metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m955-m956

Di­chloridobis{N,N-di­ethyl-4-[(pyridin-2-yl-κN)diazen­yl]aniline}zinc

aDepartment of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and bNational Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand
*Correspondence e-mail: nararak.le@psu.ac.th

(Received 20 May 2011; accepted 13 June 2011; online 18 June 2011)

In the title complex, [ZnCl2(C15H18N4)2], the ZnII cation is coordinated by two N atoms from the pyridine rings of two unidentate N,N-diethyl-4-[(pyridin-2-yl)diazen­yl]aniline ligands and two Cl atoms, resulting in a distorted tetra­hedral geometry. The ligands are mutually transoid with respect to the metal atom. Weak inter­molecular C—H⋯Cl hydrogen bonds and ππ inter­actions, with centroid–centroid distances of 3.8452 (14) and 3.9932 (14) Å, are found in the crystal packing.

Related literature

For background to azo complexes, see: Arslan (2007[Arslan, F. (2007). Dyes and Pigments. 75, 521-525.]); Santra et al. (2001[Santra, P. K., Ray, U., Pal, S. & Sinha, C. (2001). Inorg. Chem. Commun. 4, 269-273.]); Peacock et al. (2007[Peacock, A. F. A., Habtemariam, A., Moggach, S. A., Prescimone, A., Pearsons, S. & Sadler, P. J. (2007). Inorg. Chem. 46, 4049-4059.]); Ohashi et al. (2003[Ohashi, A., Tsukuda, T. & Watari, H. (2003). Anal. Sci. 19, 1085-1086.]). For applications of azo compounds, see: Millington et al. (2007[Millington, K. R., Fincher, K. W. & King, A. L. (2007). Sol. Energ. Mater. Sol.Cells, 91, 1618-1630.]); Hallas & Choi (1999[Hallas, G. & Choi, J. H. (1999). Dyes Pigments. 40, 119-129.]); Ho et al. (1995[Ho, M. S., Natansohn, A. & Rochon, P. (1995). Macromolecules, 28, 6124-6127.]); Sharma et al. (2008[Sharma, G. D., Suresh, P., Sharma, S. K. & Roy, M. S. (2008). Synth. Met. 158, 509-515.]). For their photochromic properties, see: Baena et al. (1994[Baena, M. J., Barbed, J., Espinet, P., Ezcurra, J. A., Res, M. B. & Serrano, J. L. (1994). J. Am. Chem. Soc. 116, 1899-1906.]). For structures of related azoimine complexes, see: Leesakul et al. (2010[Leesakul, N., Yoopensuk, S., Pakawatchai, C., Saithong, S. & Hansongnern, K. (2010). Acta Cryst. E66, o1923.]); Nag et al. (2001[Nag, J. K., Santra, P. K., Sinha, C., Liao, F.-L. & Lu, T.-H. (2001). Polyhedron, 20, 2253-2259.]); Pramanik & Das (2010[Pramanik, A. & Das, G. (2010). Polyhedron, 29, 2999-3007.]); Steffen & Palenik (1976[Steffen, W. L. & Palenik, G. J. (1976). Acta Cryst. B32, 298-300.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C15H18N4)2]

  • Mr = 644.96

  • Monoclinic, P 21 /c

  • a = 13.4058 (6) Å

  • b = 13.8797 (6) Å

  • c = 16.8157 (8) Å

  • β = 100.562 (1)°

  • V = 3075.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 100 K

  • 0.17 × 0.17 × 0.06 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.]) Tmin = 0.780, Tmax = 1.000

  • 32570 measured reflections

  • 5410 independent reflections

  • 4547 reflections with I > 2s(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.086

  • S = 1.06

  • 5410 reflections

  • 374 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cl1i 0.95 2.72 3.486 (2) 138
Symmetry code: (i) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The chemistry of azoimine (—NN—CN—) compounds has been known for stabilizing the low-valent metal ions (Arslan, 2007; Santra et al., 2001; Peacock et al.,2007; Ohashi et al., 2003). The imine (—CN—) and azo (—NN—) units are ordinary high affinity towards transition metal binding via N hetero atom. Azo compounds are highly colored and commonly utilized in textile industries (Millington et al., 2007; Hallas et al., 1999), optical data storage (Ho et al., 1995) and sensitizer in DSSC (Sharma et al., 2008). In particular, coordination compounds of ZnII incorporating with azo moiety are extensively used as photoactive materials owing to its interesting photochromic properties (Baena et al., 1994).

Herein, we report the synthesis and crystal structure of a novel ZnII complex with N,N-diethyl-4-[2-(pyridyl)diazenyl]aniline (C30H36N8: deazpy), an azoimine ligand. The molecular structure of Zn(C30H36N8)Cl2 is a distorted tetrahedral complex (Scheme 1 and Fig.1). The N,N-diethyl-4-[2-(pyridyl)diazenyl]aniline ligand is a bidentate ligand. The chelated coordinations (Nag et al., 2001) between ZnII and N donor atoms of pyridine and azo moieties are generally observed in the crystal structure. However, in the present work, the ZnII coordinates to two unidentate deazpy ligands via N(py) atoms [Zn(1)—N(1) = 2.0513 (19) Å, Zn(1)—N(5) = 2.0439 (19) Å] and two Cl atoms [Zn(1)—Cl(1) = 2.2565 (6) Å, Zn(1)—Cl(2) = 2.2713 (6) Å]. These Zn—N bond distances are slightly longer than that of related ZnII with two unidentate imidazole ligands (Pramanik et al., 2010) giving the Zn—N distances = 2.003 (3) and 2.013 (3) Å. The reported Zn—Cl bond distances in dichlorobis(2-azopyridine)zinc(II) (Nag et al., 2001) complex are averaged to 2.2293 Å while the averaged Zn—Cl bond length in complex of dichlorobis(pyridine)zinc(II) reports at 2.222 Å (Steffen et al., 1976) which are slightly shorter than our complex (average 2.2639 Å). All N—Zn—N, N—Zn—Cl and Cl—Zn—Cl bond angles deviate from 109.5¯, especially for N(5)—Zn(1)—N(1) = 123.54 (8)o arising from the steric constraints from the deazpy structure. The torsion angles of pyridine-azo-phenyl atoms, C(5)—N(2)—N(3)—C(6) and C(20)—N(6)—N(7)—C(21), are -179.03 (19) and -178.30 (19) o, respectively. The dihedral angle of mean planes of pyridine-azo-phenyl rings among two ligands is 57.40(0.04)o. Within the ligand molecules, the N(py) atoms exist in trans-orientation with respect to the N(azo) atom attached to the phenyl ring. It is as same as that observed from the similar free ligand, N,N-dimethyl-4-[2(pyridyl)diazenyl] aniline (dmazpy) (Leesakul et al., 2010). The NN distances of the ZnII complex are 1.286 (3) Å for N2N3 and 1.280 (3) Å for N6N7 which are longer than that of the free dmazpy ligand, 1.2566 (16) Å. It is because of the back donation of electron from d10-ZnII to π* orbital of the ligands. The strength of the azo bond decreases in comparison with the related free ligand.

The intramolecular C—H···π interactions are found between the phenyl ring of ligand 1 and the pyridine ring (Cg2) of ligand 2 [C(11)—H(11)···πCg2 = 3.303 Å] and vice versa [C(26)—H(26)···πCg1 = 3.550 Å](Fig. 2). In crystal packing, each molecule interacts the adjacent molecules via weak hydrogen-bonding interactions of C(17)—H(17)···Cl(1)i, [C···Cl = 3.486 (2) Å, symmetry code i: x, -y + 5/2, z - 1/2] (Fig. 2 and Tab. 1). In addition, the intermolecular ππ interactions are found between the phenyl ring of ligands and the adjacent molecules [Cg3···Cg3ii = 3.8452 (14) Å and Cg4···Cg4iii = 3.9932 (14) Å, symmetry code (ii): 2-x, 1-y, 1-z, (iii): 1-x, 1-y, -z] (Fig. 3 and Tab. 2).

Related literature top

For background to azo complexes, see: Arslan (2007); Santra et al. (2001); Peacock et al. (2007); Ohashi et al. (2003). For applications of azo compounds, see: Millington et al. (2007); Hallas & Choi (1999); Ho et al. (1995); Sharma et al. (2008). For their photochromic properties, see: Baena et al. (1994). For structures of related azoimine complexes see: Leesakul et al. (2010); Nag et al. (2001); Pramanik & Das (2010); Steffen & Palenik (1976).

Experimental top

An acetonitrile solution (20 ml) of the N,N-diethyl-4-[2-(pyridyl)diazenyl]aniline ligand (0.15 g, 0.6 mmol) and ZnCl2 (0.04 g, 0.3 mmol) was refluxed for 4 h. The filtrate was left at room temperature for 2 weeks. The dark red solids were precipitated and washed it with CH2Cl2 and diethylether, respectively for twice times in order to remove the excess ligands. The dark red solids were recrystallized in acetonitrile and methanol (1:2) at 277 K for 10 days. The red crystals were obtained (yield 67%, 0.13 g).

Refinement top

The structure was solved by direct methods refined by a full-matrix least-squares procedure based on F2. All hydrogen atoms were constrained, C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C) for C-sp2 atoms of pyridine and phenyl rings and C—H = 0.98–0.99 Å with Uiso(H) = 1.5Ueq(C) for C-sp3 atoms of the ethyl group respectively.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHEXTL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of complex with thermal ellipsoids plotted at the 50% probability level. H atoms are omitted.
[Figure 2] Fig. 2. The weak intermolecular interactions of C—H···Cl between the adjacent molecules.
[Figure 3] Fig. 3. The ππ interactions between molecules in crystal packing.
Dichloridobis{N,N-diethyl-4-[(pyridin-2- yl-κN)diazenyl]aniline}zinc top
Crystal data top
[ZnCl2(C15H18N4)2]F(000) = 1344
Mr = 644.96Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5833 reflections
a = 13.4058 (6) Åθ = 2.3–24.9°
b = 13.8797 (6) ŵ = 1.01 mm1
c = 16.8157 (8) ÅT = 100 K
β = 100.562 (1)°Block, red brown
V = 3075.9 (2) Å30.17 × 0.17 × 0.06 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
5410 independent reflections
Radiation source: fine-focus sealed tube4547 reflections with I > 2s(I)
Graphite monochromatorRint = 0.050
Frames, each covering 0.3 ° in ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1515
Tmin = 0.780, Tmax = 1.000k = 1616
32570 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.042P)2 + 1.4983P]
where P = (Fo2 + 2Fc2)/3
5410 reflections(Δ/σ)max = 0.002
374 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[ZnCl2(C15H18N4)2]V = 3075.9 (2) Å3
Mr = 644.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4058 (6) ŵ = 1.01 mm1
b = 13.8797 (6) ÅT = 100 K
c = 16.8157 (8) Å0.17 × 0.17 × 0.06 mm
β = 100.562 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5410 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4547 reflections with I > 2s(I)
Tmin = 0.780, Tmax = 1.000Rint = 0.050
32570 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.06Δρmax = 0.50 e Å3
5410 reflectionsΔρmin = 0.27 e Å3
374 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ (F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.22361 (2)1.268175 (19)0.199133 (15)0.01635 (9)
Cl10.33540 (5)1.35648 (4)0.28631 (3)0.02473 (15)
Cl20.10979 (5)1.36055 (4)0.11562 (4)0.02345 (15)
N10.14219 (14)1.19205 (13)0.27007 (11)0.0166 (4)
N20.11954 (14)1.08164 (13)0.16762 (11)0.0183 (4)
N30.09170 (14)0.99507 (14)0.14720 (12)0.0193 (4)
N40.15013 (15)0.85544 (14)0.15184 (12)0.0197 (4)
N50.30591 (14)1.20492 (13)0.12234 (11)0.0162 (4)
N60.35399 (14)1.09944 (13)0.22628 (11)0.0175 (4)
N70.40540 (14)1.02387 (14)0.25039 (11)0.0191 (4)
N80.38830 (15)0.89031 (14)0.56015 (11)0.0207 (4)
C10.13247 (17)1.22457 (17)0.34345 (14)0.0191 (5)
H10.15921.28620.36020.023*
C20.08522 (17)1.17201 (18)0.39560 (14)0.0212 (5)
H20.08041.19620.44760.025*
C30.04487 (17)1.08254 (18)0.36986 (14)0.0217 (5)
H30.01321.04410.40480.026*
C40.05098 (17)1.04982 (17)0.29372 (14)0.0204 (5)
H40.02080.99030.27460.025*
C50.10238 (16)1.10573 (16)0.24487 (14)0.0166 (5)
C60.10811 (17)0.96618 (16)0.07189 (14)0.0186 (5)
C70.07776 (18)0.87198 (17)0.04831 (15)0.0219 (5)
H70.04780.83290.08390.026*
C80.09029 (18)0.83498 (17)0.02471 (14)0.0213 (5)
H80.06780.77140.03920.026*
C90.13627 (17)0.89031 (17)0.07878 (14)0.0184 (5)
C100.16746 (18)0.98555 (17)0.05428 (14)0.0194 (5)
H100.19951.02450.08870.023*
C110.15197 (17)1.02167 (17)0.01785 (14)0.0196 (5)
H110.17141.08620.03180.024*
C120.21799 (18)0.90415 (18)0.19791 (15)0.0233 (5)
H12A0.19940.97320.20320.028*
H12B0.20790.87640.25300.028*
C130.32931 (19)0.89580 (19)0.15950 (15)0.0270 (6)
H13A0.33980.92210.10450.040*
H13B0.37040.93200.19180.040*
H13C0.34960.82790.15740.040*
C140.1117 (2)0.76118 (18)0.18226 (16)0.0277 (6)
H14A0.09020.76500.24170.033*
H14B0.05120.74510.15880.033*
C150.1883 (2)0.6822 (2)0.1625 (2)0.0539 (10)
H15A0.24440.69310.19150.081*
H15B0.15620.62010.17890.081*
H15C0.21450.68160.10410.081*
C160.30213 (18)1.23720 (17)0.04651 (14)0.0193 (5)
H160.26441.29400.03000.023*
C170.35077 (17)1.19130 (17)0.00828 (14)0.0211 (5)
H170.34661.21550.06160.025*
C180.40618 (18)1.10855 (18)0.01682 (14)0.0221 (5)
H180.44011.07510.01970.026*
C190.41197 (17)1.07505 (17)0.09476 (14)0.0206 (5)
H190.45041.01910.11290.025*
C200.36016 (17)1.12516 (16)0.14622 (13)0.0167 (5)
C210.39913 (17)0.99451 (17)0.32815 (14)0.0187 (5)
C220.45412 (18)0.91200 (17)0.35774 (14)0.0208 (5)
H220.49430.88000.32490.025*
C230.45074 (17)0.87670 (17)0.43350 (14)0.0207 (5)
H230.48850.82050.45190.025*
C240.39216 (17)0.92230 (16)0.48482 (14)0.0188 (5)
C250.33610 (18)1.00572 (17)0.45299 (14)0.0200 (5)
H250.29481.03770.48500.024*
C260.34047 (18)1.04044 (17)0.37802 (14)0.0194 (5)
H260.30321.09670.35910.023*
C270.31848 (19)0.93302 (18)0.60798 (14)0.0245 (6)
H27A0.32361.00410.60540.029*
H27B0.33990.91360.66520.029*
C280.20876 (19)0.9040 (2)0.57998 (16)0.0312 (6)
H28A0.18650.92350.52350.047*
H28B0.16640.93570.61390.047*
H28C0.20240.83390.58440.047*
C290.44691 (19)0.80678 (17)0.59611 (15)0.0239 (6)
H29A0.46630.81720.65520.029*
H29B0.51020.80270.57380.029*
C300.3912 (2)0.71195 (18)0.5815 (2)0.0381 (7)
H30A0.32860.71500.60370.057*
H30B0.43440.66000.60810.057*
H30C0.37440.69940.52320.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01989 (16)0.01422 (15)0.01534 (15)0.00023 (11)0.00428 (11)0.00035 (11)
Cl10.0290 (3)0.0241 (3)0.0210 (3)0.0076 (3)0.0041 (3)0.0036 (2)
Cl20.0261 (3)0.0200 (3)0.0243 (3)0.0059 (2)0.0047 (3)0.0049 (2)
N10.0165 (10)0.0162 (10)0.0170 (10)0.0029 (8)0.0026 (8)0.0020 (8)
N20.0170 (10)0.0169 (10)0.0204 (10)0.0005 (8)0.0013 (8)0.0017 (8)
N30.0181 (10)0.0159 (10)0.0230 (11)0.0003 (8)0.0017 (8)0.0014 (8)
N40.0200 (10)0.0182 (10)0.0205 (10)0.0021 (8)0.0024 (8)0.0033 (8)
N50.0169 (10)0.0143 (10)0.0173 (10)0.0024 (8)0.0029 (8)0.0008 (8)
N60.0170 (10)0.0163 (10)0.0187 (10)0.0011 (8)0.0021 (8)0.0009 (8)
N70.0180 (10)0.0170 (10)0.0215 (10)0.0008 (8)0.0010 (8)0.0001 (8)
N80.0229 (11)0.0183 (10)0.0208 (11)0.0040 (9)0.0040 (9)0.0037 (9)
C10.0162 (12)0.0191 (12)0.0210 (13)0.0032 (10)0.0011 (10)0.0005 (10)
C20.0180 (12)0.0288 (14)0.0171 (12)0.0060 (11)0.0042 (10)0.0015 (10)
C30.0156 (12)0.0256 (13)0.0247 (13)0.0022 (10)0.0059 (10)0.0085 (11)
C40.0139 (12)0.0167 (12)0.0299 (14)0.0002 (10)0.0022 (10)0.0014 (10)
C50.0133 (12)0.0150 (12)0.0202 (12)0.0015 (9)0.0001 (9)0.0022 (10)
C60.0160 (12)0.0177 (12)0.0213 (12)0.0006 (10)0.0017 (10)0.0017 (10)
C70.0224 (13)0.0177 (12)0.0259 (13)0.0030 (10)0.0056 (10)0.0014 (10)
C80.0221 (13)0.0141 (12)0.0277 (13)0.0020 (10)0.0047 (10)0.0021 (10)
C90.0123 (11)0.0186 (12)0.0224 (12)0.0019 (10)0.0015 (9)0.0000 (10)
C100.0191 (12)0.0189 (12)0.0196 (12)0.0035 (10)0.0022 (10)0.0022 (10)
C110.0172 (12)0.0141 (12)0.0260 (13)0.0015 (10)0.0001 (10)0.0005 (10)
C120.0248 (14)0.0237 (13)0.0210 (13)0.0022 (11)0.0035 (10)0.0018 (10)
C130.0260 (14)0.0278 (14)0.0279 (14)0.0030 (11)0.0072 (11)0.0005 (11)
C140.0265 (14)0.0237 (14)0.0326 (15)0.0047 (11)0.0049 (11)0.0080 (11)
C150.0332 (17)0.0193 (15)0.103 (3)0.0011 (13)0.0038 (18)0.0061 (17)
C160.0194 (12)0.0182 (12)0.0203 (12)0.0038 (10)0.0033 (10)0.0014 (10)
C170.0208 (13)0.0247 (13)0.0182 (12)0.0094 (11)0.0048 (10)0.0022 (10)
C180.0204 (13)0.0236 (13)0.0241 (13)0.0039 (11)0.0087 (10)0.0074 (11)
C190.0166 (12)0.0204 (12)0.0256 (13)0.0011 (10)0.0056 (10)0.0022 (10)
C200.0159 (12)0.0149 (12)0.0193 (12)0.0042 (10)0.0031 (9)0.0009 (9)
C210.0165 (12)0.0186 (12)0.0204 (12)0.0004 (10)0.0015 (10)0.0000 (10)
C220.0184 (12)0.0207 (13)0.0239 (13)0.0024 (10)0.0055 (10)0.0005 (10)
C230.0176 (12)0.0171 (12)0.0265 (13)0.0051 (10)0.0020 (10)0.0022 (10)
C240.0186 (12)0.0177 (12)0.0187 (12)0.0010 (10)0.0002 (10)0.0002 (10)
C250.0203 (12)0.0183 (12)0.0214 (12)0.0026 (10)0.0036 (10)0.0022 (10)
C260.0196 (13)0.0153 (12)0.0221 (12)0.0024 (10)0.0005 (10)0.0014 (10)
C270.0313 (14)0.0255 (13)0.0175 (12)0.0064 (11)0.0068 (11)0.0009 (10)
C280.0270 (15)0.0318 (15)0.0367 (16)0.0058 (12)0.0109 (12)0.0037 (12)
C290.0267 (14)0.0232 (13)0.0211 (13)0.0051 (11)0.0026 (10)0.0043 (10)
C300.0363 (17)0.0194 (14)0.058 (2)0.0035 (12)0.0057 (14)0.0040 (13)
Geometric parameters (Å, º) top
Zn1—N52.0439 (19)C12—H12B0.9900
Zn1—N12.0513 (19)C13—H13A0.9800
Zn1—Cl12.2565 (6)C13—H13B0.9800
Zn1—Cl22.2713 (6)C13—H13C0.9800
N1—C11.343 (3)C14—C151.498 (4)
N1—C51.348 (3)C14—H14A0.9900
N2—N31.286 (3)C14—H14B0.9900
N2—C51.401 (3)C15—H15A0.9800
N3—C61.384 (3)C15—H15B0.9800
N4—C91.364 (3)C15—H15C0.9800
N4—C141.463 (3)C16—C171.378 (3)
N4—C121.464 (3)C16—H160.9500
N5—C161.344 (3)C17—C181.391 (3)
N5—C201.345 (3)C17—H170.9500
N6—N71.280 (3)C18—C191.379 (3)
N6—C201.410 (3)C18—H180.9500
N7—C211.387 (3)C19—C201.391 (3)
N8—C241.352 (3)C19—H190.9500
N8—C271.466 (3)C21—C221.403 (3)
N8—C291.467 (3)C21—C261.404 (3)
C1—C21.381 (3)C22—C231.373 (3)
C1—H10.9500C22—H220.9500
C2—C31.391 (3)C23—C241.418 (3)
C2—H20.9500C23—H230.9500
C3—C41.375 (3)C24—C251.430 (3)
C3—H30.9500C25—C261.361 (3)
C4—C51.400 (3)C25—H250.9500
C4—H40.9500C26—H260.9500
C6—C111.400 (3)C27—C281.514 (4)
C6—C71.405 (3)C27—H27A0.9900
C7—C81.369 (3)C27—H27B0.9900
C7—H70.9500C28—H28A0.9800
C8—C91.415 (3)C28—H28B0.9800
C8—H80.9500C28—H28C0.9800
C9—C101.424 (3)C29—C301.511 (4)
C10—C111.363 (3)C29—H29A0.9900
C10—H100.9500C29—H29B0.9900
C11—H110.9500C30—H30A0.9800
C12—C131.518 (3)C30—H30B0.9800
C12—H12A0.9900C30—H30C0.9800
N5—Zn1—N1123.54 (8)N4—C14—H14A108.9
N5—Zn1—Cl1105.82 (5)C15—C14—H14A108.9
N1—Zn1—Cl1105.24 (6)N4—C14—H14B108.9
N5—Zn1—Cl2103.36 (6)C15—C14—H14B108.9
N1—Zn1—Cl2106.35 (5)H14A—C14—H14B107.8
Cl1—Zn1—Cl2112.70 (2)C14—C15—H15A109.5
C1—N1—C5119.2 (2)C14—C15—H15B109.5
C1—N1—Zn1120.86 (16)H15A—C15—H15B109.5
C5—N1—Zn1119.82 (15)C14—C15—H15C109.5
N3—N2—C5112.43 (19)H15A—C15—H15C109.5
N2—N3—C6115.34 (19)H15B—C15—H15C109.5
C9—N4—C14122.3 (2)N5—C16—C17122.7 (2)
C9—N4—C12120.86 (19)N5—C16—H16118.7
C14—N4—C12116.16 (19)C17—C16—H16118.7
C16—N5—C20118.8 (2)C16—C17—C18118.1 (2)
C16—N5—Zn1121.70 (16)C16—C17—H17121.0
C20—N5—Zn1119.34 (15)C18—C17—H17121.0
N7—N6—C20112.80 (18)C19—C18—C17120.0 (2)
N6—N7—C21114.67 (19)C19—C18—H18120.0
C24—N8—C27121.26 (19)C17—C18—H18120.0
C24—N8—C29122.4 (2)C18—C19—C20118.4 (2)
C27—N8—C29116.16 (19)C18—C19—H19120.8
N1—C1—C2122.6 (2)C20—C19—H19120.8
N1—C1—H1118.7N5—C20—C19122.0 (2)
C2—C1—H1118.7N5—C20—N6111.74 (19)
C1—C2—C3118.1 (2)C19—C20—N6126.2 (2)
C1—C2—H2120.9N7—C21—C22117.1 (2)
C3—C2—H2120.9N7—C21—C26124.6 (2)
C4—C3—C2119.9 (2)C22—C21—C26118.3 (2)
C4—C3—H3120.1C23—C22—C21121.0 (2)
C2—C3—H3120.1C23—C22—H22119.5
C3—C4—C5118.9 (2)C21—C22—H22119.5
C3—C4—H4120.6C22—C23—C24121.4 (2)
C5—C4—H4120.6C22—C23—H23119.3
N1—C5—C4121.2 (2)C24—C23—H23119.3
N1—C5—N2112.38 (19)N8—C24—C23123.0 (2)
C4—C5—N2126.5 (2)N8—C24—C25120.6 (2)
N3—C6—C11126.2 (2)C23—C24—C25116.4 (2)
N3—C6—C7116.2 (2)C26—C25—C24121.6 (2)
C11—C6—C7117.6 (2)C26—C25—H25119.2
C8—C7—C6121.7 (2)C24—C25—H25119.2
C8—C7—H7119.2C25—C26—C21121.1 (2)
C6—C7—H7119.2C25—C26—H26119.4
C7—C8—C9120.8 (2)C21—C26—H26119.4
C7—C8—H8119.6N8—C27—C28113.8 (2)
C9—C8—H8119.6N8—C27—H27A108.8
N4—C9—C8122.2 (2)C28—C27—H27A108.8
N4—C9—C10120.6 (2)N8—C27—H27B108.8
C8—C9—C10117.2 (2)C28—C27—H27B108.8
C11—C10—C9120.9 (2)H27A—C27—H27B107.7
C11—C10—H10119.5C27—C28—H28A109.5
C9—C10—H10119.5C27—C28—H28B109.5
C10—C11—C6121.7 (2)H28A—C28—H28B109.5
C10—C11—H11119.1C27—C28—H28C109.5
C6—C11—H11119.1H28A—C28—H28C109.5
N4—C12—C13113.4 (2)H28B—C28—H28C109.5
N4—C12—H12A108.9N8—C29—C30114.2 (2)
C13—C12—H12A108.9N8—C29—H29A108.7
N4—C12—H12B108.9C30—C29—H29A108.7
C13—C12—H12B108.9N8—C29—H29B108.7
H12A—C12—H12B107.7C30—C29—H29B108.7
C12—C13—H13A109.5H29A—C29—H29B107.6
C12—C13—H13B109.5C29—C30—H30A109.5
H13A—C13—H13B109.5C29—C30—H30B109.5
C12—C13—H13C109.5H30A—C30—H30B109.5
H13A—C13—H13C109.5C29—C30—H30C109.5
H13B—C13—H13C109.5H30A—C30—H30C109.5
N4—C14—C15113.2 (2)H30B—C30—H30C109.5
N5—Zn1—N1—C1146.45 (16)C9—C10—C11—C62.1 (4)
Cl1—Zn1—N1—C125.15 (18)N3—C6—C11—C10178.1 (2)
Cl2—Zn1—N1—C194.64 (17)C7—C6—C11—C101.7 (3)
N5—Zn1—N1—C529.95 (19)C9—N4—C12—C1369.6 (3)
Cl1—Zn1—N1—C5151.25 (15)C14—N4—C12—C13101.3 (2)
Cl2—Zn1—N1—C588.96 (16)C9—N4—C14—C1593.7 (3)
C5—N2—N3—C6179.03 (19)C12—N4—C14—C1577.0 (3)
N1—Zn1—N5—C16135.03 (17)C20—N5—C16—C170.7 (3)
Cl1—Zn1—N5—C16103.94 (17)Zn1—N5—C16—C17174.90 (17)
Cl2—Zn1—N5—C1614.72 (18)N5—C16—C17—C180.3 (3)
N1—Zn1—N5—C2040.56 (19)C16—C17—C18—C190.5 (3)
Cl1—Zn1—N5—C2080.47 (16)C17—C18—C19—C200.9 (3)
Cl2—Zn1—N5—C20160.87 (15)C16—N5—C20—C190.3 (3)
C20—N6—N7—C21178.30 (19)Zn1—N5—C20—C19175.45 (17)
C5—N1—C1—C21.6 (3)C16—N5—C20—N6178.30 (19)
Zn1—N1—C1—C2174.77 (17)Zn1—N5—C20—N62.6 (2)
N1—C1—C2—C31.1 (3)C18—C19—C20—N50.5 (3)
C1—C2—C3—C41.3 (3)C18—C19—C20—N6177.2 (2)
C2—C3—C4—C53.0 (3)N7—N6—C20—N5179.76 (18)
C1—N1—C5—C40.2 (3)N7—N6—C20—C192.3 (3)
Zn1—N1—C5—C4176.66 (16)N6—N7—C21—C22179.9 (2)
C1—N1—C5—N2179.48 (19)N6—N7—C21—C261.3 (3)
Zn1—N1—C5—N23.0 (2)N7—C21—C22—C23178.7 (2)
C3—C4—C5—N12.5 (3)C26—C21—C22—C230.1 (3)
C3—C4—C5—N2177.1 (2)C21—C22—C23—C240.3 (4)
N3—N2—C5—N1172.75 (18)C27—N8—C24—C23173.3 (2)
N3—N2—C5—C46.9 (3)C29—N8—C24—C231.7 (3)
N2—N3—C6—C110.5 (3)C27—N8—C24—C256.9 (3)
N2—N3—C6—C7179.7 (2)C29—N8—C24—C25178.1 (2)
N3—C6—C7—C8179.8 (2)C22—C23—C24—N8179.0 (2)
C11—C6—C7—C80.0 (4)C22—C23—C24—C250.8 (3)
C6—C7—C8—C91.1 (4)N8—C24—C25—C26178.6 (2)
C14—N4—C9—C84.7 (3)C23—C24—C25—C261.3 (3)
C12—N4—C9—C8165.6 (2)C24—C25—C26—C211.1 (4)
C14—N4—C9—C10174.8 (2)N7—C21—C26—C25178.2 (2)
C12—N4—C9—C1014.9 (3)C22—C21—C26—C250.5 (3)
C7—C8—C9—N4179.8 (2)C24—N8—C27—C2874.3 (3)
C7—C8—C9—C100.7 (3)C29—N8—C27—C28101.0 (2)
N4—C9—C10—C11178.6 (2)C24—N8—C29—C3091.3 (3)
C8—C9—C10—C110.9 (3)C27—N8—C29—C3084.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···Cl1i0.952.723.486 (2)138
Symmetry code: (i) x, y+5/2, z1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C15H18N4)2]
Mr644.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.4058 (6), 13.8797 (6), 16.8157 (8)
β (°) 100.562 (1)
V3)3075.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.17 × 0.17 × 0.06
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.780, 1.000
No. of measured, independent and
observed [I > 2s(I)] reflections
32570, 5410, 4547
Rint0.050
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 1.06
No. of reflections5410
No. of parameters374
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHEXTL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···Cl1i0.952.723.486 (2)138
Symmetry code: (i) x, y+5/2, z1/2.
 

Acknowledgements

NL acknowledges financial support from the Center for Innovation in Chemistry (PERCH–CIC), the Commission on Higher Education and the Ministry of Education. YT thanks the National Nanotechnology Center (NANOSIM) and the Thailand Research Fund (RSA-5180010) for financial support.

References

First citationArslan, F. (2007). Dyes and Pigments. 75, 521–525.  CrossRef CAS Google Scholar
First citationBaena, M. J., Barbed, J., Espinet, P., Ezcurra, J. A., Res, M. B. & Serrano, J. L. (1994). J. Am. Chem. Soc. 116, 1899–1906.  CrossRef CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationHallas, G. & Choi, J. H. (1999). Dyes Pigments. 40, 119–129.  CrossRef CAS Google Scholar
First citationHo, M. S., Natansohn, A. & Rochon, P. (1995). Macromolecules, 28, 6124–6127.  CrossRef CAS Google Scholar
First citationLeesakul, N., Yoopensuk, S., Pakawatchai, C., Saithong, S. & Hansongnern, K. (2010). Acta Cryst. E66, o1923.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMillington, K. R., Fincher, K. W. & King, A. L. (2007). Sol. Energ. Mater. Sol.Cells, 91, 1618–1630.  CrossRef CAS Google Scholar
First citationNag, J. K., Santra, P. K., Sinha, C., Liao, F.-L. & Lu, T.-H. (2001). Polyhedron, 20, 2253–2259.  CrossRef CAS Google Scholar
First citationOhashi, A., Tsukuda, T. & Watari, H. (2003). Anal. Sci. 19, 1085–1086.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPeacock, A. F. A., Habtemariam, A., Moggach, S. A., Prescimone, A., Pearsons, S. & Sadler, P. J. (2007). Inorg. Chem. 46, 4049–4059.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPramanik, A. & Das, G. (2010). Polyhedron, 29, 2999–3007.  CrossRef CAS Google Scholar
First citationSantra, P. K., Ray, U., Pal, S. & Sinha, C. (2001). Inorg. Chem. Commun. 4, 269–273.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharma, G. D., Suresh, P., Sharma, S. K. & Roy, M. S. (2008). Synth. Met. 158, 509–515.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteffen, W. L. & Palenik, G. J. (1976). Acta Cryst. B32, 298–300.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m955-m956
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds