organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phen­yl(2,4,5-tri­phenyl­cyclo­penta-1,4-dien-1-yl)methanone

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: amzs@st-andrews.ac.uk

(Received 27 May 2011; accepted 13 June 2011; online 18 June 2011)

The title compound, C30H22O, does not form face-to-face ππ inter­actions despite the presence of four phenyl rings within the compound. Instead weak C—H⋯π inter­actions occur between adjacent mol­ecules, with C⋯C contact distances in the range 3.633 (4)–3.974 (4) Å. The ketone O atom also takes part in a weak C—H⋯O inter­action. The three pendant phenyl rings are twisted relative to the central cyclopentadiene ring by 17.82 (17), 29.63 (14) and 61.57 (9)°, while the phenylmethanone is nearly orthogonal, the angle between planes being 87.77 (9)°.

Related literature

For a previous preparation of the title compound, see: Lund (2005[Lund, H. (2005). J. Electroanal. Chem. 584, 174-181.]). The crystal studied was obtained by reaction of Woollins' reagent [2,4-bis­(phen­yl)-1,3-diselenadiphosphetane-2,4-disel­en­ide] with quinoxaline-2,3-dithiol. For a review of the chemistry of Woollins' reagent, see: Hua & Woollins (2009[Hua, G. & Woollins, J. D. (2009). Angew. Chem. Int. Ed. 48, 1368-1377.]). There are no structurally closely-related compounds in the literature; however, for some of the closest related, see: Evrard et al. (1971[Evrard, G., Piret, P., Germain, G. & Van Meerssche, M. (1971). Acta Cryst. B27, 661-666.]); Wender et al. (2006[Wender, P. A., Paxton, T. J. & Williams, T. J. (2006). J. Am. Chem. Soc. 128, 14814-14815.]).

[Scheme 1]

Experimental

Crystal data
  • C30H22O

  • Mr = 398.48

  • Monoclinic, C 2/c

  • a = 25.946 (6) Å

  • b = 6.1573 (14) Å

  • c = 26.602 (6) Å

  • β = 102.236 (7)°

  • V = 4153.3 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 93 K

  • 0.30 × 0.20 × 0.06 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.978, Tmax = 0.996

  • 13266 measured reflections

  • 4252 independent reflections

  • 2479 reflections with I > 2σ(I)

  • Rint = 0.120

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.225

  • S = 1.04

  • 4252 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C6–C11 and C25–C30 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O1i 0.99 2.64 3.229 (3) 118 (2)
C10—H10⋯Cg1ii 0.95 2.80 3.527 (3) 134 (2)
C20—H20⋯Cg2iii 0.95 2.80 3.605 (3) 143 (2)
C28—H28⋯Cg1iv 0.95 2.88 3.612 (3) 134 (2)
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [-x+1, y+1, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The previously know title compound (Lund, 2005) has been prepared by the reaction of Woollins' reagent with quinoxaline-2,3-dithiol. In a similar manner to the two somewhat related structures (Evrard et al., 1971 and Wender et al., 2006) no face-to-face π-interactions are observed, adjacent molecules instead interacting via a series of CH···π interactions. The ketone oxygen makes intermolecular CH···O contacts at a distance of 2.64 Å.

Related literature top

For a previous preparation of the title compound, see: Lund (2005). For a review of the other chemistry of Woollins' reagent, 2,4-bis(phenyl)-1,3-diselenadiphosphetane-2,4-diselenide, see: Hua & Woollins (2009). There are no structurally closely-related compounds in the literature; however, for some of the closest related, see: Evrard et al. (1971); Wender et al. (2006).

Experimental top

A mixture of 0.194 g of quinoxaline-2,3-dithiol (1.0 mmol) and Woollins' reagent (0.54 g, 1.0 mmol) in 20 ml of dry toluene was refluxed for 7 h. The red suspension disappeared and a deep red solution formed. Following cooling to room temperature and removal of solvent in vacuuo the residue was purified by silica gel column chromatography (1: 1 hexane/dichloromethane eluent) to give the title compound as a brown solid (0.060 g, 13%). Crystals suitable for X-ray structure determination were obtained from the diffusion of hexane into a dichloromethane solution of the title compound. Selected IR (KBr, cm-1): 1658(s, CO), 1596(m), 1490(m), 1443(m), 1243(s), 754(s), 6932(versus). 1H NMR (CD2Cl2, δ), 8.13–8.00 (m, 2H, ArH), 7.93–7.83 (m, 3H, ArH), 7.61–6.92 (m, 15H, ArH), 4.24 (s, 2H, CH2) p.p.m.. 13C NMR (CD2Cl2, δ), 168.5 (CO), 144.0, 135.8, 134.4, 133.4, 132.6, 130.7, 129.8, 129.4, 129.2, 129.0, 128.9, 128.8, 128.5, 128.3, 128.1, 127.9, 127.6, 127.4, 127.2, 127.0, 126.6, 46.0 p.p.m.. MS (CI+, m/z), 399 [M+H]+. Accurate mass measurement [CI+, m/z]: 399.1737 [M+H]+, calculated mass for C30H23O: 399.1743.

Refinement top

All the crystals chosen appeared to be poorly diffracting at higher angles, with low values of I/σ(I), and missing independent data in the experimentally measured range. All H atoms were included in calculated positions (C—H distances are 0.99 Å for methylene H atoms and 0.95 Å for phenyl H atoms) and refined as riding atoms with Uiso(H) = 1.2 Ueq(parent atom).

Computing details top

Data collection: CrystalClear (Rigaku, 2010); cell refinement: CrystalClear (Rigaku, 2010); data reduction: CrystalClear (Rigaku, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
phenyl(2,4,5-triphenylcyclopenta-1,4-dien-1-yl)methanone top
Crystal data top
C30H22OF(000) = 1680
Mr = 398.48Dx = 1.275 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3958 reflections
a = 25.946 (6) Åθ = 6.3–54.9°
b = 6.1573 (14) ŵ = 0.08 mm1
c = 26.602 (6) ÅT = 93 K
β = 102.236 (7)°Prism, colourless
V = 4153.3 (16) Å30.30 × 0.20 × 0.06 mm
Z = 8
Data collection top
Rigaku Mercury CCD
diffractometer
4252 independent reflections
Radiation source: rotating anode2479 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.120
Detector resolution: 14.7059 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω and ϕ scansh = 3326
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
k = 77
Tmin = 0.978, Tmax = 0.996l = 2833
13266 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.225H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1072P)2]
where P = (Fo2 + 2Fc2)/3
4252 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C30H22OV = 4153.3 (16) Å3
Mr = 398.48Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.946 (6) ŵ = 0.08 mm1
b = 6.1573 (14) ÅT = 93 K
c = 26.602 (6) Å0.30 × 0.20 × 0.06 mm
β = 102.236 (7)°
Data collection top
Rigaku Mercury CCD
diffractometer
4252 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
2479 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.996Rint = 0.120
13266 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.225H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
4252 reflectionsΔρmin = 0.39 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36026 (8)0.0838 (4)0.13591 (8)0.0494 (6)
C10.41982 (10)0.7166 (5)0.21370 (9)0.0300 (7)
H1A0.44800.68660.24430.036*
H1B0.40320.85770.21850.036*
C20.37945 (10)0.5375 (4)0.20539 (9)0.0279 (7)
C30.37812 (10)0.4503 (4)0.15812 (9)0.0289 (7)
C40.41591 (10)0.5655 (4)0.13312 (9)0.0283 (7)
C50.44176 (10)0.7189 (4)0.16562 (9)0.0269 (6)
C60.34825 (10)0.4843 (5)0.24389 (10)0.0304 (7)
C70.34567 (11)0.6341 (5)0.28290 (10)0.0368 (7)
H70.36450.76720.28420.044*
C80.31633 (12)0.5923 (6)0.31959 (11)0.0454 (8)
H80.31530.69640.34570.054*
C90.28875 (12)0.4015 (6)0.31855 (11)0.0452 (8)
H90.26810.37460.34340.054*
C100.29138 (11)0.2480 (5)0.28080 (12)0.0434 (8)
H100.27300.11440.28030.052*
C110.32083 (10)0.2887 (5)0.24366 (11)0.0350 (7)
H110.32230.18280.21800.042*
C120.34422 (11)0.2708 (5)0.13193 (10)0.0315 (7)
C130.29162 (11)0.3222 (5)0.09964 (10)0.0313 (7)
C140.26130 (11)0.1535 (5)0.07379 (10)0.0374 (7)
H140.27460.00930.07650.045*
C150.21138 (11)0.1970 (5)0.04388 (11)0.0416 (8)
H150.19060.08190.02650.050*
C160.19237 (12)0.4045 (6)0.03957 (12)0.0516 (9)
H160.15840.43370.01910.062*
C170.22223 (14)0.5704 (6)0.06479 (16)0.0740 (13)
H170.20900.71480.06150.089*
C180.27205 (12)0.5288 (5)0.09539 (12)0.0522 (10)
H180.29230.64430.11320.063*
C190.42011 (10)0.5280 (5)0.07848 (9)0.0291 (7)
C200.43588 (10)0.3314 (5)0.06182 (10)0.0341 (7)
H200.44370.21320.08520.041*
C210.44040 (11)0.3058 (5)0.01114 (11)0.0397 (8)
H210.45180.17090.00000.048*
C220.42837 (11)0.4765 (5)0.02322 (11)0.0398 (8)
H220.43150.45830.05790.048*
C230.41199 (11)0.6712 (5)0.00742 (10)0.0380 (8)
H230.40350.78750.03120.046*
C240.40768 (11)0.6993 (5)0.04363 (10)0.0358 (7)
H240.39630.83460.05460.043*
C250.48404 (10)0.8684 (4)0.15913 (9)0.0271 (7)
C260.52110 (10)0.8136 (5)0.12983 (10)0.0336 (7)
H260.51840.67750.11270.040*
C270.56144 (11)0.9533 (5)0.12544 (10)0.0381 (8)
H270.58590.91270.10510.046*
C280.56674 (11)1.1516 (5)0.15023 (11)0.0392 (8)
H280.59461.24730.14710.047*
C290.53077 (11)1.2092 (5)0.17984 (11)0.0373 (8)
H290.53411.34470.19730.045*
C300.49004 (11)1.0692 (5)0.18395 (9)0.0317 (7)
H300.46561.11100.20420.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0409 (12)0.0385 (14)0.0614 (14)0.0034 (10)0.0057 (11)0.0054 (11)
C10.0278 (15)0.0406 (18)0.0201 (14)0.0017 (12)0.0013 (11)0.0012 (11)
C20.0215 (14)0.0374 (18)0.0244 (15)0.0014 (11)0.0041 (11)0.0016 (11)
C30.0221 (14)0.0344 (17)0.0271 (15)0.0022 (11)0.0017 (11)0.0006 (12)
C40.0243 (14)0.0341 (17)0.0251 (14)0.0014 (11)0.0019 (11)0.0019 (12)
C50.0227 (14)0.0343 (17)0.0223 (14)0.0008 (11)0.0016 (11)0.0032 (11)
C60.0197 (14)0.0410 (18)0.0280 (15)0.0001 (12)0.0003 (11)0.0011 (12)
C70.0349 (17)0.048 (2)0.0280 (15)0.0041 (14)0.0078 (13)0.0019 (13)
C80.047 (2)0.057 (2)0.0338 (17)0.0068 (16)0.0134 (14)0.0049 (15)
C90.0383 (18)0.068 (2)0.0318 (17)0.0027 (16)0.0139 (14)0.0047 (16)
C100.0355 (18)0.053 (2)0.0419 (18)0.0084 (15)0.0078 (14)0.0089 (16)
C110.0307 (16)0.0411 (19)0.0337 (16)0.0035 (13)0.0079 (13)0.0009 (13)
C120.0314 (16)0.0336 (18)0.0300 (15)0.0018 (13)0.0079 (12)0.0020 (12)
C130.0323 (16)0.0339 (17)0.0270 (15)0.0001 (12)0.0044 (12)0.0020 (12)
C140.0387 (17)0.0398 (19)0.0317 (16)0.0051 (14)0.0031 (13)0.0001 (13)
C150.0395 (18)0.048 (2)0.0330 (17)0.0103 (15)0.0032 (13)0.0044 (14)
C160.0402 (19)0.054 (2)0.050 (2)0.0045 (16)0.0141 (15)0.0040 (17)
C170.055 (2)0.047 (2)0.097 (3)0.0130 (18)0.034 (2)0.014 (2)
C180.0411 (19)0.040 (2)0.063 (2)0.0018 (15)0.0173 (16)0.0145 (16)
C190.0254 (14)0.0352 (18)0.0242 (14)0.0018 (12)0.0003 (11)0.0022 (12)
C200.0331 (16)0.0387 (19)0.0277 (16)0.0003 (13)0.0001 (12)0.0043 (12)
C210.0349 (17)0.045 (2)0.0384 (18)0.0007 (14)0.0064 (14)0.0093 (14)
C220.0372 (17)0.054 (2)0.0269 (15)0.0033 (15)0.0041 (13)0.0038 (14)
C230.0385 (17)0.049 (2)0.0253 (16)0.0016 (14)0.0041 (13)0.0006 (13)
C240.0344 (16)0.0428 (19)0.0273 (16)0.0032 (13)0.0000 (12)0.0018 (13)
C250.0233 (14)0.0365 (17)0.0191 (14)0.0002 (12)0.0010 (11)0.0034 (11)
C260.0308 (16)0.0416 (19)0.0273 (15)0.0013 (13)0.0039 (12)0.0029 (12)
C270.0331 (17)0.050 (2)0.0319 (16)0.0055 (14)0.0086 (13)0.0022 (14)
C280.0299 (17)0.051 (2)0.0323 (17)0.0089 (14)0.0022 (13)0.0075 (14)
C290.0334 (17)0.0406 (19)0.0330 (16)0.0055 (13)0.0046 (13)0.0018 (13)
C300.0335 (16)0.0411 (19)0.0178 (13)0.0022 (13)0.0005 (11)0.0025 (12)
Geometric parameters (Å, º) top
O1—C121.221 (3)C15—H150.9500
C1—C21.504 (4)C16—C171.369 (5)
C1—C51.506 (4)C16—H160.9500
C1—H1A0.9900C17—C181.398 (4)
C1—H1B0.9900C17—H170.9500
C2—C31.361 (4)C18—H180.9500
C2—C61.471 (4)C19—C201.381 (4)
C3—C41.478 (4)C19—C241.396 (4)
C3—C121.490 (4)C20—C211.387 (4)
C4—C51.358 (3)C20—H200.9500
C4—C191.498 (4)C21—C221.384 (4)
C5—C251.470 (4)C21—H210.9500
C6—C111.398 (4)C22—C231.367 (4)
C6—C71.401 (4)C22—H220.9500
C7—C81.383 (4)C23—C241.397 (4)
C7—H70.9500C23—H230.9500
C8—C91.372 (4)C24—H240.9500
C8—H80.9500C25—C301.395 (4)
C9—C101.392 (4)C25—C261.401 (4)
C9—H90.9500C26—C271.379 (4)
C10—C111.394 (4)C26—H260.9500
C10—H100.9500C27—C281.380 (4)
C11—H110.9500C27—H270.9500
C12—C131.484 (4)C28—C291.389 (4)
C13—C181.366 (4)C28—H280.9500
C13—C141.393 (4)C29—C301.386 (4)
C14—C151.395 (4)C29—H290.9500
C14—H140.9500C30—H300.9500
C15—C161.366 (4)
C2—C1—C5105.0 (2)C14—C15—H15119.9
C2—C1—H1A110.7C15—C16—C17120.0 (3)
C5—C1—H1A110.7C15—C16—H16120.0
C2—C1—H1B110.7C17—C16—H16120.0
C5—C1—H1B110.7C16—C17—C18120.4 (3)
H1A—C1—H1B108.8C16—C17—H17119.8
C3—C2—C6130.2 (3)C18—C17—H17119.8
C3—C2—C1107.8 (2)C13—C18—C17120.1 (3)
C6—C2—C1122.0 (2)C13—C18—H18120.0
C2—C3—C4109.7 (2)C17—C18—H18120.0
C2—C3—C12128.4 (3)C20—C19—C24119.5 (3)
C4—C3—C12121.9 (2)C20—C19—C4122.2 (2)
C5—C4—C3109.4 (2)C24—C19—C4118.3 (2)
C5—C4—C19126.7 (2)C19—C20—C21120.2 (3)
C3—C4—C19123.7 (2)C19—C20—H20119.9
C4—C5—C25129.9 (2)C21—C20—H20119.9
C4—C5—C1108.0 (2)C22—C21—C20120.1 (3)
C25—C5—C1122.1 (2)C22—C21—H21119.9
C11—C6—C7117.8 (3)C20—C21—H21119.9
C11—C6—C2122.9 (3)C23—C22—C21120.3 (3)
C7—C6—C2119.2 (3)C23—C22—H22119.9
C8—C7—C6121.3 (3)C21—C22—H22119.9
C8—C7—H7119.3C22—C23—C24120.1 (3)
C6—C7—H7119.3C22—C23—H23120.0
C9—C8—C7120.5 (3)C24—C23—H23120.0
C9—C8—H8119.7C19—C24—C23119.8 (3)
C7—C8—H8119.7C19—C24—H24120.1
C8—C9—C10119.4 (3)C23—C24—H24120.1
C8—C9—H9120.3C30—C25—C26117.1 (2)
C10—C9—H9120.3C30—C25—C5120.7 (2)
C9—C10—C11120.5 (3)C26—C25—C5122.1 (2)
C9—C10—H10119.8C27—C26—C25121.3 (3)
C11—C10—H10119.8C27—C26—H26119.4
C10—C11—C6120.5 (3)C25—C26—H26119.4
C10—C11—H11119.8C26—C27—C28120.8 (3)
C6—C11—H11119.8C26—C27—H27119.6
O1—C12—C13120.4 (3)C28—C27—H27119.6
O1—C12—C3120.1 (2)C27—C28—C29119.1 (3)
C13—C12—C3119.4 (2)C27—C28—H28120.5
C18—C13—C14119.5 (3)C29—C28—H28120.5
C18—C13—C12121.8 (2)C30—C29—C28120.1 (3)
C14—C13—C12118.7 (3)C30—C29—H29120.0
C13—C14—C15119.8 (3)C28—C29—H29120.0
C13—C14—H14120.1C29—C30—C25121.6 (3)
C15—C14—H14120.1C29—C30—H30119.2
C16—C15—C14120.2 (3)C25—C30—H30119.2
C16—C15—H15119.9
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C6–C11 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.992.643.229 (3)118 (2)
C10—H10···Cg1ii0.952.803.527 (3)134 (2)
C20—H20···Cg2iii0.952.803.605 (3)143 (2)
C28—H28···Cg1iv0.952.883.612 (3)134 (2)
C10—H10···C10ii0.953.063.908 (4)150 (2)
C20—H20···C30iii0.952.793.633 (4)148 (2)
C28—H28···C9iv0.953.123.974 (4)151 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC30H22O
Mr398.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)93
a, b, c (Å)25.946 (6), 6.1573 (14), 26.602 (6)
β (°) 102.236 (7)
V3)4153.3 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.06
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2010)
Tmin, Tmax0.978, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
13266, 4252, 2479
Rint0.120
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.225, 1.04
No. of reflections4252
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.39

Computer programs: CrystalClear (Rigaku, 2010), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C6–C11 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.992.643.229 (3)118.3 (19)
C10—H10···Cg1ii0.952.803.527 (3)134 (2)
C20—H20···Cg2iii0.952.803.605 (3)143 (2)
C28—H28···Cg1iv0.952.883.612 (3)134 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x+1, y+1, z+1/2.
 

Acknowledgements

The authors are grateful to the University of St Andrews and the Engineering and Physical Science Research Council (EPSRC, UK) for financial support.

References

First citationEvrard, G., Piret, P., Germain, G. & Van Meerssche, M. (1971). Acta Cryst. B27, 661–666.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHua, G. & Woollins, J. D. (2009). Angew. Chem. Int. Ed. 48, 1368–1377.  Web of Science CrossRef CAS Google Scholar
First citationLund, H. (2005). J. Electroanal. Chem. 584, 174–181.  CrossRef CAS Google Scholar
First citationRigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWender, P. A., Paxton, T. J. & Williams, T. J. (2006). J. Am. Chem. Soc. 128, 14814–14815.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds