metal-organic compounds
catena-Poly[[[aqua(formato-κO)(1,10-phenanthroline-κ2N,N′)manganese(II)]-μ-formato-κ2O:O′] monohydrate]
aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: xuwei@nbu.edu.cn
The title compound, {[Mn(HCOO)2(C12H8N2)(H2O)]·H2O}n, consists of polymeric chains of the complex [Mn(HCOO)2(phen)(H2O)]∞ (phen is 1,10-phenanthroline) with solvent water molecules. The chains contain six-coordinate MnII ions bridged by formate anions. They are further extended into a three-dimensional network via O—H⋯O hydrogen-bonding interactions and interchain π–π stacking interactions, with a centroid–centroid distance of 3.679 (4) Å.
Related literature
For the design and synthesis of coordination polymer complexes and their potential applications, see: Robin & Fromm (2006); Farrusseng et al. (2008); Chen et al. (2010). For the formate anion as a ligand, see: Yuan et al. (2008); Hagen et al. (2009); Hu et al. (2009); Paredes-Gaecía (2009). For a related structure, see: Janiak (2000).
Experimental
Crystal data
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811020575/fj2422sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811020575/fj2422Isup2.hkl
Addition of 2.0 mL (1.0 M) NaOH to a stirred aqueous of 0.201 g (1.0 mmol) MnCl2.4H2O in 5.0 mL H2O yield yellowish precipitate, which was then separated by centrifugation, followed by washing with double-distilled water until no detectable Cl- anions in supernatant. The precipitate was added to a stirred ethanolic aqueous solution of 0.198 g (1.0 mmol) 1,10-phenanthroline monohydrate in 20 mL EtOH/H2O (v:v = 1: 1). To the mixture was added 2.0 mL (1.0 M) HCOOH and the yellowish suspension was further stirred for ca. 30 min. After filtration, the solution (pH = 6.58) was allowed to stand at room temperature. Slow evaporation for two weeks affored yellowish crystals (yield 62% based on the initial MnCl2.4H2O input).
All H atoms bound to C were position geometrically and refined as riding, with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms attached to O were located in difference Fourier maps and placed at fixed positions with Uiso(H) = 1.5Ueq(O).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Mn(HCO2)2(C12H8N2)(H2O)]·H2O | F(000) = 740 |
Mr = 361.21 | Dx = 1.564 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 8376 reflections |
a = 19.260 (4) Å | θ = 3.4–27.4° |
b = 12.161 (2) Å | µ = 0.89 mm−1 |
c = 6.5493 (13) Å | T = 295 K |
V = 1534.0 (5) Å3 | Needle, yellow |
Z = 4 | 0.31 × 0.12 × 0.09 mm |
Rigaku R-AXIS RAPID diffractometer | 2644 independent reflections |
Radiation source: fine-focus sealed tube | 1921 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
ω scans | θmax = 25.0°, θmin = 3.4° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −22→22 |
Tmin = 0.664, Tmax = 0.791 | k = −14→14 |
11493 measured reflections | l = −7→7 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0135P)2 + 2.7605P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.111 | (Δ/σ)max < 0.001 |
S = 1.20 | Δρmax = 0.70 e Å−3 |
2644 reflections | Δρmin = −0.93 e Å−3 |
209 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0025 (6) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1165 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.01 (4) |
[Mn(HCO2)2(C12H8N2)(H2O)]·H2O | V = 1534.0 (5) Å3 |
Mr = 361.21 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 19.260 (4) Å | µ = 0.89 mm−1 |
b = 12.161 (2) Å | T = 295 K |
c = 6.5493 (13) Å | 0.31 × 0.12 × 0.09 mm |
Rigaku R-AXIS RAPID diffractometer | 2644 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1921 reflections with I > 2σ(I) |
Tmin = 0.664, Tmax = 0.791 | Rint = 0.047 |
11493 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.111 | Δρmax = 0.70 e Å−3 |
S = 1.20 | Δρmin = −0.93 e Å−3 |
2644 reflections | Absolute structure: Flack (1983), 1165 Friedel pairs |
209 parameters | Absolute structure parameter: 0.01 (4) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.57992 (4) | 0.37155 (6) | 0.67916 (16) | 0.0454 (3) | |
N1 | 0.6768 (3) | 0.3026 (4) | 0.5202 (9) | 0.0525 (13) | |
N2 | 0.6704 (2) | 0.4167 (4) | 0.8785 (8) | 0.0470 (12) | |
C1 | 0.6796 (4) | 0.2444 (5) | 0.3480 (10) | 0.068 (2) | |
H1A | 0.6385 | 0.2277 | 0.2802 | 0.082* | |
C2 | 0.7429 (5) | 0.2076 (6) | 0.2658 (13) | 0.087 (3) | |
H2A | 0.7435 | 0.1662 | 0.1464 | 0.105* | |
C3 | 0.8034 (5) | 0.2333 (7) | 0.3629 (15) | 0.091 (3) | |
H3A | 0.8455 | 0.2099 | 0.3084 | 0.110* | |
C4 | 0.8027 (4) | 0.2946 (6) | 0.5440 (13) | 0.073 (2) | |
C5 | 0.8643 (4) | 0.3266 (7) | 0.6559 (18) | 0.093 (3) | |
H5A | 0.9077 | 0.3074 | 0.6049 | 0.112* | |
C6 | 0.8603 (4) | 0.3828 (8) | 0.8299 (16) | 0.096 (3) | |
H6A | 0.9010 | 0.4006 | 0.8988 | 0.116* | |
C7 | 0.7958 (3) | 0.4161 (6) | 0.9127 (12) | 0.067 (2) | |
C8 | 0.7882 (4) | 0.4722 (7) | 1.0989 (12) | 0.079 (3) | |
H8A | 0.8274 | 0.4906 | 1.1742 | 0.095* | |
C9 | 0.7246 (4) | 0.4999 (5) | 1.1701 (14) | 0.0725 (19) | |
H9A | 0.7197 | 0.5372 | 1.2932 | 0.087* | |
C10 | 0.6668 (4) | 0.4714 (5) | 1.0556 (11) | 0.0600 (17) | |
H10A | 0.6233 | 0.4913 | 1.1043 | 0.072* | |
C11 | 0.7335 (3) | 0.3880 (5) | 0.8082 (10) | 0.0513 (16) | |
C12 | 0.7379 (3) | 0.3280 (5) | 0.6200 (10) | 0.0553 (19) | |
C13 | 0.5493 (3) | 0.5910 (5) | 0.4494 (9) | 0.0508 (15) | |
H13 | 0.5562 | 0.6662 | 0.4325 | 0.061* | |
O1 | 0.5939 (2) | 0.5392 (3) | 0.5480 (7) | 0.0537 (11) | |
O2 | 0.4966 (2) | 0.5501 (3) | 0.3718 (7) | 0.0599 (12) | |
C14 | 0.5604 (4) | 0.1288 (6) | 0.7827 (12) | 0.071 (2) | |
H14 | 0.5642 | 0.1173 | 0.6428 | 0.086* | |
O3 | 0.5629 (3) | 0.2210 (4) | 0.8388 (7) | 0.0747 (14) | |
O4 | 0.5534 (4) | 0.0457 (4) | 0.8904 (10) | 0.112 (2) | |
O5 | 0.5090 (2) | 0.3307 (3) | 0.4372 (7) | 0.0719 (14) | |
H5B | 0.4990 | 0.3890 | 0.3784 | 0.108* | |
H5C | 0.5014 | 0.2710 | 0.3749 | 0.108* | |
O6 | 0.4906 (3) | 0.1479 (4) | 0.2384 (9) | 0.115 (2) | |
H6B | 0.4780 | 0.0927 | 0.3042 | 0.173* | |
H6C | 0.5237 | 0.1210 | 0.1706 | 0.173* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0384 (4) | 0.0469 (4) | 0.0509 (5) | 0.0040 (4) | 0.0029 (6) | −0.0014 (6) |
N1 | 0.052 (3) | 0.052 (3) | 0.054 (3) | 0.013 (2) | 0.016 (3) | 0.008 (3) |
N2 | 0.039 (3) | 0.053 (3) | 0.049 (3) | 0.005 (2) | 0.002 (2) | 0.004 (3) |
C1 | 0.094 (6) | 0.053 (4) | 0.056 (4) | 0.020 (4) | 0.035 (4) | −0.002 (4) |
C2 | 0.129 (8) | 0.061 (4) | 0.073 (5) | 0.023 (5) | 0.050 (6) | 0.012 (4) |
C3 | 0.096 (7) | 0.075 (6) | 0.103 (7) | 0.043 (5) | 0.049 (6) | 0.036 (6) |
C4 | 0.062 (5) | 0.080 (5) | 0.078 (5) | 0.021 (4) | 0.030 (4) | 0.041 (4) |
C5 | 0.039 (4) | 0.129 (7) | 0.112 (8) | 0.019 (4) | 0.019 (5) | 0.063 (8) |
C6 | 0.050 (5) | 0.133 (9) | 0.106 (8) | −0.001 (5) | −0.002 (5) | 0.059 (7) |
C7 | 0.043 (4) | 0.078 (5) | 0.078 (6) | −0.007 (4) | −0.011 (4) | 0.040 (4) |
C8 | 0.075 (5) | 0.083 (5) | 0.081 (6) | −0.026 (4) | −0.036 (4) | 0.033 (4) |
C9 | 0.082 (5) | 0.069 (4) | 0.066 (4) | −0.018 (4) | −0.029 (5) | 0.013 (5) |
C10 | 0.069 (5) | 0.058 (4) | 0.053 (4) | −0.001 (4) | −0.005 (4) | 0.005 (3) |
C11 | 0.045 (4) | 0.057 (4) | 0.051 (4) | 0.005 (3) | 0.003 (3) | 0.023 (3) |
C12 | 0.040 (4) | 0.057 (4) | 0.068 (5) | 0.017 (3) | 0.011 (3) | 0.024 (3) |
C13 | 0.047 (4) | 0.047 (4) | 0.058 (4) | 0.000 (3) | −0.007 (3) | 0.013 (3) |
O1 | 0.047 (2) | 0.049 (2) | 0.065 (3) | −0.0018 (19) | −0.016 (2) | 0.008 (2) |
O2 | 0.050 (3) | 0.052 (3) | 0.078 (3) | 0.004 (2) | −0.019 (2) | 0.008 (2) |
C14 | 0.090 (6) | 0.048 (4) | 0.076 (5) | 0.019 (4) | 0.024 (4) | 0.015 (4) |
O3 | 0.090 (4) | 0.058 (3) | 0.075 (4) | 0.005 (3) | 0.021 (3) | 0.002 (3) |
O4 | 0.164 (6) | 0.056 (3) | 0.117 (5) | 0.008 (4) | 0.023 (5) | 0.024 (4) |
O5 | 0.085 (4) | 0.048 (3) | 0.082 (3) | 0.000 (2) | −0.032 (3) | 0.001 (2) |
O6 | 0.165 (6) | 0.085 (4) | 0.095 (5) | −0.030 (4) | 0.028 (4) | −0.033 (3) |
Mn1—O3 | 2.134 (5) | C6—H6A | 0.9300 |
Mn1—O5 | 2.150 (4) | C7—C8 | 1.405 (11) |
Mn1—O2i | 2.161 (4) | C7—C11 | 1.422 (9) |
Mn1—O1 | 2.228 (4) | C8—C9 | 1.353 (10) |
Mn1—N2 | 2.246 (5) | C8—H8A | 0.9300 |
Mn1—N1 | 2.295 (5) | C9—C10 | 1.385 (9) |
N1—C1 | 1.333 (8) | C9—H9A | 0.9300 |
N1—C12 | 1.382 (8) | C10—H10A | 0.9300 |
N2—C10 | 1.339 (9) | C11—C12 | 1.435 (9) |
N2—C11 | 1.346 (7) | C13—O2 | 1.240 (7) |
C1—C2 | 1.406 (10) | C13—O1 | 1.245 (7) |
C1—H1A | 0.9300 | C13—H13 | 0.9300 |
C2—C3 | 1.364 (11) | O2—Mn1ii | 2.161 (4) |
C2—H2A | 0.9300 | C14—O3 | 1.180 (8) |
C3—C4 | 1.401 (12) | C14—O4 | 1.240 (8) |
C3—H3A | 0.9300 | C14—H14 | 0.9300 |
C4—C12 | 1.403 (9) | O5—H5B | 0.8290 |
C4—C5 | 1.448 (12) | O5—H5C | 0.8460 |
C5—C6 | 1.331 (13) | O6—H6B | 0.8339 |
C5—H5A | 0.9300 | O6—H6C | 0.8420 |
C6—C7 | 1.414 (11) | ||
O3—Mn1—O5 | 93.75 (19) | C4—C5—H5A | 119.2 |
O3—Mn1—O2i | 89.28 (17) | C5—C6—C7 | 121.8 (9) |
O5—Mn1—O2i | 95.71 (18) | C5—C6—H6A | 119.1 |
O3—Mn1—O1 | 172.92 (19) | C7—C6—H6A | 119.1 |
O5—Mn1—O1 | 90.21 (16) | C8—C7—C6 | 124.3 (8) |
O2i—Mn1—O1 | 84.49 (17) | C8—C7—C11 | 116.5 (7) |
O3—Mn1—N2 | 92.55 (19) | C6—C7—C11 | 119.1 (8) |
O5—Mn1—N2 | 167.9 (2) | C9—C8—C7 | 121.0 (7) |
O2i—Mn1—N2 | 94.70 (18) | C9—C8—H8A | 119.5 |
O1—Mn1—N2 | 84.64 (16) | C7—C8—H8A | 119.5 |
O3—Mn1—N1 | 91.92 (18) | C8—C9—C10 | 118.6 (8) |
O5—Mn1—N1 | 95.6 (2) | C8—C9—H9A | 120.7 |
O2i—Mn1—N1 | 168.5 (2) | C10—C9—H9A | 120.7 |
O1—Mn1—N1 | 93.53 (17) | N2—C10—C9 | 123.5 (7) |
N2—Mn1—N1 | 73.86 (18) | N2—C10—H10A | 118.3 |
C1—N1—C12 | 119.0 (6) | C9—C10—H10A | 118.3 |
C1—N1—Mn1 | 127.6 (5) | N2—C11—C7 | 122.3 (7) |
C12—N1—Mn1 | 113.4 (4) | N2—C11—C12 | 118.6 (6) |
C10—N2—C11 | 118.2 (6) | C7—C11—C12 | 119.0 (6) |
C10—N2—Mn1 | 125.8 (4) | N1—C12—C4 | 121.7 (7) |
C11—N2—Mn1 | 116.0 (4) | N1—C12—C11 | 118.0 (6) |
N1—C1—C2 | 121.9 (8) | C4—C12—C11 | 120.3 (7) |
N1—C1—H1A | 119.1 | O2—C13—O1 | 125.0 (6) |
C2—C1—H1A | 119.1 | O2—C13—H13 | 117.5 |
C3—C2—C1 | 119.3 (8) | O1—C13—H13 | 117.5 |
C3—C2—H2A | 120.3 | C13—O1—Mn1 | 125.5 (4) |
C1—C2—H2A | 120.3 | C13—O2—Mn1ii | 128.4 (4) |
C2—C3—C4 | 120.5 (8) | O3—C14—O4 | 127.0 (8) |
C2—C3—H3A | 119.7 | O3—C14—H14 | 116.5 |
C4—C3—H3A | 119.7 | O4—C14—H14 | 116.5 |
C3—C4—C12 | 117.6 (8) | C14—O3—Mn1 | 131.9 (5) |
C3—C4—C5 | 124.3 (8) | Mn1—O5—H5B | 107.1 |
C12—C4—C5 | 118.1 (8) | Mn1—O5—H5C | 131.6 |
C6—C5—C4 | 121.6 (8) | H5B—O5—H5C | 118.0 |
C6—C5—H5A | 119.2 | H6B—O6—H6C | 100.5 |
Symmetry codes: (i) −x+1, −y+1, z+1/2; (ii) −x+1, −y+1, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5B···O2 | 0.83 | 1.96 | 2.713 (5) | 150 |
O5—H5C···O6 | 0.85 | 1.76 | 2.601 (6) | 177 |
O6—H6B···O4iii | 0.83 | 1.88 | 2.693 (8) | 166 |
O6—H6C···O4iv | 0.83 | 2.13 | 2.864 (9) | 145 |
Symmetry codes: (iii) −x+1, −y, z−1/2; (iv) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Mn(HCO2)2(C12H8N2)(H2O)]·H2O |
Mr | 361.21 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 295 |
a, b, c (Å) | 19.260 (4), 12.161 (2), 6.5493 (13) |
V (Å3) | 1534.0 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.89 |
Crystal size (mm) | 0.31 × 0.12 × 0.09 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.664, 0.791 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11493, 2644, 1921 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.111, 1.20 |
No. of reflections | 2644 |
No. of parameters | 209 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.70, −0.93 |
Absolute structure | Flack (1983), 1165 Friedel pairs |
Absolute structure parameter | 0.01 (4) |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5B···O2 | 0.83 | 1.96 | 2.713 (5) | 150 |
O5—H5C···O6 | 0.85 | 1.76 | 2.601 (6) | 177 |
O6—H6B···O4i | 0.83 | 1.88 | 2.693 (8) | 166 |
O6—H6C···O4ii | 0.83 | 2.13 | 2.864 (9) | 145 |
Symmetry codes: (i) −x+1, −y, z−1/2; (ii) x, y, z−1. |
Acknowledgements
This project was supported by the Scientific Research Fund of the Zhejiang Provincial Education Department (grant No. Y201017782) and the Scientific Research Fund of Ningbo University (grant No. XKL09078). Thanks are also extended to the K. C. Wong Magna Fund of Ningbo University.
References
Chen, Z. X., Xiang, S. C., Arman, H. D., Li, P., Tidrow, S., Zhao, D. Y. & Chen, B. L. (2010). Eur. J. Inorg. Chem. pp. 3745–3749. CrossRef Google Scholar
Farrusseng, D., Aguado, S. & Pinel, C. (2008). Angew. Chem. Int. Ed. 48, 7502–7503. CrossRef Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hagen, K. S., Naik, S. G., Huynh, B. H., Masello, A. & Christou, G. (2009). J. Am. Chem. Soc. 131, 7516–7517. Web of Science CrossRef PubMed CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hu, K. L., Kurmoo, M., Wang, Z. M. & Gao, S. (2009). Chem. Eur. J. 15, 12050–12064. CrossRef PubMed CAS Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Paredes-Gaecía, V. (2009). Inorg. Chem. 48, 4737–4742. Web of Science PubMed Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yuan, P. L., Li, P. Z., Sun, Q. F., Liu, L. X., Gao, K., Liu, W. S., Lu, X. M. & Yu, S. Y. (2008). J. Mol. Struct. 890, 112–115 CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, extensive efforts have been dedicated to the design and construction of coordination polymers because their supramolecular architectures with specific topologies may endow them with promising properties for material chemistry, such as gas sorption, storage and separations, molecular recognition, heterogeneous catalysis, nonlinear optics and magnetic properties (Robin & Fromm, 2006; Farrusseng, et al., 2008; Chen, et al., 2010). Investigations on a series of transition metal formate anions showed that it tend to function as a bidentate ligand to bridge metal atoms into one-dimensional chains, two-dimensional layers and three-dimensional networks (Hagen, et al., 2009; Hu, et al., 2009; Paredes-Gaecía, 2009). In the present contribution, we report a new manganese(II) complex, [Mn(HCOO)2(phen)(H2O)].H2O (I), resulting from self-assembly of Mn2+ ions, 1,10-phenanthroline and formic acid. It is isostructural with the previously reported [Co(HCOO)2(phen)(H2O)].H2O complex (Yuan, et al., 2008).
Compound I consists of an neutral one-dimensional zigzag chains [Mn(HCOO)2(phen)(H2O)]n and lattice water molecules. As shown in Fig. 1, each Mn atom is octahedral coordination by two N atoms of phen ligand, two O atoms of two bridging formate anions, one O atom of one terminal formate anion and one O atom of the coordination water molecule. The octehedral coordination around the Mn atoms are strongly distorted since the diametrical and non-diametrical bond angles indicate significant deviations from 180° and 90°, respectively. The Mn-O distances are in the range of 2.134 (5)-2.228 (4) Å, while the Mn-N distances are 2.246 (5) and 2.295 (5) Å. Then two neighboring MnII centers connected by formate anion with the distance of 5.474 (5) Å form one-dimensional zigzag chain along [001] (Fig. 2).
The coordinated water molecule forms a strong intra-chain hydrogen bond to the carboxyl O2 with d(O···O) = 2.713 (5) Å and <O-H···O = 150°. There are three kinds of independent inter-chain hydrogen bonds responsible for the two-dimensional layers assembly (Fig. 3, Table 1). One kind of the inter-chain O-H···O hydrogen bonds is formed between the O-H group of coordinated water molecules acting as acceptors (the O···O distance is 2.601 (6) Å with a O-H···O angle of 177°). The other two kinds are formed between the O-H groups of uncoordinated water molecules and the uncoordinated oxygen atoms of the carboxyl groups from the coordianted terminal formate anions in two adjacent chains, with the different O···O distances of 2.693 (8) and 2.864 (9) Å, and two different O-H···O angles of 166° and 145°, respectively. The phen ligands chelating Mn atoms exhibit nearly perfect coplanarity. Two neighboring phen ligands of different chains parallelly face opposite directions at an interplanar centroid to centroid distance of 3.679 (4) Å, with the quinoline fragments partially covered, which suggests significant inter-chain π-π stacking interactions (Janiak, 2000). Acoording to the above description, it is clear that the π-π interactions and inter-chain hydrogen bonding interactions are responsible for the supramolecular assembly of the three-dimensional network.