organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­ethyl­ammonium 4-hy­dr­oxy­benzoate monohydrate

aHenan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bKey Laboratory of Polymer Materials of Gansu Province, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, People's Republic of China
*Correspondence e-mail: yangyx80@nwnu.edu.cn

(Received 13 June 2011; accepted 20 June 2011; online 25 June 2011)

In the title compound, C8H20N+·C7H5O3·H2O, the carboxyl­ate group is slightly out of the plane of the parent benzene ring, the C—C—C—O torsion angles being 2.3 (2) and 2.0 (2)°. The carboxyl­ate group and the hy­droxy group form O—H⋯O hydrogen bonds, generating a head-to-tail chain along the b axis. Neighbouring hydrogen-bonded chains are linked by the water mol­ecule, generating two independent O—H⋯O donor hydrogen bonds. The carboxyl­ate group thus constructs a hydrogen-bonded host layer parallel to (10[\overline{1}]). The tetra­ethyl­ammonium cation is contained between these layers, forming a sandwich-like structure with an approximate inter­layer distance of 10.03 Å.

Related literature

p-Hy­droxy­benzoic acid has been found to inter­act with varied cations, such as dec­yl(trimeth­yl)ammonium and hexa­methonium, to form different crystal structures, see: Marsh & Spek (2001[Marsh, R. E. & Spek, A. L. (2001). Acta Cryst. B57, 800-805.]); Yang et al. (2010[Yang, Y. X., Li, K., Wang, Y. J. & Li, Q. (2010). Beijing Shifan Dax. Xue. Zir. Kex. (J. B. Norm. Univ.), 46, 160-165.]).

[Scheme 1]

Experimental

Crystal data
  • C8H20N+·C7H5O3·H2O

  • Mr = 285.38

  • Monoclinic, P 21 /n

  • a = 9.6082 (10) Å

  • b = 16.2610 (16) Å

  • c = 10.4478 (10) Å

  • β = 96.378 (1)°

  • V = 1622.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.66 × 0.37 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.947, Tmax = 0.984

  • 7411 measured reflections

  • 3774 independent reflections

  • 2730 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.181

  • S = 1.06

  • 3774 reflections

  • 182 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.86 1.74 2.5984 (16) 175
O1W—H1WA⋯O3ii 0.85 2.04 2.850 (2) 161
O1W—H1WB⋯O2iii 0.85 1.94 2.781 (2) 169
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

p-Hydroxybenzoic acid has been found to interact with varied cations, such as decyl(trimethyl)ammonium and hexamethonium, to form different crystal structures (Marsh et al., 2001; Yang et al., 2010). In the asymmetric unit of the title compound, (C2H5)4N+.C7H5O3-.H2O, there exist one p-hydroxybenzoate anion, in which the carboxyl group distorts a small angle with respect to the phenyl ring which has a mean deviation from plane of 0.0041 Å (the related torsion angles are 2.3 (2)° and 2.0 (2)° respectively), one water molecule and one tetraethylammonium cation (Fig. 1). With the help of the water molecule, the hydrogen-bonded chains of p-hydroxybenzoate anions extending along the [010] direction are connected with various O—H···O interactions to generate the hydrogen-bonded host layers (Fig. 2), which are parallel to the (101) plane and can accommodate the guest species of tetraethylammonium cations to form the final packing structure (Fig. 3). Obviously, water molecule, as a compensate host molecule, plays an important role in generating the hydrogen-bonded layer structure.

For the related crystal structures of p-hydroxybenzoic acid and different cations, see: Marsh et al., (2001), Yang et al., (2010).

Related literature top

p-Hydroxybenzoic acid has been found to interact with varied cations, such as decyl(trimethyl)ammonium and hexamethonium, to form different crystal structures, see: Marsh & Spek (2001); Yang et al. (2010).

Experimental top

p-Hydroxybenzoic acid (0.25 mmol, 0.035 g) was dissolved in small amount of water-ethanol (50:100 v/v) mixture and a 25% aqueous solution of tetraethylammonium hydroxide was added to neutralize the acid. Colorless block crystals separated after several weeks.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters, and all the hydrogen atoms bonded to carbon were introduced into idealized dispositions. And the hydrogen atoms bonded to oxygen atoms were placed in difference map with fixed distance of 0.86 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 30% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded linking pattern of the host layer in the crystal structure of the title compound.
[Figure 3] Fig. 3. Packing diagram of the title compound; all hydrogen atoms bonded to carbon are omitted for clarity and the cations are represented with the open bonds.
Tetraethylammonium 4-hydroxybenzoate monohydrate top
Crystal data top
C8H20N+·C7H5O3·H2OF(000) = 624
Mr = 285.38Dx = 1.168 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2665 reflections
a = 9.6082 (10) Åθ = 3.1–27.5°
b = 16.2610 (16) ŵ = 0.08 mm1
c = 10.4478 (10) ÅT = 296 K
β = 96.378 (1)°Block, colorless
V = 1622.2 (3) Å30.66 × 0.37 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3774 independent reflections
Radiation source: fine-focus sealed tube2730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 27.7°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 812
Tmin = 0.947, Tmax = 0.984k = 2116
7411 measured reflectionsl = 1213
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.181 w = 1/[σ2(Fo2) + (0.0974P)2 + 0.3052P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3774 reflectionsΔρmax = 0.35 e Å3
182 parametersΔρmin = 0.19 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (3)
Crystal data top
C8H20N+·C7H5O3·H2OV = 1622.2 (3) Å3
Mr = 285.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6082 (10) ŵ = 0.08 mm1
b = 16.2610 (16) ÅT = 296 K
c = 10.4478 (10) Å0.66 × 0.37 × 0.20 mm
β = 96.378 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3774 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2730 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.984Rint = 0.015
7411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0554 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.06Δρmax = 0.35 e Å3
3774 reflectionsΔρmin = 0.19 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18857 (16)0.99878 (8)0.16322 (14)0.0403 (3)
C20.14101 (18)0.92648 (9)0.10187 (15)0.0455 (4)
H2A0.09140.92860.02030.055*
C30.16740 (16)0.85171 (9)0.16210 (15)0.0418 (4)
H3A0.13630.80370.11970.050*
C40.23956 (15)0.84650 (9)0.28496 (14)0.0378 (3)
C50.28608 (17)0.91927 (9)0.34473 (14)0.0425 (4)
H5A0.33440.91730.42690.051*
C60.26236 (17)0.99454 (9)0.28514 (15)0.0432 (4)
H6A0.29581.04240.32660.052*
C70.26794 (17)0.76486 (9)0.35068 (16)0.0459 (4)
C80.3736 (2)0.18451 (12)0.6489 (2)0.0616 (5)
H8A0.46660.16380.67720.074*
H8B0.35970.18030.55580.074*
C90.3679 (3)0.27388 (14)0.6854 (3)0.0901 (8)
H9A0.43800.30380.64590.135*
H9B0.38500.27920.77730.135*
H9C0.27700.29570.65620.135*
C100.2876 (3)0.13132 (17)0.8501 (2)0.0807 (7)
H10A0.27220.18710.87820.097*
H10B0.21700.09670.88240.097*
C110.4301 (3)0.1034 (3)0.9102 (3)0.1159 (11)
H11A0.43370.10591.00230.174*
H11B0.50080.13860.88200.174*
H11C0.44620.04780.88440.174*
C120.1202 (2)0.15932 (15)0.6641 (2)0.0728 (6)
H12A0.11010.21360.70030.087*
H12B0.05500.12310.70080.087*
C130.0797 (3)0.1640 (2)0.5198 (3)0.1107 (11)
H13A0.01480.18370.50280.166*
H13B0.08630.11030.48280.166*
H13C0.14180.20090.48240.166*
C140.2893 (3)0.04401 (13)0.6544 (2)0.0742 (6)
H14A0.38470.02730.68280.089*
H14B0.27910.04570.56110.089*
C150.1902 (4)0.02043 (18)0.6972 (4)0.1230 (13)
H15A0.21040.07270.66070.185*
H15B0.09540.00510.66840.185*
H15C0.20190.02430.78940.185*
O10.15893 (14)1.07037 (7)0.10032 (11)0.0582 (4)
H1A0.20061.11180.13920.087*
O20.33056 (16)0.76395 (8)0.46118 (13)0.0680 (4)
O30.22788 (15)0.70078 (7)0.28835 (14)0.0638 (4)
N10.26670 (15)0.12929 (9)0.70443 (14)0.0503 (4)
O1W0.5320 (2)0.14390 (11)0.3390 (2)0.0996 (7)
H1WA0.46720.16910.29310.149*
H1WB0.57330.17760.39310.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0476 (8)0.0300 (7)0.0427 (8)0.0005 (6)0.0027 (6)0.0021 (6)
C20.0564 (9)0.0385 (8)0.0393 (8)0.0032 (7)0.0053 (7)0.0000 (6)
C30.0492 (8)0.0299 (7)0.0451 (8)0.0055 (6)0.0000 (6)0.0037 (6)
C40.0400 (7)0.0301 (7)0.0430 (8)0.0015 (5)0.0034 (6)0.0004 (6)
C50.0515 (9)0.0348 (7)0.0395 (8)0.0012 (6)0.0033 (6)0.0005 (6)
C60.0562 (9)0.0284 (7)0.0434 (8)0.0030 (6)0.0008 (7)0.0045 (6)
C70.0498 (9)0.0318 (7)0.0542 (9)0.0047 (6)0.0030 (7)0.0046 (6)
C80.0608 (11)0.0550 (10)0.0710 (12)0.0007 (8)0.0169 (9)0.0034 (9)
C90.107 (2)0.0529 (13)0.109 (2)0.0090 (12)0.0082 (15)0.0034 (12)
C100.0904 (16)0.0989 (18)0.0554 (12)0.0158 (13)0.0194 (11)0.0025 (11)
C110.107 (2)0.166 (3)0.0718 (16)0.019 (2)0.0044 (14)0.0254 (19)
C120.0571 (11)0.0777 (15)0.0860 (15)0.0130 (10)0.0190 (10)0.0032 (11)
C130.0775 (17)0.160 (3)0.0901 (19)0.0169 (18)0.0113 (14)0.0174 (19)
C140.0847 (15)0.0489 (11)0.0935 (16)0.0037 (10)0.0303 (12)0.0080 (10)
C150.129 (3)0.0585 (15)0.190 (4)0.0202 (16)0.057 (3)0.0009 (18)
O10.0822 (9)0.0318 (6)0.0553 (7)0.0057 (5)0.0164 (6)0.0071 (5)
O20.0993 (11)0.0417 (7)0.0567 (8)0.0127 (6)0.0194 (7)0.0118 (6)
O30.0779 (9)0.0287 (6)0.0770 (9)0.0041 (5)0.0254 (7)0.0012 (5)
N10.0538 (8)0.0479 (8)0.0519 (8)0.0078 (6)0.0181 (6)0.0004 (6)
O1W0.0941 (12)0.0703 (11)0.1225 (15)0.0175 (9)0.0410 (11)0.0246 (10)
Geometric parameters (Å, º) top
C1—O11.3515 (17)C10—H10A0.9700
C1—C61.389 (2)C10—H10B0.9700
C1—C21.392 (2)C11—H11A0.9600
C2—C31.379 (2)C11—H11B0.9600
C2—H2A0.9300C11—H11C0.9600
C3—C41.392 (2)C12—N11.505 (2)
C3—H3A0.9300C12—C131.516 (4)
C4—C51.389 (2)C12—H12A0.9700
C4—C71.505 (2)C12—H12B0.9700
C5—C61.381 (2)C13—H13A0.9600
C5—H5A0.9300C13—H13B0.9600
C6—H6A0.9300C13—H13C0.9600
C7—O21.241 (2)C14—N11.506 (2)
C7—O31.2658 (19)C14—C151.516 (4)
C8—C91.505 (3)C14—H14A0.9700
C8—N11.526 (2)C14—H14B0.9700
C8—H8A0.9700C15—H15A0.9600
C8—H8B0.9700C15—H15B0.9600
C9—H9A0.9600C15—H15C0.9600
C9—H9B0.9600O1—H1A0.8614
C9—H9C0.9600O1W—H1WA0.8477
C10—C111.511 (4)O1W—H1WB0.8531
C10—N11.513 (3)
O1—C1—C6123.17 (13)C10—C11—H11A109.5
O1—C1—C2117.58 (13)C10—C11—H11B109.5
C6—C1—C2119.25 (13)H11A—C11—H11B109.5
C3—C2—C1120.01 (13)C10—C11—H11C109.5
C3—C2—H2A120.0H11A—C11—H11C109.5
C1—C2—H2A120.0H11B—C11—H11C109.5
C2—C3—C4121.45 (13)N1—C12—C13115.08 (19)
C2—C3—H3A119.3N1—C12—H12A108.5
C4—C3—H3A119.3C13—C12—H12A108.5
C5—C4—C3117.73 (13)N1—C12—H12B108.5
C5—C4—C7120.89 (13)C13—C12—H12B108.5
C3—C4—C7121.38 (13)H12A—C12—H12B107.5
C6—C5—C4121.60 (13)C12—C13—H13A109.5
C6—C5—H5A119.2C12—C13—H13B109.5
C4—C5—H5A119.2H13A—C13—H13B109.5
C5—C6—C1119.96 (13)C12—C13—H13C109.5
C5—C6—H6A120.0H13A—C13—H13C109.5
C1—C6—H6A120.0H13B—C13—H13C109.5
O2—C7—O3123.84 (14)N1—C14—C15114.5 (2)
O2—C7—C4118.63 (13)N1—C14—H14A108.6
O3—C7—C4117.51 (14)C15—C14—H14A108.6
C9—C8—N1115.27 (19)N1—C14—H14B108.6
C9—C8—H8A108.5C15—C14—H14B108.6
N1—C8—H8A108.5H14A—C14—H14B107.6
C9—C8—H8B108.5C14—C15—H15A109.5
N1—C8—H8B108.5C14—C15—H15B109.5
H8A—C8—H8B107.5H15A—C15—H15B109.5
C8—C9—H9A109.5C14—C15—H15C109.5
C8—C9—H9B109.5H15A—C15—H15C109.5
H9A—C9—H9B109.5H15B—C15—H15C109.5
C8—C9—H9C109.5C1—O1—H1A112.5
H9A—C9—H9C109.5C12—N1—C14111.59 (17)
H9B—C9—H9C109.5C12—N1—C10106.87 (15)
C11—C10—N1115.1 (2)C14—N1—C10111.14 (17)
C11—C10—H10A108.5C12—N1—C8110.52 (15)
N1—C10—H10A108.5C14—N1—C8106.31 (14)
C11—C10—H10B108.5C10—N1—C8110.46 (17)
N1—C10—H10B108.5H1WA—O1W—H1WB108.8
H10A—C10—H10B107.5
O1—C1—C2—C3179.51 (15)C3—C4—C7—O32.3 (2)
C6—C1—C2—C30.1 (3)C13—C12—N1—C1459.8 (3)
C1—C2—C3—C40.9 (3)C13—C12—N1—C10178.5 (2)
C2—C3—C4—C50.8 (2)C13—C12—N1—C858.3 (3)
C2—C3—C4—C7179.84 (15)C15—C14—N1—C1258.3 (3)
C3—C4—C5—C60.1 (2)C15—C14—N1—C1060.9 (3)
C7—C4—C5—C6179.22 (15)C15—C14—N1—C8178.9 (2)
C4—C5—C6—C11.0 (3)C11—C10—N1—C12179.8 (2)
O1—C1—C6—C5178.56 (15)C11—C10—N1—C1458.2 (3)
C2—C1—C6—C50.9 (2)C11—C10—N1—C859.5 (3)
C5—C4—C7—O22.0 (2)C9—C8—N1—C1257.8 (2)
C3—C4—C7—O2178.72 (16)C9—C8—N1—C14179.1 (2)
C5—C4—C7—O3176.97 (16)C9—C8—N1—C1060.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.861.742.5984 (16)175
O1W—H1WA···O3ii0.852.042.850 (2)161
O1W—H1WB···O2iii0.851.942.781 (2)169
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H20N+·C7H5O3·H2O
Mr285.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.6082 (10), 16.2610 (16), 10.4478 (10)
β (°) 96.378 (1)
V3)1622.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.66 × 0.37 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.947, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7411, 3774, 2730
Rint0.015
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.181, 1.06
No. of reflections3774
No. of parameters182
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.861.742.5984 (16)175
O1W—H1WA···O3ii0.852.042.850 (2)161
O1W—H1WB···O2iii0.851.942.781 (2)169
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

We thank Northwest Normal University for supporting this study.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationMarsh, R. E. & Spek, A. L. (2001). Acta Cryst. B57, 800–805.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y. X., Li, K., Wang, Y. J. & Li, Q. (2010). Beijing Shifan Dax. Xue. Zir. Kex. (J. B. Norm. Univ.), 46, 160–165.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds