organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-tert-Butyl-3′,4′-bis­­(4-methyl­phen­yl)-3,4-di­hydro-1H,4′H-spiro­[naphthalene-2,5′-[1,2]oxazol]-1-one

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and bLaboratoire de Diffraction des Rayons X, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
*Correspondence e-mail: makhazzane@yahoo.com

(Received 18 June 2011; accepted 25 June 2011; online 30 June 2011)

In the title compound, C30H31NO2, the cyclo­hexa­none ring in the naphthalene fused-ring system adopts a half-chair conformation, presumably due to conjugation of the benzene ring. The naphthalene ring system makes dihedral angles of 86.63 (7), 65.15 (8) and 63.18 (8)° with respect to the two methyl­benzene planes and the 1,2-oxazole ring system. Inter­molecular C—H⋯O and C—H⋯N hydrogen bonding and C—H⋯π inter­actions stabilize the crystal structure. The H atoms of the two methyl groups of the methyl­phenyl groups are disordered over two positions with equal occupancies.

Related literature

For general background to dipolar-1,3 cyclo­addition reactions, see: Al Houari et al. (2008[Al Houari, G., Baba, M. F., Miqueu, K., Sotiropoulos, J. M., Garrigues, B., Benhadda, T., Benlarbi, N., Safir, I. & et Kerbal, A. (2008). J. Mar. Chim. Heterocycl. 7, 16-20.], 2010[Al Houari, G., Bennani, A. K., Bennani, B., Daoudi, M., Benlarbi, N., El Yazidi, M., Garrigues, B. & Kerbal, A. (2010). J. Mar. Chim. Heterocycl. 9, 36-43.]). For a related structure, see: Akhazzane et al. (2010[Akhazzane, M., Zouihri, H., Daran, J.-C., Kerbal, A. & Al Houari, G. (2010). Acta Cryst. E66, o3067.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358;]).

[Scheme 1]

Experimental

Crystal data
  • C30H31NO2

  • Mr = 437.56

  • Monoclinic, P 21 /c

  • a = 6.9158 (2) Å

  • b = 25.0737 (5) Å

  • c = 13.8747 (3) Å

  • β = 94.359 (1)°

  • V = 2398.98 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.23 × 0.21 × 0.14 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 25446 measured reflections

  • 4473 independent reflections

  • 3577 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.06

  • 4473 reflections

  • 301 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯O1i 0.93 2.54 3.4254 (17) 160
C29—H29F⋯N1ii 0.96 2.62 3.546 (2) 161
C26—H26ACg2i 0.96 2.77 3.6643 (16) 155
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In this paper we studied the regiochemistry and stereochemistry in the reaction of the p-tolylnitriloxide with the 4-tert-butyl-2-(4-methylbenzylidene)-3,4-dihydronaphthalen-1-one.The X-ray crystal structure study shows that the carbonyl group is in position 5 of the isoxazoline. We also found out with this study, that the disposition of the ethyl group imposes an exclusive anti approach of the dipole. This stereochemistry is due to steric effects [Al Houari, et al. (2010) and Al Houari et al. (2008)].

In the title compound, as shown in Fig. 1, all bond lengths and angles are normal and comparable with those reported for the related structure [Akhazzane et al., (2010)].

The cyclohexanone ring in the dihydronaphthalene fused-ring system adopts a half-chair conformation, presumably due to conjugation of the planar annulated benzo ring,, with the puckering parameters of: Q(2) = 0.5212 (14) Å, Phi(2) = 130.12 (15)°, Q(3) = 0.0845 (14) Å (Cremer & Pople, 1975). The dihedral angles between rings are 4'-methylbenzene (E) /naphthalene = 86.63 (7)°, 3'-methylbenzene (D) /naphthalene = 65.15 (8)°, oxazol (C) /naphthalene = 63.18 (8)°, 4'-methylbenzene (E) /3'-methylbenzene (D) = 75.77 (9)°, 3'-methylbenzene (D) /oxazol (C) = 14.55 (9)° and 4'-methylbenzene (E) /oxazol (C) = 89.68 (9)°.

The crystal packing of the title compound is illustrated in Fig. 2. Intermolecular C—H···O and C—H···N hydrogen bonding and C—H···π interactions stabilize the crystal structure.

Related literature top

For general background to dipolar-1,3 cycloaddition reactions, see: Al Houari et al. (2008, 2010). For a related structure, see: Akhazzane et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

In a100 ml flask, we dissolve 2 mmoles of the 4-tert-butyl-2-(4-methylbenzylidene)-3,4-dihydronaphthalen-1-one and 2.4 mmoles of p-tolyloxime in 20 ml of chloroform. The mixture is cooled to 0°C under magnetic stirring in an ice bath. Then 15 ml of bleach (NaOCl) at 18°Chl (chlorometric degree) is added in small doses without exceeding the temperature of 5°C. The mixture is left under magnetic stirring for 16 h at room temperature, then washed with water until pH is neutral and dried on sodium sulfate. The solvent is evaporated with a rotating evaporator and the oily residue is dissolved in ethanol. The precipitated cycloadduct is then recrystallized in ethanol.

Refinement top

The H atoms bound to C were treated as riding with their parent atoms [C—H distances are 0.93Å for CH groups and 0.97 Å for CH2 groups with Uiso(H) = 1.2 Ueq(C), and 0.96 Å for CH3 groups with Uiso(H) = 1.5 Ueq(C).

The H atoms of the two methyls of the methylbenzene systems are disordered over two positions with 0.5 equal occupancies.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the chain formed by C—H···O and C—H···N hydrogen bondings. H atoms not involved in hydrogen bonds have been omitted for clarity.
4-tert-Butyl-3',4'-bis(4-methylphenyl)-3,4-dihydro- 1H,4'H-spiro[naphthalene-2,5'-[1,2]oxazol]-1-one top
Crystal data top
C30H31NO2F(000) = 936
Mr = 437.56Dx = 1.211 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 214 reflections
a = 6.9158 (2) Åθ = 2.5–25.7°
b = 25.0737 (5) ŵ = 0.08 mm1
c = 13.8747 (3) ÅT = 296 K
β = 94.359 (1)°Prism, colourless
V = 2398.98 (10) Å30.23 × 0.21 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD detector
diffractometer
3577 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.5°, θmin = 2.2°
ω and ϕ scansh = 88
25446 measured reflectionsk = 3028
4473 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.3646P]
where P = (Fo2 + 2Fc2)/3
4473 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C30H31NO2V = 2398.98 (10) Å3
Mr = 437.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9158 (2) ŵ = 0.08 mm1
b = 25.0737 (5) ÅT = 296 K
c = 13.8747 (3) Å0.23 × 0.21 × 0.14 mm
β = 94.359 (1)°
Data collection top
Bruker APEXII CCD detector
diffractometer
3577 reflections with I > 2σ(I)
25446 measured reflectionsRint = 0.028
4473 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
4473 reflectionsΔρmin = 0.15 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.99029 (18)0.74156 (5)0.65946 (9)0.0436 (3)
C100.91627 (18)0.68621 (5)0.65774 (9)0.0426 (3)
C110.79579 (18)0.60703 (5)0.75229 (9)0.0414 (3)
C120.92787 (19)0.56724 (5)0.70820 (9)0.0443 (3)
C130.8637 (2)0.51687 (5)0.66211 (10)0.0470 (3)
C140.6692 (2)0.50386 (6)0.64952 (12)0.0617 (4)
C150.6080 (3)0.45881 (7)0.59815 (13)0.0678 (5)
C160.7374 (3)0.42578 (6)0.55695 (11)0.0598 (4)
C170.9322 (3)0.43787 (6)0.57194 (12)0.0624 (4)
C180.9957 (2)0.48232 (6)0.62346 (11)0.0571 (4)
C190.73938 (19)0.58832 (5)0.85013 (10)0.0434 (3)
C21.0839 (2)0.76120 (6)0.58097 (10)0.0559 (4)
C200.8776 (2)0.56859 (6)0.91866 (11)0.0536 (4)
C210.8290 (3)0.55555 (6)1.01065 (12)0.0631 (4)
C220.6423 (3)0.56116 (6)1.03785 (12)0.0619 (4)
C230.5045 (3)0.57951 (6)0.96882 (13)0.0645 (4)
C240.5510 (2)0.59308 (6)0.87645 (12)0.0538 (4)
C250.6435 (2)0.76273 (6)0.81758 (11)0.0516 (4)
C260.5354 (2)0.73359 (7)0.73308 (13)0.0650 (4)
C270.5627 (3)0.74534 (8)0.91206 (14)0.0735 (5)
C280.6084 (2)0.82265 (6)0.80518 (14)0.0706 (5)
C290.6694 (3)0.37877 (7)0.49570 (14)0.0845 (6)
C31.1560 (3)0.81225 (7)0.58255 (12)0.0670 (5)
C300.5917 (4)0.54724 (8)1.13904 (14)0.0944 (7)
C41.1346 (2)0.84417 (6)0.66174 (12)0.0654 (4)
C51.0423 (2)0.82538 (6)0.73955 (11)0.0552 (4)
C60.96796 (18)0.77373 (5)0.74004 (9)0.0439 (3)
C70.86674 (19)0.75211 (5)0.82404 (9)0.0440 (3)
C80.9315 (2)0.69419 (5)0.84267 (9)0.0463 (3)
C90.92760 (18)0.65669 (5)0.75533 (9)0.0413 (3)
H110.67960.61310.70880.050*
H140.57810.52570.67590.074*
H150.47650.45070.59140.081*
H171.02270.41550.54660.075*
H181.12780.48940.63250.069*
H21.09740.73960.52740.067*
H201.00460.56410.90250.064*
H210.92470.54271.05530.076*
H230.37680.58290.98460.077*
H240.45460.60550.83170.065*
H26A0.39990.74230.73110.098*
H26B0.55180.69580.74140.098*
H26C0.58650.74440.67370.098*
H27A0.63110.76350.96520.110*
H27B0.57890.70750.92000.110*
H27C0.42740.75410.91040.110*
H28A0.64840.83380.74360.106*
H28B0.68200.84160.85570.106*
H28C0.47300.83010.80850.106*
H29A0.77950.36050.47340.127*0.50
H29B0.58760.39100.44120.127*0.50
H29C0.59770.35480.53350.127*0.50
H29D0.53030.37710.49200.127*0.50
H29E0.72230.34650.52420.127*0.50
H29F0.71220.38280.43190.127*0.50
H31.21890.82520.53040.080*
H30A0.45610.55361.14470.142*0.50
H30B0.66670.56901.18500.142*0.50
H30C0.62010.51031.15170.142*0.50
H30D0.70580.53501.17620.142*0.50
H30E0.49520.51961.13590.142*0.50
H30F0.54180.57831.16920.142*0.50
H41.18290.87880.66280.078*
H51.02950.84750.79250.066*
H70.91980.77220.88050.053*
H8A1.06280.69480.87260.056*
H8B0.84960.67890.88920.056*
N11.10645 (17)0.58119 (5)0.71418 (9)0.0514 (3)
O11.12294 (13)0.63264 (4)0.75739 (7)0.0499 (2)
O20.86056 (16)0.66355 (4)0.58328 (7)0.0569 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0448 (7)0.0429 (7)0.0412 (7)0.0023 (6)0.0079 (5)0.0048 (6)
C100.0445 (7)0.0415 (7)0.0409 (7)0.0014 (5)0.0029 (5)0.0014 (6)
C110.0422 (7)0.0366 (7)0.0445 (7)0.0035 (5)0.0023 (5)0.0010 (5)
C120.0498 (8)0.0392 (7)0.0440 (7)0.0043 (6)0.0044 (6)0.0039 (6)
C130.0606 (8)0.0366 (7)0.0446 (7)0.0026 (6)0.0088 (6)0.0048 (6)
C140.0647 (10)0.0493 (9)0.0736 (10)0.0051 (7)0.0216 (8)0.0118 (8)
C150.0722 (10)0.0571 (10)0.0766 (11)0.0160 (8)0.0223 (9)0.0129 (8)
C160.0908 (12)0.0401 (8)0.0512 (8)0.0094 (8)0.0237 (8)0.0015 (7)
C170.0853 (12)0.0412 (9)0.0632 (10)0.0099 (8)0.0217 (8)0.0014 (7)
C180.0638 (9)0.0456 (9)0.0625 (9)0.0088 (7)0.0089 (7)0.0012 (7)
C190.0464 (7)0.0337 (7)0.0503 (7)0.0020 (5)0.0039 (6)0.0003 (6)
C20.0660 (9)0.0596 (10)0.0406 (7)0.0096 (7)0.0053 (6)0.0056 (6)
C200.0540 (8)0.0505 (9)0.0563 (9)0.0076 (6)0.0050 (7)0.0095 (7)
C210.0843 (11)0.0491 (9)0.0550 (9)0.0057 (8)0.0013 (8)0.0083 (7)
C220.0949 (12)0.0360 (8)0.0576 (9)0.0022 (8)0.0232 (9)0.0027 (7)
C230.0694 (10)0.0493 (9)0.0787 (11)0.0011 (7)0.0312 (9)0.0031 (8)
C240.0487 (8)0.0451 (8)0.0678 (10)0.0022 (6)0.0064 (7)0.0001 (7)
C250.0489 (8)0.0453 (8)0.0607 (9)0.0037 (6)0.0048 (6)0.0041 (7)
C260.0449 (8)0.0682 (11)0.0803 (11)0.0065 (7)0.0069 (7)0.0111 (9)
C270.0732 (11)0.0704 (12)0.0799 (12)0.0003 (9)0.0245 (9)0.0038 (9)
C280.0612 (9)0.0518 (10)0.0990 (13)0.0134 (7)0.0066 (9)0.0023 (9)
C290.1239 (17)0.0581 (11)0.0761 (12)0.0256 (11)0.0377 (11)0.0179 (9)
C30.0802 (11)0.0661 (11)0.0533 (9)0.0224 (9)0.0051 (8)0.0146 (8)
C300.161 (2)0.0620 (12)0.0659 (11)0.0026 (12)0.0459 (13)0.0033 (9)
C40.0730 (10)0.0488 (9)0.0720 (11)0.0180 (8)0.0103 (8)0.0118 (8)
C50.0579 (8)0.0439 (8)0.0620 (9)0.0050 (6)0.0070 (7)0.0035 (7)
C60.0409 (7)0.0402 (7)0.0488 (7)0.0004 (5)0.0084 (6)0.0016 (6)
C70.0492 (7)0.0398 (7)0.0419 (7)0.0003 (6)0.0045 (6)0.0047 (6)
C80.0527 (7)0.0443 (8)0.0402 (7)0.0017 (6)0.0070 (6)0.0004 (6)
C90.0415 (7)0.0379 (7)0.0432 (7)0.0042 (5)0.0044 (5)0.0020 (5)
N10.0517 (7)0.0434 (7)0.0590 (7)0.0060 (5)0.0046 (5)0.0015 (5)
O10.0421 (5)0.0447 (6)0.0620 (6)0.0031 (4)0.0028 (4)0.0024 (4)
O20.0773 (7)0.0498 (6)0.0420 (5)0.0073 (5)0.0060 (5)0.0044 (4)
Geometric parameters (Å, º) top
C1—C101.4788 (18)C26—H26A0.9600
C1—C21.398 (2)C27—H27C0.9600
C1—C61.3969 (19)C27—H27B0.9600
C10—C91.5399 (18)C27—H27A0.9600
C11—H110.9800C28—H28C0.9600
C11—C191.5150 (18)C28—H28B0.9600
C11—C121.5129 (18)C28—H28A0.9600
C13—C121.4689 (19)C29—H29F0.9600
C13—C181.395 (2)C29—H29E0.9600
C13—C141.383 (2)C29—H29D0.9600
C14—H140.9300C29—H29C0.9600
C14—C151.385 (2)C29—H29B0.9600
C15—H150.9300C29—H29A0.9600
C16—C291.507 (2)C3—H30.9300
C16—C171.381 (2)C3—C41.377 (2)
C16—C151.375 (2)C30—H30F0.9600
C17—H170.9300C30—H30E0.9600
C18—H180.9300C30—H30D0.9600
C18—C171.378 (2)C30—H30C0.9600
C19—C201.3871 (19)C30—H30B0.9600
C19—C241.3845 (19)C30—H30A0.9600
C2—H20.9300C4—H40.9300
C2—C31.373 (2)C5—H50.9300
C20—H200.9300C5—C41.378 (2)
C20—C211.383 (2)C6—C51.394 (2)
C21—H210.9300C7—H70.9800
C22—C301.513 (2)C7—C251.5625 (19)
C22—C211.380 (3)C7—C81.5357 (18)
C22—C231.378 (3)C7—C61.5055 (19)
C23—H230.9300C8—H8B0.9700
C24—H240.9300C8—H8A0.9700
C24—C231.387 (2)C9—C111.5420 (18)
C25—C281.530 (2)C9—C81.5324 (18)
C25—C261.528 (2)N1—O11.4236 (15)
C25—C271.527 (2)N1—C121.2802 (18)
C26—H26C0.9600O1—C91.4777 (15)
C26—H26B0.9600O2—C101.2156 (15)
C2—C1—C10119.88 (12)C25—C28—H28B109.5
C6—C1—C10119.72 (12)C25—C28—H28A109.5
C6—C1—C2120.39 (13)H29E—C29—H29F109.5
C1—C10—C9116.26 (11)H29D—C29—H29F109.5
O2—C10—C9120.96 (12)H29C—C29—H29F141.1
O2—C10—C1122.63 (12)H29B—C29—H29F56.3
C9—C11—H11110.2H29A—C29—H29F56.3
C19—C11—H11110.2C16—C29—H29F109.5
C12—C11—H11110.2H29D—C29—H29E109.5
C19—C11—C9114.68 (10)H29C—C29—H29E56.3
C12—C11—C999.77 (10)H29B—C29—H29E141.1
C12—C11—C19111.26 (10)H29A—C29—H29E56.3
C13—C12—C11124.84 (12)C16—C29—H29E109.5
N1—C12—C11113.75 (12)H29C—C29—H29D56.3
N1—C12—C13121.40 (12)H29B—C29—H29D56.3
C18—C13—C12121.11 (13)H29A—C29—H29D141.1
C14—C13—C12121.10 (13)C16—C29—H29D109.5
C14—C13—C18117.64 (14)H29B—C29—H29C109.5
C15—C14—H14119.6H29A—C29—H29C109.5
C13—C14—H14119.6C16—C29—H29C109.5
C13—C14—C15120.90 (15)H29A—C29—H29B109.5
C14—C15—H15119.2C16—C29—H29B109.5
C16—C15—H15119.2C16—C29—H29A109.5
C16—C15—C14121.51 (16)C4—C3—H3120.2
C17—C16—C29121.05 (16)C2—C3—H3120.2
C15—C16—C29121.35 (17)C2—C3—C4119.58 (15)
C15—C16—C17117.58 (15)H30E—C30—H30F109.5
C16—C17—H17119.2H30D—C30—H30F109.5
C18—C17—H17119.2H30C—C30—H30F141.1
C18—C17—C16121.64 (15)H30B—C30—H30F56.3
C13—C18—H18119.7H30A—C30—H30F56.3
C17—C18—H18119.7C22—C30—H30F109.5
C17—C18—C13120.66 (15)H30D—C30—H30E109.5
C20—C19—C11120.91 (12)H30C—C30—H30E56.3
C24—C19—C11121.41 (12)H30B—C30—H30E141.1
C24—C19—C20117.58 (13)H30A—C30—H30E56.3
C1—C2—H2119.8C22—C30—H30E109.5
C3—C2—H2119.8H30C—C30—H30D56.3
C3—C2—C1120.33 (15)H30B—C30—H30D56.3
C19—C20—H20119.5H30A—C30—H30D141.1
C21—C20—H20119.5C22—C30—H30D109.5
C21—C20—C19120.91 (14)H30B—C30—H30C109.5
C20—C21—H21119.1H30A—C30—H30C109.5
C22—C21—H21119.1C22—C30—H30C109.5
C22—C21—C20121.75 (15)H30A—C30—H30B109.5
C21—C22—C30121.17 (18)C22—C30—H30B109.5
C23—C22—C30121.71 (18)C22—C30—H30A109.5
C23—C22—C21117.12 (15)C5—C4—H4119.6
C24—C23—H23119.1C3—C4—H4119.6
C22—C23—H23119.1C3—C4—C5120.72 (15)
C22—C23—C24121.85 (15)C6—C5—H5119.5
C23—C24—H24119.6C4—C5—H5119.5
C19—C24—H24119.6C4—C5—C6120.97 (14)
C19—C24—C23120.75 (15)C1—C6—C7119.85 (12)
C28—C25—C7108.75 (12)C5—C6—C7122.14 (13)
C26—C25—C7112.72 (11)C5—C6—C1118.00 (13)
C27—C25—C7109.05 (13)C25—C7—H7105.4
C26—C25—C28108.63 (13)C8—C7—H7105.4
C27—C25—C28108.17 (13)C6—C7—H7105.4
C27—C25—C26109.42 (13)C8—C7—C25116.43 (11)
H26B—C26—H26C109.5C6—C7—C25114.19 (11)
H26A—C26—H26C109.5C6—C7—C8108.91 (11)
C25—C26—H26C109.5H8A—C8—H8B107.2
H26A—C26—H26B109.5C7—C8—H8B108.0
C25—C26—H26B109.5C9—C8—H8B108.0
C25—C26—H26A109.5C7—C8—H8A108.0
H27B—C27—H27C109.5C9—C8—H8A108.0
H27A—C27—H27C109.5C9—C8—C7117.37 (10)
C25—C27—H27C109.5C10—C9—C11111.94 (10)
H27A—C27—H27B109.5C8—C9—C11119.46 (11)
C25—C27—H27B109.5O1—C9—C11102.04 (10)
C25—C27—H27A109.5C8—C9—C10113.40 (11)
H28B—C28—H28C109.5O1—C9—C10101.45 (10)
H28A—C28—H28C109.5O1—C9—C8105.91 (9)
C25—C28—H28C109.5C12—N1—O1108.71 (11)
H28A—C28—H28B109.5N1—O1—C9108.53 (9)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C24—H24···O1i0.932.543.4254 (17)160
C29—H29F···N1ii0.962.623.546 (2)161
C26—H26A···Cg2i0.962.773.6643 (16)155
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H31NO2
Mr437.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.9158 (2), 25.0737 (5), 13.8747 (3)
β (°) 94.359 (1)
V3)2398.98 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.23 × 0.21 × 0.14
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25446, 4473, 3577
Rint0.028
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.06
No. of reflections4473
No. of parameters301
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C24—H24···O1i0.932.543.4254 (17)160
C29—H29F···N1ii0.962.623.546 (2)161
C26—H26A···Cg2i0.962.773.6643 (16)155
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAkhazzane, M., Zouihri, H., Daran, J.-C., Kerbal, A. & Al Houari, G. (2010). Acta Cryst. E66, o3067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl Houari, G., Baba, M. F., Miqueu, K., Sotiropoulos, J. M., Garrigues, B., Benhadda, T., Benlarbi, N., Safir, I. & et Kerbal, A. (2008). J. Mar. Chim. Heterocycl. 7, 16–20.  CAS Google Scholar
First citationAl Houari, G., Bennani, A. K., Bennani, B., Daoudi, M., Benlarbi, N., El Yazidi, M., Garrigues, B. & Kerbal, A. (2010). J. Mar. Chim. Heterocycl. 9, 36–43.  CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358;  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds