organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-Benzyl­­idene-4-ethyl-3,4-di­hydro­naphthalen-1(2H)-one

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and bLaboratoires de Diffraction des Rayons X, Centre National pour la Recherche, Scientifique et Technique, Rabat, Morocco
*Correspondence e-mail: makhazzane@yahoo.com

(Received 8 June 2011; accepted 13 June 2011; online 18 June 2011)

In the title compound, C19H18O, the exocyclic C=C double bond has an E configuration. The ethyl substituent on the cyclo­hexa­none ring is in an axial position. The cyclo­hexa­none ring adopts a half-chair conformation, presumably due to conjugation in the benzene ring.

Related literature

For general background to dipolar-1,3 cyclo­addition reactions, see: Bennani et al. (2007[Bennani, B., Kerbal, A., Daoudi, M., Filali Baba, B., Al Houari, G., Jalbout, A. F., Mimouni, M., Benazza, M., Demailly, G., Akkurt, M., Öztürk Yıldırım, S. & Ben Hadda, T. (2007). ARKIVOC, xvi, 19-40.]); Kerbal et al. (1988[Kerbal, A., Tshiamala, K., Vebrel, J. & Laude, B. (1988). Bull. Soc. Chim. Belg. 97, 149-161.]); Al Houari et al. (2008[Al Houari, G., Kerbal, A., Bennani, B., Baba, M. F., Daoudi, M. & Ben Hadda, T. (2008). ARKIVOC, xii, 42-50,]). For a related structure, see: Akhazzane et al. (2010[Akhazzane, M., Zouihri, H., Daran, J.-C., Kerbal, A. & Al Houari, G. (2010). Acta Cryst. E66, o3067.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358;]).

[Scheme 1]

Experimental

Crystal data
  • C19H18O

  • Mr = 262.33

  • Monoclinic, P 21 /n

  • a = 11.7997 (8) Å

  • b = 8.9020 (6) Å

  • c = 13.9912 (9) Å

  • β = 94.214 (4)°

  • V = 1465.68 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.24 × 0.13 × 0.10 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 12738 measured reflections

  • 2870 independent reflections

  • 1776 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.139

  • S = 1.06

  • 2870 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Knowledge of the configuration and conformation of the title compound is necessary to understand its behaviour in dipolar-1,3 cycloaddition reactions [Bennani, et al. (2007) and Al Houari et al. (2008)]. To confirm the E configuration of the exocyclic C=C double bond, an X-ray crystal structure determination has been carried out.

The cyclohexanone ring in the dihydronaphthalene fused-ring system adopts a half-chair conformation, presumably due to conjugation of the planar annulated benzo ring,, with the puckering parameters of: Q(2) = 0.403 (2) Å, Phi(2) = 75.0 (3)°, Q(3) = -0.255 (2) Å (Cremer & Pople, 1975). The dihedral angle between the benzene ring and the napthyl ring system is 64.87 (9)°.

In the title compound, as shown in Fig. 1, all bond lengths and angles are normal and comparable with those reported for the related structure [Akhazzane et al., (2010)].

Related literature top

For general background to dipolar-1,3 cycloaddition reactions, see: Bennani et al. (2007); Kerbal et al. (1988); Al Houari et al. (2008). For a related structure, see: Akhazzane et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The synthesis of (2E)-2-benzylidene-4-ethyl-3,4-dihydronaphthalen-1(2H)-onewas achieved using the method reported by Kerbal and al. [Kerbal et al. (1988)]. i.e. by a condensation of para tolylaldehyde with 4-ethyl-3,4-dihydronaphthalen-1(2H)-one in an alkaline medium in methanol.

Refinement top

The H atoms bound to C were treated as riding with their parent atoms [C—H distances are 0.93Å for CH groups with Uiso(H) = 1.2 Ueq(C), and 0.97 Å for CH3 groups with Uiso(H) = 1.5 Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
(2E)-2-Benzylidene-4-ethyl-3,4-dihydronaphthalen-1(2H)-one top
Crystal data top
C19H18OF(000) = 560
Mr = 262.33Dx = 1.189 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 317 reflections
a = 11.7997 (8) Åθ = 2.3–25.7°
b = 8.9020 (6) ŵ = 0.07 mm1
c = 13.9912 (9) ÅT = 296 K
β = 94.214 (4)°Prism, colourless
V = 1465.68 (17) Å30.24 × 0.13 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD detector
diffractometer
1776 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
ω and ϕ scansh = 1414
12738 measured reflectionsk = 1010
2870 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.4678P]
where P = (Fo2 + 2Fc2)/3
2870 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C19H18OV = 1465.68 (17) Å3
Mr = 262.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.7997 (8) ŵ = 0.07 mm1
b = 8.9020 (6) ÅT = 296 K
c = 13.9912 (9) Å0.24 × 0.13 × 0.10 mm
β = 94.214 (4)°
Data collection top
Bruker APEXII CCD detector
diffractometer
1776 reflections with I > 2σ(I)
12738 measured reflectionsRint = 0.039
2870 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.06Δρmax = 0.15 e Å3
2870 reflectionsΔρmin = 0.15 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38673 (16)0.3632 (2)0.90220 (14)0.0475 (5)
C20.36836 (19)0.5147 (3)0.91678 (16)0.0644 (6)
C30.2891 (2)0.5643 (3)0.97699 (17)0.0704 (7)
C40.2262 (2)0.4615 (3)1.02507 (17)0.0699 (7)
C50.24340 (18)0.3114 (3)1.01251 (14)0.0583 (6)
C60.32381 (16)0.2594 (2)0.95135 (13)0.0466 (5)
C70.33731 (16)0.0969 (2)0.93682 (13)0.0478 (5)
C80.42994 (15)0.0467 (2)0.87708 (13)0.0437 (5)
C90.52038 (16)0.1607 (2)0.86272 (15)0.0512 (5)
C100.46780 (16)0.3104 (2)0.83054 (14)0.0498 (5)
C110.40543 (18)0.3027 (3)0.73028 (15)0.0611 (6)
C120.4811 (2)0.2601 (4)0.65044 (17)0.0861 (9)
C130.41996 (16)0.0882 (2)0.83653 (13)0.0482 (5)
C140.49530 (16)0.1640 (2)0.77224 (13)0.0472 (5)
C150.61293 (17)0.1592 (3)0.78482 (15)0.0598 (6)
C160.6781 (2)0.2362 (3)0.72341 (19)0.0748 (8)
C170.6287 (2)0.3177 (3)0.64874 (17)0.0734 (7)
C180.5129 (2)0.3237 (3)0.63530 (17)0.0752 (7)
C190.4468 (2)0.2491 (3)0.69728 (16)0.0652 (6)
H100.52900.38450.82880.060*
H11A0.34450.22980.73150.073*
H11B0.37120.39980.71540.073*
H12A0.54710.32340.65390.129*
H12B0.43960.27300.58940.129*
H12C0.50410.15710.65790.129*
H130.35610.14260.85080.058*
H150.64800.10380.83500.072*
H160.75690.23270.73290.090*
H170.67350.36870.60740.088*
H180.47870.37810.58430.090*
H190.36810.25610.68850.078*
H20.41060.58470.88510.077*
H30.27790.66670.98530.085*
H40.17240.49461.06570.084*
H50.20110.24261.04500.070*
H9A0.56910.12470.81480.061*
H9B0.56670.17460.92220.061*
O10.27360 (13)0.00631 (18)0.97155 (11)0.0699 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0455 (11)0.0539 (13)0.0434 (11)0.0016 (9)0.0058 (9)0.0034 (9)
C20.0697 (14)0.0580 (16)0.0668 (15)0.0008 (12)0.0151 (12)0.0043 (12)
C30.0805 (16)0.0593 (15)0.0728 (16)0.0096 (13)0.0141 (13)0.0093 (13)
C40.0745 (15)0.0776 (19)0.0604 (14)0.0122 (13)0.0237 (12)0.0098 (13)
C50.0609 (13)0.0687 (16)0.0477 (12)0.0046 (11)0.0202 (10)0.0003 (11)
C60.0452 (11)0.0569 (13)0.0385 (11)0.0031 (9)0.0091 (9)0.0007 (9)
C70.0460 (11)0.0583 (14)0.0406 (11)0.0012 (10)0.0125 (9)0.0046 (9)
C80.0390 (10)0.0517 (13)0.0415 (11)0.0037 (9)0.0108 (8)0.0068 (9)
C90.0396 (10)0.0578 (14)0.0576 (13)0.0016 (9)0.0132 (9)0.0027 (10)
C100.0418 (10)0.0553 (13)0.0539 (12)0.0042 (9)0.0145 (9)0.0058 (10)
C110.0566 (12)0.0771 (16)0.0518 (13)0.0029 (12)0.0188 (10)0.0121 (11)
C120.0870 (18)0.117 (2)0.0579 (15)0.0054 (17)0.0310 (14)0.0036 (15)
C130.0418 (10)0.0578 (14)0.0464 (11)0.0009 (9)0.0129 (9)0.0064 (10)
C140.0487 (11)0.0531 (13)0.0410 (11)0.0027 (9)0.0111 (9)0.0064 (9)
C150.0518 (12)0.0729 (16)0.0548 (13)0.0125 (11)0.0040 (10)0.0029 (11)
C160.0555 (13)0.092 (2)0.0790 (18)0.0205 (13)0.0213 (13)0.0014 (15)
C170.0875 (19)0.0762 (18)0.0607 (15)0.0159 (14)0.0341 (14)0.0019 (13)
C180.0938 (19)0.0823 (19)0.0514 (14)0.0004 (15)0.0187 (13)0.0119 (13)
C190.0594 (13)0.0794 (17)0.0577 (14)0.0041 (12)0.0104 (11)0.0069 (12)
O10.0714 (10)0.0649 (10)0.0790 (11)0.0055 (8)0.0427 (9)0.0053 (8)
Geometric parameters (Å, º) top
C1—C61.398 (3)C11—H11B0.9700
C1—C21.383 (3)C11—H11A0.9700
C2—H20.9300C11—C121.528 (3)
C2—C31.376 (3)C12—H12C0.9600
C3—H30.9300C12—H12B0.9600
C3—C41.384 (3)C12—H12A0.9600
C4—H40.9300C13—H130.9300
C5—H50.9300C13—C141.474 (3)
C5—C41.365 (3)C13—C81.330 (3)
C6—C51.402 (3)C14—C151.387 (3)
C7—C81.492 (2)C14—C191.383 (3)
C7—C61.471 (3)C15—H150.9300
C7—O11.227 (2)C15—C161.377 (3)
C8—C91.497 (3)C16—H160.9300
C9—H9B0.9700C16—C171.367 (4)
C9—H9A0.9700C17—H170.9300
C10—H100.9800C18—H180.9300
C10—C111.537 (3)C18—C171.366 (4)
C10—C91.524 (3)C19—H190.9300
C10—C11.511 (3)C19—C181.379 (3)
C6—C1—C10120.39 (18)C18—C17—C16119.5 (2)
C2—C1—C10120.99 (18)C19—C18—H18120.0
C2—C1—C6118.53 (18)C17—C18—H18120.0
C11—C10—H10108.1C17—C18—C19120.1 (2)
C9—C10—H10108.1C14—C19—H19119.4
C1—C10—H10108.1C18—C19—H19119.4
C9—C10—C11112.82 (18)C18—C19—C14121.2 (2)
C1—C10—C11109.61 (16)C1—C2—H2119.2
C1—C10—C9109.87 (16)C3—C2—H2119.2
H11A—C11—H11B107.6C3—C2—C1121.6 (2)
C10—C11—H11B108.7C4—C3—H3120.0
C12—C11—H11B108.7C2—C3—H3120.0
C10—C11—H11A108.7C2—C3—C4119.9 (2)
C12—C11—H11A108.7C3—C4—H4120.2
C12—C11—C10114.33 (19)C5—C4—H4120.2
H12B—C12—H12C109.5C5—C4—C3119.6 (2)
H12A—C12—H12C109.5C6—C5—H5119.5
C11—C12—H12C109.5C4—C5—H5119.5
H12A—C12—H12B109.5C4—C5—C6121.0 (2)
C11—C12—H12B109.5C5—C6—C7119.61 (18)
C11—C12—H12A109.5C1—C6—C7121.03 (17)
C14—C13—H13115.3C1—C6—C5119.3 (2)
C8—C13—H13115.3C6—C7—C8117.57 (16)
C8—C13—C14129.46 (18)O1—C7—C8121.35 (19)
C15—C14—C13123.46 (19)O1—C7—C6121.07 (17)
C19—C14—C13118.62 (18)C7—C8—C9115.53 (17)
C19—C14—C15117.88 (19)C13—C8—C9126.63 (17)
C14—C15—H15119.8C13—C8—C7117.63 (17)
C16—C15—H15119.8H9A—C9—H9B108.1
C16—C15—C14120.4 (2)C10—C9—H9B109.5
C15—C16—H16119.5C8—C9—H9B109.5
C17—C16—H16119.5C10—C9—H9A109.5
C17—C16—C15120.9 (2)C8—C9—H9A109.5
C16—C17—H17120.3C8—C9—C10110.72 (16)
C18—C17—H17120.3

Experimental details

Crystal data
Chemical formulaC19H18O
Mr262.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.7997 (8), 8.9020 (6), 13.9912 (9)
β (°) 94.214 (4)
V3)1465.68 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.24 × 0.13 × 0.10
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12738, 2870, 1776
Rint0.039
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.139, 1.06
No. of reflections2870
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAkhazzane, M., Zouihri, H., Daran, J.-C., Kerbal, A. & Al Houari, G. (2010). Acta Cryst. E66, o3067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl Houari, G., Kerbal, A., Bennani, B., Baba, M. F., Daoudi, M. & Ben Hadda, T. (2008). ARKIVOC, xii, 42–50,  Google Scholar
First citationBennani, B., Kerbal, A., Daoudi, M., Filali Baba, B., Al Houari, G., Jalbout, A. F., Mimouni, M., Benazza, M., Demailly, G., Akkurt, M., Öztürk Yıldırım, S. & Ben Hadda, T. (2007). ARKIVOC, xvi, 19–40.  CrossRef Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358;  CrossRef CAS Google Scholar
First citationKerbal, A., Tshiamala, K., Vebrel, J. & Laude, B. (1988). Bull. Soc. Chim. Belg. 97, 149–161.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds