0.034 (3)0.020 (3)0.045 (3)
C200.066 (3)0.098 (4)0.056 (3)0.030 (3)0.006 (3)0.043 (3)
C210.050 (3)0.065 (3)0.067 (3)0.019 (2)0.010 (2)0.035 (3)
Geometric parameters (Å, º) top
Ag1—N32.228 (4)C5—N11.338 (5)
Ag1—N22.253 (3)C5—C61.481 (6)
Ag1—O62.435 (4)C6—O11.269 (5)
Ag1—O52.695 (4)C6—C71.408 (6)
N1—C11.337 (5)C7—C81.362 (6)
N1—C51.338 (5)C7—H70.9300
N2—C131.326 (5)C8—C101.479 (6)
N2—C91.337 (5)C9—C101.380 (5)
N3—C171.324 (5)C9—H90.9300
N3—C211.352 (5)C10—C111.379 (6)
N4—O51.223 (5)C11—C121.379 (6)
N4—O71.223 (5)C11—H110.9300
N4—O61.242 (5)C12—C131.368 (6)
O1—C61.269 (5)C12—H120.9300
O2—C81.312 (5)C13—H130.9300
O2—H20.8200C14—O31.258 (5)
O3—C141.258 (5)C14—C151.424 (6)
O4—C161.313 (5)C15—C161.364 (6)
O4—H40.8200C15—H150.9300
C1—N11.337 (5)C16—C181.478 (6)
C1—C21.391 (6)C17—C181.375 (6)
C1—C141.489 (6)C17—H170.9300
C2—C31.373 (7)C18—C191.390 (6)
C2—H2A0.9300C19—C201.376 (7)
C3—C41.356 (6)C19—H190.9300
C3—H30.9300C20—C211.354 (7)
C4—C51.399 (6)C20—H200.9300
C4—H4A0.9300C21—H210.9300
N3—Ag1—N2134.26 (12)C6—C7—H7118.8
N3—Ag1—O6128.04 (13)O2—C8—C7121.5 (4)
N2—Ag1—O692.00 (12)O2—C8—C10114.8 (4)
N3—Ag1—O591.79 (12)C7—C8—C10123.6 (4)
N2—Ag1—O5133.95 (12)N2—C9—C10123.8 (4)
O6—Ag1—O548.39 (11)N2—C9—H9118.1
C1—N1—C5118.7 (3)C10—C9—H9118.1
C13—N2—C9117.6 (3)C11—C10—C9117.4 (4)
C13—N2—Ag1124.0 (3)C11—C10—C8122.0 (4)
C9—N2—Ag1118.2 (3)C9—C10—C8120.6 (4)
C17—N3—C21117.3 (4)C10—C11—C12119.0 (4)
C17—N3—Ag1117.9 (3)C10—C11—H11120.5
C21—N3—Ag1124.7 (3)C12—C11—H11120.5
O5—N4—O7121.7 (4)C13—C12—C11119.4 (4)
O5—N4—O6118.2 (4)C13—C12—H12120.3
O7—N4—O6120.0 (4)C11—C12—H12120.3
C8—O2—H2109.5N2—C13—C12122.6 (4)
C16—O4—H4109.5N2—C13—H13118.7
N4—O5—Ag189.7 (3)C12—C13—H13118.7
N4—O6—Ag1101.9 (3)O3—C14—C15122.6 (4)
N1—C1—C2122.0 (4)O3—C14—C15122.6 (4)
N1—C1—C2122.0 (4)O3—C14—C1118.7 (4)
N1—C1—C14116.5 (4)O3—C14—C1118.7 (4)
N1—C1—C14116.5 (4)C15—C14—C1118.7 (4)
C2—C1—C14121.5 (4)C16—C15—C14121.4 (4)
C3—C2—C1118.5 (4)C16—C15—H15119.3
C3—C2—H2A120.8C14—C15—H15119.3
C1—C2—H2A120.8O4—C16—C15122.3 (4)
C4—C3—C2120.3 (4)O4—C16—C18114.5 (4)
C4—C3—H3119.8C15—C16—C18123.2 (4)
C2—C3—H3119.8N3—C17—C18124.7 (4)
C3—C4—C5118.5 (4)N3—C17—H17117.6
C3—C4—H4A120.7C18—C17—H17117.6
C5—C4—H4A120.7C17—C18—C19116.9 (4)
N1—C5—C4121.9 (4)C17—C18—C16121.7 (4)
N1—C5—C4121.9 (4)C19—C18—C16121.4 (4)
N1—C5—C6116.3 (3)C20—C19—C18119.0 (5)
N1—C5—C6116.3 (3)C20—C19—H19120.5
C4—C5—C6121.7 (4)C18—C19—H19120.5
O1—C6—C7120.8 (4)C21—C20—C19120.1 (4)
O1—C6—C7120.8 (4)C21—C20—H20120.0
O1—C6—C5119.1 (4)C19—C20—H20120.0
O1—C6—C5119.1 (4)N3—C21—C20122.0 (4)
C7—C6—C5120.1 (4)N3—C21—H21119.0
C8—C7—C6122.3 (4)C20—C21—H21119.0
C8—C7—H7118.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O7i0.932.533.386 (6)154
C12—H12···O7ii0.932.513.143 (5)126
C9—H9···O6iii0.932.563.289 (6)136
C4—H4A···O1iv0.932.333.205 (5)157
O4—H4···O30.821.852.572 (4)147
O2—H2···O10.821.802.531 (4)147
Symmetry codes: (i) x+3, y, z+1; (ii) x+3, y, z; (iii) x1, y, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(NO3)(C21H15N3O4)]
Mr543.24
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.5972 (14), 12.572 (3), 12.731 (3)
α, β, γ (°)101.256 (3), 101.610 (3), 96.454 (3)
V3)1001.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.33 × 0.27 × 0.19
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.721, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
5286, 3478, 2396
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.06
No. of reflections3478
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.41

Computer programs: SMART (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O7i0.932.533.386 (6)153.5
C12—H12···O7ii0.932.513.143 (5)125.9
C9—H9···O6iii0.932.563.289 (6)135.6
C4—H4A···O1iv0.932.333.205 (5)156.5
O4—H4···O30.821.852.572 (4)146.9
O2—H2···O10.821.802.531 (4)147.3
Symmetry codes: (i) x+3, y, z+1; (ii) x+3, y, z; (iii) x1, y, z; (iv) x, y+1, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20872129).

References

First citationBruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXi, Z. X., Liu, F. H., Zhou, Y. B. & Chen, W. Z. (2008). Tetrahedron, 64, 4254–4259.  CrossRef CAS Google Scholar
First citationZou, P., Liu, Y., Hou, G.-F. & Gao, J.-S. (2011). Acta Cryst. E67, m692.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds