organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,5-Tri­phenyl-1,3,2-dioxa­phospho­lan-2-one

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: amzs@st-and.ac.uk

(Received 3 June 2011; accepted 20 June 2011; online 25 June 2011)

The dioxaphospho­lane ring in the title compound, C20H17O3P, adopts an envelope conformation about one of the ring carbons. The benzene rings of the compound do not form face-to-face ππ inter­actions, instead weak C—H⋯π inter­actions occur between adjacent mol­ecules. The methine H atoms on the dioxaphospho­lane ring form weak C—H⋯O hydrogen bonds to the oxide group of an adjacent mol­ecule.

Related literature

For the synthesis of the title compound and isomeric forms, see: Ovchinnikov et al. (1979[Ovchinnikov, V. V., Galkin, V. I., Yarkova, E. G., Cherkasov, R. A. & Pudovik, A. N. (1979). Dokl. Akad. Nauk SSSR, 245, 1390-1393.], 1995[Ovchinnikov, V. V., Karataeva, F. Kh. & Cherkasov, R. A. (1995). Zh. Obshch. Khim. 65, 412-25.]); Chauvin (1990[Chauvin, R. (1990). Tetrahedron Asymmetry, 1, 737-742.]). For related structures of dioxaphospho­lane oxides, see: Hoppe et al. (1985[Hoppe, I., Schollkopf, U., Nieger, M. & Egert, E. (1985). Angew. Chem. Int. Ed. Engl. 24, 1067-1068.]); Ananikov et al. (2010[Ananikov, V. P., Khemchyan, L. L., Beletskaya, I. P. & Starikova, Z. A. (2010). Adv. Synth. Catal. 352, 2979-2992.]); Han et al. (2008[Han, L.-B., Ono, Y. & Shimada, S. (2008). J. Am. Chem. Soc. 130, 2752-2753.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17O3P

  • Mr = 336.31

  • Monoclinic, P 21 /c

  • a = 16.744 (12) Å

  • b = 6.098 (4) Å

  • c = 17.300 (13) Å

  • β = 111.810 (15)°

  • V = 1640 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 93 K

  • 0.20 × 0.01 × 0.01 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.435, Tmax = 1.000

  • 10244 measured reflections

  • 3462 independent reflections

  • 2034 reflections with I > 2σ(I)

  • Rint = 0.109

Refinement
  • R[F2 > 2σ(F2)] = 0.090

  • wR(F2) = 0.256

  • S = 1.01

  • 3462 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O3i 1.00 2.59 3.248 (5) 123 (3)
C2—H2⋯O3i 1.00 2.29 3.115 (5) 139 (3)
C12—H12⋯Cg1ii 0.95 2.94 3.838 (5) 158 (3)
C12—H12⋯C18ii 0.95 2.83 3.585 (6) 138 (3)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The previously known title compound (Ovchinnikov et al., 1995) has been prepared by the reaction of Woollins' reagent with 1,2-diphenylethane-1,2-diol. The resulting dioxaphospholane ring in the title compound is similar to the only three structurally known phospholanes, bond lengths about P being very similar (P—O, 1.586–1.604 Å, PO, 1.461–1.467 Å, P—C, 1.765–1.815 Å; Hoppe et al., 1985, Han et al., 2008 and Ananikov et al., 2010). The dioxaphospholane ring displays an envelope conformation about C1, the torsion angles O2—P1—O1—C1 and P1—O2—C2—C1 being 19.0 (2) and -18.8 (3) °, respectively. The phenyl rings in the title compound do not form face-to-face ππ interactions, instead weak CH···π interactions result at a distance of 2.94 (5) Å. The phospholane oxide oxygen forms weak hydrogen bonds with the H1 and H2 H atoms, at distances of 2.29 (4) and 2.59 (4) Å forming chains along the [0 1 0] direction.

Related literature top

For related material [on what subject?], see: Ovchinnikov et al. (1995); Chauvin (1990); Ovchinnikov et al. (1979). For related structures of dioxaphospholane oxides, see: Hoppe et al. (1985); Ananikov et al. (2010); Han et al. (2008).

Experimental top

A mixture of diphenylethane-1,2-diol (0.214 g, 1.0 mmol) and Woollins' reagent (0.54 g, 1.0 mmol) in 20 ml of dry toluene was stirred at room temperature for 3 h. Then the mixture was heated to 60 °C with stirring for 2 h. The red suspension disappeared and a grayish-green solution formed. Following cooling to room temperature and removal of the solvent in vacuuo the residue was purified by silica gel column chromatography (dichloromethane eluent) to give the title compound as a pale green solid in low yield (0.055 g, 14%). Crystals suitable for X-ray structure determination were obtained from the diffusion of hexane into a dichloromethane solution of the title compound. Selected IR (KBr, cm-1): 1439(m), 1269(m), 1133(m), 992(s), 870(m), 840(m), 716(s), 693(s), 510(m). 1H NMR (CD2Cl2, δ), 8.06–7.94 (m, 2H, ArH), 7.71–7.55 (m, 2H, ArH), 7.23–7.05 (m, 11H, ArH), 5.88 (m, J = 9.1 Hz, 2H, CH) p.p.m.. 13C NMR (CD2Cl2, δ), 134.4, 131.9, 130.9, 130.6, 129.1, 128.4, 128.1, 126.8, 83.9 (COO) p.p.m.. 31P NMR (CD2Cl2, δ), 34.88 p.p.m..

Refinement top

All the crystals chosen appeared to be poorly diffracting at higher angles, with missing independent data in the experimentally measured range. All H atoms were included in calculated positions (C—H distances are 1.00 Å for methine H atoms and 0.95 Å for phenyl H atoms) and refined as riding atoms with Uiso(H) = 1.2 Ueq(parent atom).

Computing details top

Data collection: CrystalClear (Rigaku, 2010); cell refinement: CrystalClear (Rigaku, 2010); data reduction: CrystalClear (Rigaku, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
2,4,5-Triphenyl-1,3,2-dioxaphospholan-2-one top
Crystal data top
C20H17O3PF(000) = 704
Mr = 336.31Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4362 reflections
a = 16.744 (12) Åθ = 2.1–28.5°
b = 6.098 (4) ŵ = 0.18 mm1
c = 17.300 (13) ÅT = 93 K
β = 111.810 (15)°Needle, colorless
V = 1640 (2) Å30.20 × 0.01 × 0.01 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
3462 independent reflections
Radiation source: rotating anode2034 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.109
Detector resolution: 14.7059 pixels mm-1θmax = 28.6°, θmin = 1.3°
ω and ϕ scansh = 1821
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
k = 87
Tmin = 0.435, Tmax = 1.000l = 2219
10244 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.090Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.256H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1305P)2]
where P = (Fo2 + 2Fc2)/3
3462 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C20H17O3PV = 1640 (2) Å3
Mr = 336.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.744 (12) ŵ = 0.18 mm1
b = 6.098 (4) ÅT = 93 K
c = 17.300 (13) Å0.20 × 0.01 × 0.01 mm
β = 111.810 (15)°
Data collection top
Rigaku Mercury CCD
diffractometer
3462 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
2034 reflections with I > 2σ(I)
Tmin = 0.435, Tmax = 1.000Rint = 0.109
10244 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0900 restraints
wR(F2) = 0.256H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
3462 reflectionsΔρmin = 0.53 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.10931 (6)0.10326 (17)0.61793 (7)0.0392 (4)
O10.18993 (16)0.1930 (4)0.69493 (17)0.0423 (7)
O20.11788 (15)0.2675 (4)0.54921 (16)0.0392 (7)
O30.11527 (17)0.1319 (4)0.6046 (2)0.0498 (8)
C10.2142 (2)0.4112 (6)0.6780 (2)0.0356 (9)
H10.17700.52010.69200.043*
C20.1911 (2)0.4166 (6)0.5822 (2)0.0364 (9)
H20.17010.56770.56230.044*
C30.0125 (2)0.1775 (6)0.6301 (2)0.0372 (9)
C40.0305 (3)0.0204 (6)0.6596 (3)0.0419 (10)
H40.00790.12400.67130.050*
C50.1057 (3)0.0729 (7)0.6720 (3)0.0441 (10)
H50.13380.03400.69280.053*
C60.1395 (2)0.2845 (7)0.6535 (3)0.0431 (10)
H60.19140.32090.66090.052*
C70.0975 (2)0.4423 (7)0.6243 (3)0.0410 (9)
H70.12040.58640.61240.049*
C80.0221 (2)0.3888 (6)0.6125 (3)0.0385 (9)
H80.00620.49670.59230.046*
C90.3069 (2)0.4558 (6)0.7331 (2)0.0362 (9)
C100.3694 (2)0.2941 (7)0.7478 (2)0.0406 (9)
H100.35460.15380.72270.049*
C110.4540 (3)0.3391 (7)0.7996 (3)0.0425 (10)
H110.49670.22830.81000.051*
C120.4766 (3)0.5434 (7)0.8360 (3)0.0479 (11)
H120.53430.57250.87140.057*
C130.4146 (3)0.7049 (7)0.8205 (3)0.0499 (11)
H130.42980.84550.84520.060*
C140.3300 (3)0.6616 (6)0.7686 (3)0.0434 (10)
H140.28780.77370.75750.052*
C150.2596 (2)0.3581 (6)0.5482 (2)0.0356 (9)
C160.2620 (2)0.1556 (7)0.5115 (3)0.0405 (9)
H160.22300.04300.51210.049*
C170.3218 (3)0.1181 (7)0.4740 (3)0.0475 (11)
H170.32280.01950.44870.057*
C180.3789 (3)0.2794 (8)0.4737 (3)0.0513 (11)
H180.41900.25310.44770.062*
C190.3784 (3)0.4806 (7)0.5111 (3)0.0494 (11)
H190.41860.59100.51170.059*
C200.3185 (2)0.5192 (6)0.5477 (3)0.0416 (10)
H200.31770.65750.57270.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0441 (7)0.0296 (6)0.0438 (7)0.0021 (4)0.0162 (5)0.0008 (4)
O10.0442 (15)0.0345 (15)0.0459 (18)0.0013 (12)0.0140 (13)0.0093 (12)
O20.0440 (16)0.0365 (15)0.0369 (16)0.0033 (12)0.0148 (12)0.0003 (12)
O30.0563 (18)0.0260 (15)0.070 (2)0.0028 (12)0.0273 (16)0.0024 (13)
C10.050 (2)0.0274 (19)0.033 (2)0.0038 (16)0.0199 (18)0.0019 (15)
C20.037 (2)0.033 (2)0.039 (2)0.0013 (16)0.0141 (17)0.0017 (17)
C30.048 (2)0.028 (2)0.029 (2)0.0025 (17)0.0077 (17)0.0065 (15)
C40.046 (2)0.037 (2)0.038 (2)0.0028 (18)0.0108 (18)0.0037 (17)
C50.053 (2)0.043 (2)0.037 (2)0.0083 (19)0.0184 (19)0.0030 (18)
C60.037 (2)0.052 (3)0.041 (3)0.0032 (18)0.0157 (18)0.0034 (19)
C70.044 (2)0.037 (2)0.038 (2)0.0005 (18)0.0103 (18)0.0017 (17)
C80.040 (2)0.038 (2)0.036 (2)0.0002 (17)0.0114 (17)0.0007 (17)
C90.045 (2)0.036 (2)0.029 (2)0.0000 (17)0.0162 (17)0.0018 (16)
C100.050 (2)0.040 (2)0.035 (2)0.0019 (18)0.0189 (19)0.0010 (17)
C110.046 (2)0.049 (3)0.032 (2)0.0002 (19)0.0150 (18)0.0041 (18)
C120.050 (2)0.054 (3)0.036 (3)0.013 (2)0.0117 (19)0.004 (2)
C130.063 (3)0.042 (3)0.048 (3)0.015 (2)0.023 (2)0.010 (2)
C140.054 (3)0.036 (2)0.043 (3)0.0036 (18)0.022 (2)0.0031 (18)
C150.044 (2)0.034 (2)0.029 (2)0.0040 (17)0.0139 (17)0.0012 (15)
C160.042 (2)0.041 (2)0.037 (2)0.0006 (17)0.0127 (18)0.0045 (17)
C170.054 (3)0.050 (3)0.038 (3)0.013 (2)0.017 (2)0.0046 (19)
C180.052 (3)0.066 (3)0.040 (3)0.008 (2)0.021 (2)0.004 (2)
C190.048 (2)0.055 (3)0.046 (3)0.002 (2)0.018 (2)0.009 (2)
C200.048 (2)0.036 (2)0.042 (3)0.0039 (18)0.0185 (19)0.0004 (17)
Geometric parameters (Å, º) top
P1—O31.462 (3)C9—C141.388 (5)
P1—O11.600 (3)C9—C101.392 (5)
P1—O21.601 (3)C10—C111.393 (6)
P1—C31.769 (4)C10—H100.9500
O1—C11.452 (4)C11—C121.384 (6)
O2—C21.461 (4)C11—H110.9500
C1—C91.514 (5)C12—C131.383 (6)
C1—C21.556 (5)C12—H120.9500
C1—H11.0000C13—C141.392 (6)
C2—C151.515 (5)C13—H130.9500
C2—H21.0000C14—H140.9500
C3—C81.399 (5)C15—C201.394 (5)
C3—C41.404 (5)C15—C161.395 (5)
C4—C51.391 (6)C16—C171.399 (6)
C4—H40.9500C16—H160.9500
C5—C61.398 (6)C17—C181.374 (6)
C5—H50.9500C17—H170.9500
C6—C71.394 (6)C18—C191.389 (6)
C6—H60.9500C18—H180.9500
C7—C81.390 (6)C19—C201.390 (6)
C7—H70.9500C19—H190.9500
C8—H80.9500C20—H200.9500
O3—P1—O1112.38 (16)C3—C8—H8119.7
O3—P1—O2117.82 (17)C14—C9—C10119.5 (4)
O1—P1—O297.11 (15)C14—C9—C1119.5 (3)
O3—P1—C3112.89 (17)C10—C9—C1120.9 (3)
O1—P1—C3109.87 (17)C9—C10—C11119.7 (4)
O2—P1—C3105.51 (16)C9—C10—H10120.2
C1—O1—P1111.0 (2)C11—C10—H10120.2
C2—O2—P1113.1 (2)C12—C11—C10120.6 (4)
O1—C1—C9109.6 (3)C12—C11—H11119.7
O1—C1—C2104.9 (3)C10—C11—H11119.7
C9—C1—C2117.3 (3)C13—C12—C11119.7 (4)
O1—C1—H1108.3C13—C12—H12120.2
C9—C1—H1108.3C11—C12—H12120.2
C2—C1—H1108.3C12—C13—C14120.0 (4)
O2—C2—C15110.4 (3)C12—C13—H13120.0
O2—C2—C1104.1 (3)C14—C13—H13120.0
C15—C2—C1119.0 (3)C9—C14—C13120.4 (4)
O2—C2—H2107.6C9—C14—H14119.8
C15—C2—H2107.6C13—C14—H14119.8
C1—C2—H2107.6C20—C15—C16118.8 (4)
C8—C3—C4118.8 (4)C20—C15—C2118.4 (3)
C8—C3—P1122.2 (3)C16—C15—C2122.6 (3)
C4—C3—P1119.0 (3)C15—C16—C17120.1 (4)
C5—C4—C3121.0 (4)C15—C16—H16120.0
C5—C4—H4119.5C17—C16—H16120.0
C3—C4—H4119.5C18—C17—C16120.3 (4)
C4—C5—C6119.4 (4)C18—C17—H17119.8
C4—C5—H5120.3C16—C17—H17119.8
C6—C5—H5120.3C17—C18—C19120.3 (4)
C7—C6—C5120.3 (4)C17—C18—H18119.8
C7—C6—H6119.9C19—C18—H18119.8
C5—C6—H6119.9C18—C19—C20119.5 (4)
C8—C7—C6120.0 (4)C18—C19—H19120.2
C8—C7—H7120.0C20—C19—H19120.2
C6—C7—H7120.0C19—C20—C15120.9 (4)
C7—C8—C3120.6 (4)C19—C20—H20119.5
C7—C8—H8119.7C15—C20—H20119.5
O3—P1—O1—C1143.1 (2)C4—C3—C8—C70.2 (6)
O2—P1—O1—C119.0 (2)P1—C3—C8—C7178.8 (3)
C3—P1—O1—C190.3 (3)O1—C1—C9—C14139.9 (4)
O3—P1—O2—C2118.9 (3)C2—C1—C9—C14100.8 (4)
O1—P1—O2—C21.1 (2)O1—C1—C9—C1041.0 (5)
C3—P1—O2—C2114.1 (2)C2—C1—C9—C1078.4 (4)
P1—O1—C1—C9158.1 (2)C14—C9—C10—C111.6 (6)
P1—O1—C1—C231.4 (3)C1—C9—C10—C11179.3 (3)
P1—O2—C2—C15110.0 (3)C9—C10—C11—C120.5 (6)
P1—O2—C2—C118.8 (3)C10—C11—C12—C130.3 (6)
O1—C1—C2—O230.1 (3)C11—C12—C13—C140.1 (6)
C9—C1—C2—O2152.0 (3)C10—C9—C14—C131.8 (6)
O1—C1—C2—C1593.2 (4)C1—C9—C14—C13179.1 (4)
C9—C1—C2—C1528.6 (5)C12—C13—C14—C91.0 (6)
O3—P1—C3—C8155.4 (3)O2—C2—C15—C20157.7 (3)
O1—P1—C3—C878.3 (4)C1—C2—C15—C2082.1 (4)
O2—P1—C3—C825.4 (4)O2—C2—C15—C1617.2 (5)
O3—P1—C3—C425.5 (4)C1—C2—C15—C16103.0 (4)
O1—P1—C3—C4100.8 (3)C20—C15—C16—C171.0 (6)
O2—P1—C3—C4155.5 (3)C2—C15—C16—C17173.9 (4)
C8—C3—C4—C50.6 (6)C15—C16—C17—C180.6 (6)
P1—C3—C4—C5178.5 (3)C16—C17—C18—C190.5 (7)
C3—C4—C5—C61.0 (6)C17—C18—C19—C201.2 (6)
C4—C5—C6—C71.1 (6)C18—C19—C20—C150.7 (6)
C5—C6—C7—C80.7 (6)C16—C15—C20—C190.4 (6)
C6—C7—C8—C30.3 (6)C2—C15—C20—C19174.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O3i1.002.593.248 (5)123 (3)
C2—H2···O3i1.002.293.115 (5)139 (3)
C12—H12···Cg1ii0.952.943.838 (5)158 (3)
C12—H12···C18ii0.952.833.585 (6)138 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H17O3P
Mr336.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)16.744 (12), 6.098 (4), 17.300 (13)
β (°) 111.810 (15)
V3)1640 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.20 × 0.01 × 0.01
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2010)
Tmin, Tmax0.435, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10244, 3462, 2034
Rint0.109
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.256, 1.01
No. of reflections3462
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.53

Computer programs: CrystalClear (Rigaku, 2010), SIR2004 (Burla et al., 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O3i1.002.593.248 (5)123 (3)
C2—H2···O3i1.002.293.115 (5)139 (3)
C12—H12···Cg1ii0.952.943.838 (5)158 (3)
C12—H12···C18ii0.952.833.585 (6)138 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the University of St Andrews and the Engineering and Physical Science Research Council (EPSRC, UK) for financial support.

References

First citationAnanikov, V. P., Khemchyan, L. L., Beletskaya, I. P. & Starikova, Z. A. (2010). Adv. Synth. Catal. 352, 2979–2992.  CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChauvin, R. (1990). Tetrahedron Asymmetry, 1, 737–742.  CrossRef CAS Google Scholar
First citationHan, L.-B., Ono, Y. & Shimada, S. (2008). J. Am. Chem. Soc. 130, 2752–2753.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHoppe, I., Schollkopf, U., Nieger, M. & Egert, E. (1985). Angew. Chem. Int. Ed. Engl. 24, 1067–1068.  CrossRef Google Scholar
First citationOvchinnikov, V. V., Galkin, V. I., Yarkova, E. G., Cherkasov, R. A. & Pudovik, A. N. (1979). Dokl. Akad. Nauk SSSR, 245, 1390–1393.  CAS Google Scholar
First citationOvchinnikov, V. V., Karataeva, F. Kh. & Cherkasov, R. A. (1995). Zh. Obshch. Khim. 65, 412–25.  CAS Google Scholar
First citationRigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds