organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3aR*,5R*)-5-(4-Chloro­phen­yl)-1,2,3,3a-tetra­hydro­benzo[e]pyrrolo­[2,1-b][1,3]ox­azepin-10(5H)-one

aChemistry Department, Tongji University, Shanghai 200092, People's Republic of China
*Correspondence e-mail: TJ_ZRH@163.com

(Received 26 May 2011; accepted 27 May 2011; online 11 June 2011)

The title compound, C18H16ClNO2, is the main product of a photoreaction. The two benzene rings make a dihedral angle of 86.40 (2)° with each other. The 1,3-oxazepine C atom to which the 4-chloro­phenyl group is attached and the C atom of the 4-chloro­phenyl group attached to the 1,3-oxazepine ring are chiral C atoms, but the crystal is a racemate in which the enanti­omers are linked by a pair of weak inter­molecular C—H⋯O hydrogen bond, forming an inversion dimer.

Related literature

For general background to asymmetric photochemical reactions, see: Gratzel (2001[Gratzel, M. (2001). Pure Appl. Chem. 73, 459-467.]); Korzeniewski & Zoladz (2001[Korzeniewski, B. & Zoladz, J. A. (2001). Biophys. Chem. 92, 7-34.]); Aubert et al. (2000[Aubert, C., Vos, M. H., Mathias, P., Eker, A. M. & Brettle, K. (2000). Nature (London), 407, 926.]). For photo-induced cyclizations, see Griesbeck et al. (2002[Griesbeck, A. G., Heinrich, T., Oelgemöller, M., Molis, A. & Heidtann, A. (2002). Helv. Chim. Acta, 85, 4561-4577.]); Henz et al. (1995[Henz, A., Griesbeck, A. G. & Peters, K. (1995). Angew. Chem. Int. Ed. 34, 474-491.]). For related structures, see: Griesbeck et al. (1997[Griesbeck, A. G., Henz, A., Kramer, W., Lex, J., Nerowshi, F. & Oelgemöller, M. (1997). Helv. Chim. Acta, 80, 912-933.], 1999[Griesbeck, A. G., Nerowski, F. & Lex, J. (1999). J. Org. Chem. 64, 5213-5217.]); Basarić et al. (2008[Basarić, N., Horvat, M., Mlinarić-Majerski, K., Zimmermann, E., Neudörfl, J. & Griesbeck, A. G. (2008). Org. Lett. 10, 3965-3968.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16ClNO2

  • Mr = 313.77

  • Monoclinic, P 21 /c

  • a = 8.1764 (6) Å

  • b = 16.9030 (11) Å

  • c = 11.1564 (8) Å

  • β = 98.224 (6)°

  • V = 1526.02 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.22 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.676, Tmax = 1.000

  • 12942 measured reflections

  • 3478 independent reflections

  • 2393 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.181

  • S = 1.04

  • 3478 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1i 0.98 2.27 3.206 (3) 159
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2004[Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In modern organic chemistry preparative organic photochemistry is an important tool to synthesize complex compounds in one step.(Gratzel, 2001; Korzeniewski & Zoladz, 2001; Aubert et al., 2000). Benzophenone acylamide derivatives can form the seven-membered ring through the intramolecular photoinduced decarboxylation and cyclization (Griesbeck et al., 2002; Henz et al.,1995). We report herein the crystal structure and synthesis of the title compound.

The structure of the title compound is shown in Fig.1. The dihedral angle between the two benzene rings is 86.40 (2). Atoms C11 and C12 of the title compound are chiral, but the compound crystallizes as a racemate, in which R and S pairs are linked by pairs of weak intermolecular C—H···O hydrogen bonds (Fig. 2).

Related literature top

For general background to asymmetric photochemical reactions, see: Gratzel (2001); Korzeniewski & Zoladz (2001); Aubert et al. (2000). For photo-induced cyclizations, see Griesbeck et al. (2002); Henz et al. (1995). For related structures, see: Griesbeck et al. (1997, 1999); Basarić et al. (2008).

Experimental top

The title compound was the main product of the photoreaction of (S)-1-(2-(4-chlorobenzoyl) benzoyl)pyrrolidine-2-carboxylic acid under N2 for 10 h (Fig.3). The compound was purified by flash column chromatography (silica gel column, petroleum ether/ethyl acetate=4/1). Colourless crystals for the X-ray crystallographic studies were gained from slow evaporation of a dichloromethane solution.

Refinement top

The structure was solved by direct methods and expanded with difference Fourier techniques. All non-hydrogen atoms were refined anisotropically by the full matrix least-squares on the F2. The hydrogen atoms attached to carbon atoms were located by geometrical calculation using a riding model [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Partial packing diagram showing the C—H···O interaction in the racemate.
[Figure 3] Fig. 3. Reaction scheme of the preparation of the title compound.
(3aR*,5R*)-5-(4-Chlorophenyl)-1,2,3,3a- tetrahydrobenzo[e]pyrrolo[2,1-b][1,3]oxazepin-10(5H)-one top
Crystal data top
C18H16ClNO2F(000) = 656
Mr = 313.77Dx = 1.366 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3950 reflections
a = 8.1764 (6) Åθ = 2.2–27.5°
b = 16.9030 (11) ŵ = 0.26 mm1
c = 11.1564 (8) ÅT = 296 K
β = 98.224 (6)°Prism, colourless
V = 1526.02 (19) Å30.22 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3478 independent reflections
Radiation source: fine-focus sealed tube2393 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.676, Tmax = 1.000k = 2119
12942 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.092P)2]
where P = (Fo2 + 2Fc2)/3
3478 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C18H16ClNO2V = 1526.02 (19) Å3
Mr = 313.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1764 (6) ŵ = 0.26 mm1
b = 16.9030 (11) ÅT = 296 K
c = 11.1564 (8) Å0.22 × 0.18 × 0.15 mm
β = 98.224 (6)°
Data collection top
Bruker APEXII area-detector
diffractometer
3478 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2393 reflections with I > 2σ(I)
Tmin = 0.676, Tmax = 1.000Rint = 0.039
12942 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.04Δρmax = 0.31 e Å3
3478 reflectionsΔρmin = 0.37 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.03682 (9)0.29821 (4)0.05399 (7)0.0622 (3)
N10.4690 (3)0.10862 (13)0.34094 (18)0.0480 (5)
C10.5968 (3)0.03368 (14)0.2353 (2)0.0413 (6)
O10.6417 (2)0.07672 (14)0.51050 (16)0.0688 (6)
O20.3452 (2)0.04181 (10)0.16210 (15)0.0489 (5)
C20.6842 (3)0.08243 (15)0.1681 (2)0.0499 (6)
H2A0.62770.11460.10840.060*
C30.8560 (3)0.08382 (18)0.1887 (3)0.0651 (8)
H3A0.91320.11650.14200.078*
C40.9415 (3)0.03783 (18)0.2764 (3)0.0683 (9)
H4A1.05640.03920.28970.082*
C50.8567 (3)0.01065 (17)0.3453 (3)0.0574 (7)
H5A0.91480.04150.40600.069*
C60.6849 (3)0.01392 (15)0.3250 (2)0.0445 (6)
C70.5983 (3)0.06870 (16)0.4016 (2)0.0501 (6)
C80.3617 (4)0.16033 (19)0.4019 (3)0.0692 (9)
H8A0.42060.20710.43490.083*
H8B0.31820.13250.46650.083*
C90.2247 (4)0.1818 (2)0.2998 (3)0.0719 (9)
H9A0.13590.14330.29310.086*
H9B0.18010.23380.31210.086*
C100.3120 (4)0.18035 (17)0.1886 (3)0.0631 (8)
H10A0.23360.17280.11570.076*
H10B0.37190.22930.18140.076*
C110.4297 (3)0.11097 (15)0.2095 (2)0.0461 (6)
H11A0.52920.12010.17180.055*
C120.4073 (3)0.03092 (14)0.2181 (2)0.0413 (5)
H12A0.37370.03260.29890.050*
C130.3216 (3)0.09805 (14)0.1466 (2)0.0415 (5)
C140.2537 (3)0.08971 (16)0.0260 (2)0.0541 (7)
H14A0.26600.04230.01400.065*
C150.1679 (3)0.15155 (16)0.0348 (2)0.0545 (7)
H15A0.12140.14510.11530.065*
C160.1508 (3)0.22169 (14)0.0218 (2)0.0456 (6)
C170.2183 (3)0.23170 (16)0.1421 (2)0.0500 (6)
H17A0.20750.27970.18090.060*
C180.3018 (3)0.16948 (16)0.2039 (2)0.0488 (6)
H18A0.34540.17560.28500.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0607 (4)0.0489 (4)0.0745 (5)0.0033 (3)0.0014 (4)0.0117 (3)
N10.0496 (12)0.0520 (12)0.0433 (11)0.0005 (10)0.0095 (9)0.0059 (9)
C10.0387 (12)0.0429 (13)0.0426 (13)0.0014 (10)0.0065 (10)0.0107 (10)
O10.0684 (13)0.0907 (16)0.0452 (11)0.0246 (11)0.0010 (9)0.0051 (10)
O20.0487 (10)0.0453 (10)0.0494 (10)0.0068 (8)0.0042 (8)0.0017 (8)
C20.0471 (13)0.0444 (13)0.0594 (16)0.0057 (11)0.0119 (12)0.0081 (11)
C30.0515 (15)0.0518 (16)0.096 (2)0.0119 (13)0.0243 (16)0.0092 (16)
C40.0383 (13)0.0613 (18)0.104 (3)0.0062 (13)0.0070 (15)0.0223 (17)
C50.0412 (13)0.0593 (17)0.0688 (18)0.0024 (12)0.0019 (13)0.0132 (14)
C60.0417 (12)0.0508 (14)0.0398 (13)0.0027 (11)0.0012 (10)0.0109 (10)
C70.0473 (13)0.0552 (16)0.0476 (14)0.0167 (12)0.0064 (12)0.0008 (12)
C80.0699 (19)0.068 (2)0.074 (2)0.0016 (16)0.0257 (16)0.0235 (16)
C90.0612 (17)0.0620 (19)0.095 (2)0.0130 (15)0.0202 (17)0.0128 (17)
C100.0603 (17)0.0490 (15)0.079 (2)0.0093 (13)0.0079 (15)0.0013 (14)
C110.0473 (13)0.0464 (14)0.0444 (14)0.0010 (11)0.0057 (11)0.0002 (11)
C120.0390 (11)0.0472 (13)0.0383 (12)0.0004 (10)0.0070 (10)0.0011 (10)
C130.0373 (11)0.0466 (13)0.0408 (12)0.0008 (10)0.0066 (10)0.0007 (10)
C140.0646 (16)0.0526 (15)0.0444 (14)0.0120 (13)0.0053 (13)0.0066 (11)
C150.0674 (17)0.0589 (17)0.0353 (13)0.0085 (13)0.0003 (12)0.0006 (11)
C160.0412 (12)0.0443 (13)0.0514 (14)0.0013 (10)0.0066 (11)0.0060 (11)
C170.0543 (14)0.0441 (13)0.0507 (14)0.0039 (12)0.0042 (12)0.0053 (11)
C180.0464 (13)0.0511 (14)0.0471 (14)0.0048 (11)0.0000 (11)0.0055 (11)
Geometric parameters (Å, º) top
Cl1—C161.741 (2)C8—H8B0.9700
N1—C71.351 (3)C9—C101.517 (4)
N1—C111.456 (3)C9—H9A0.9700
N1—C81.472 (3)C9—H9B0.9700
C1—C21.381 (4)C10—C111.514 (4)
C1—C61.400 (3)C10—H10A0.9700
C1—C121.534 (3)C10—H10B0.9700
O1—C71.223 (3)C11—H11A0.9800
O2—C111.421 (3)C12—C131.502 (3)
O2—C121.438 (3)C12—H12A0.9800
C2—C31.390 (3)C13—C181.386 (3)
C2—H2A0.9300C13—C141.387 (3)
C3—C41.362 (4)C14—C151.382 (3)
C3—H3A0.9300C14—H14A0.9300
C4—C51.377 (4)C15—C161.360 (4)
C4—H4A0.9300C15—H15A0.9300
C5—C61.392 (3)C16—C171.386 (3)
C5—H5A0.9300C17—C181.383 (4)
C6—C71.505 (4)C17—H17A0.9300
C8—C91.523 (4)C18—H18A0.9300
C8—H8A0.9700
C7—N1—C11124.2 (2)C11—C10—C9104.4 (2)
C7—N1—C8122.7 (2)C11—C10—H10A110.9
C11—N1—C8112.9 (2)C9—C10—H10A110.9
C2—C1—C6118.5 (2)C11—C10—H10B110.9
C2—C1—C12122.8 (2)C9—C10—H10B110.9
C6—C1—C12118.6 (2)H10A—C10—H10B108.9
C11—O2—C12114.74 (15)O2—C11—N1112.2 (2)
C1—C2—C3120.6 (3)O2—C11—C10108.37 (19)
C1—C2—H2A119.7N1—C11—C10102.7 (2)
C3—C2—H2A119.7O2—C11—H11A111.1
C4—C3—C2120.8 (3)N1—C11—H11A111.1
C4—C3—H3A119.6C10—C11—H11A111.1
C2—C3—H3A119.6O2—C12—C13107.83 (17)
C3—C4—C5119.5 (3)O2—C12—C1111.60 (19)
C3—C4—H4A120.2C13—C12—C1115.5 (2)
C5—C4—H4A120.2O2—C12—H12A107.2
C4—C5—C6120.7 (3)C13—C12—H12A107.2
C4—C5—H5A119.7C1—C12—H12A107.2
C6—C5—H5A119.7C18—C13—C14118.6 (2)
C5—C6—C1119.9 (3)C18—C13—C12119.3 (2)
C5—C6—C7118.6 (2)C14—C13—C12122.0 (2)
C1—C6—C7121.6 (2)C15—C14—C13120.3 (2)
O1—C7—N1122.5 (3)C15—C14—H14A119.9
O1—C7—C6122.6 (2)C13—C14—H14A119.9
N1—C7—C6114.9 (2)C16—C15—C14120.7 (2)
N1—C8—C9102.7 (2)C16—C15—H15A119.7
N1—C8—H8A111.2C14—C15—H15A119.7
C9—C8—H8A111.2C15—C16—C17120.2 (2)
N1—C8—H8B111.2C15—C16—Cl1120.34 (19)
C9—C8—H8B111.2C17—C16—Cl1119.4 (2)
H8A—C8—H8B109.1C18—C17—C16119.3 (2)
C10—C9—C8103.0 (2)C18—C17—H17A120.4
C10—C9—H9A111.2C16—C17—H17A120.4
C8—C9—H9A111.2C17—C18—C13121.0 (2)
C10—C9—H9B111.2C17—C18—H18A119.5
C8—C9—H9B111.2C13—C18—H18A119.5
H9A—C9—H9B109.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.982.273.206 (3)159
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H16ClNO2
Mr313.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.1764 (6), 16.9030 (11), 11.1564 (8)
β (°) 98.224 (6)
V3)1526.02 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.22 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.676, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12942, 3478, 2393
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.181, 1.04
No. of reflections3478
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.37

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.982.273.206 (3)159
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China is gratefully acknowledged.

References

First citationAubert, C., Vos, M. H., Mathias, P., Eker, A. M. & Brettle, K. (2000). Nature (London), 407, 926.  Web of Science CrossRef Google Scholar
First citationBasarić, N., Horvat, M., Mlinarić-Majerski, K., Zimmermann, E., Neudörfl, J. & Griesbeck, A. G. (2008). Org. Lett. 10, 3965–3968.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGratzel, M. (2001). Pure Appl. Chem. 73, 459–467.  CAS Google Scholar
First citationGriesbeck, A. G., Heinrich, T., Oelgemöller, M., Molis, A. & Heidtann, A. (2002). Helv. Chim. Acta, 85, 4561–4577.  CrossRef CAS Google Scholar
First citationGriesbeck, A. G., Henz, A., Kramer, W., Lex, J., Nerowshi, F. & Oelgemöller, M. (1997). Helv. Chim. Acta, 80, 912–933.  CSD CrossRef CAS Web of Science Google Scholar
First citationGriesbeck, A. G., Nerowski, F. & Lex, J. (1999). J. Org. Chem. 64, 5213–5217.  Web of Science CSD CrossRef CAS Google Scholar
First citationHenz, A., Griesbeck, A. G. & Peters, K. (1995). Angew. Chem. Int. Ed. 34, 474–491.  Google Scholar
First citationKorzeniewski, B. & Zoladz, J. A. (2001). Biophys. Chem. 92, 7–34.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds