organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-4-(naphthalen-1-yl)-1H-1,2,3-triazole

aCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500 Tijuana, BC, Mexico
*Correspondence e-mail: iarivero@yahoo.com.mx

(Received 12 January 2011; accepted 26 May 2011; online 30 June 2011)

In the title compound, C19H15N3, the benzyl group is almost perpendicular to the triazole ring [dihedral angle = 80.64 (8)°], while the napthyl group makes an angle of 30.27 (12)° with the plane of the triazole ring. This conformation is different from the 1-benzyl-4-phenyl-1H-1,2,3-triazole analogue, which has the benzyl ring system at an angle of 87.94° and the phenyl group at an angle of 3.35° to the plane of the triazole ring.

Related literature

For the biological activity of triazoles, see: Alvarez et al. (1994[Alvarez, R., Elazquez, S. V., San, F., Aquaro, S., De, C., Perno, C. F., Karlesson, A., Balzarini, J. & Camarasa, M. J. (1994). J. Med. Chem. 37, 4185-4194.]); Brockunier et al. (2000[Brockunier, L. L., Parmee, E. R., Ok, H. O., Candelore, M. R., Cascieri, M. A., Colwell, L. F., Deng, L., Feeney, W. P., Forest, M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2111-2114.]); Genin et al. (2000[Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenco, G. E., Hamel, J. C., Schaadt, R. D., Stapertand, D. & Yagi, B. H. (2000). J. Med. Chem. 43, 953-970.]); Katritsky et al. (1996[Katritsky, A. R., Rees, C. W. & Scriven, C. W. V. (1996). Editors. Comprehensive Heterocyclic Chemistry II, Vol. 4, pp. 1-126. Oxford: Elsevier Science.]). For related structures, see: Bi (2010[Bi, Y. (2010). Acta Cryst. E66, o951.]); Huang et al. (2010[Huang, C.-C., Wu, F.-L., Lo, Y. H., Lai, W.-R. & Lin, C.-H. (2010). Acta Cryst. E66, o1690.]); Jabli et al. (2010[Jabli, H., Ouazzani Chahdi, F., Saffon, N., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o232.]); Key et al. (2008[Key, J. A., Cairo, C. W. & Ferguson, M. J. (2008). Acta Cryst. E64, o1910.]); Makam & Yulin (2004[Makam, S. R. & Yulin, L. (2004). Tetrahedron Lett. 45, 6129-6132.]); Santos-Contreras et al. (2009[Santos-Contreras, R. J., Ramos-Organillo, A., García-Báez, E. V., Padilla-Martínez, I. I. & Martínez-Martínez, F. J. (2009). Acta Cryst. C65, o8-o10.]): Vaqueiro (2006[Vaqueiro, P. (2006). Acta Cryst. E62, o2632-o2633.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15N3

  • Mr = 285.34

  • Monoclinic, P 21 /c

  • a = 9.896 (2) Å

  • b = 11.038 (3) Å

  • c = 14.136 (4) Å

  • β = 102.701 (13)°

  • V = 1506.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.5 × 0.48 × 0.28 mm

Data collection
  • Siemens P4 diffractometer

  • 3663 measured reflections

  • 3471 independent reflections

  • 1730 reflections with I > 2σ(I)

  • Rint = 0.028

  • 3 standard reflections every 97 reflections intensity decay: 5.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.202

  • S = 1.01

  • 3471 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, triazole compounds have received much attention due to their wide range of applications in organic and medicinal chemistry. Specifically, 1,2,3-triazoles have been used in pharmaceuticals, agrochemicals, dyes, photographic materials and corrosion inhibitors (Katritsky et al., 1996). There are numerous examples in the literature of the biological activity of triazole compounds acting as as anti-HIV agents (Alvarez et al., 1994) or as antibiotics due to their antimicrobial activity against Gram positive bacteria (Genin et al., 2000) and as selective β3 adrenergic agonist receptors (Brockunier et al., 2000).

The molecular structure of (I) is shown in Fig. 1. The molecule shows that the phenyl group and the triazole heterocycle are linked by the methylene group. The carbon atom C13 with a C14—C13—N1 angle of 112.5 (2)o is distorted from ideal tetrahedral geometry (109.7¯). This can be attributed to steric factors of adjacent cyclic systems. Also, the bonds distances N3—C11, C11—C12, C12—N1, N1—N2 and N2—N3 are 1.353 (3), 1.353 (4), 1.335 (3), 1.337 (3) and 1.321 (3) Å, respectively, which agree with the CC, NN and C—N distances found in the literature for compounds having triazole heterocycles (Huang et al., 2010; Jabli et al., 2010; Key et al. 2008). In addition, C12—N1 and C11—N3 are significantly shorter that the C—N single bonds (1.47 Å) (Vaqueiro, 2006; Bi, 2010) but longer than true C—N double bonds (1.28 Å) (Santos-Contreras et al., 2009). This indicates a delocalization of electrons in the triazolyl system.

As shown in Fig. 1, the molecule shows the benzyl group is located above the plane of the triazole at a dihedral angle of 80.64 (0.08)° and the naphthyl group is at an angle fo 30.27 (0.12)°. This conformation is different from its analogue 1-benzyl-4-phenyl-1H-1, 2,3-triazole which presents the benzyl at an dihedral angle of 87.94° and the phenyl at an angle of 3.35° to the plane of the triazole (Makam & Yulin, 2004).

Related literature top

For the biological activity of triazoles, see: Alvarez et al. (1994); Brockunier et al. (2000); Genin et al. (2000); Katritsky et al. (1996). For related structures, see: Bi (2010); Huang et al. (2010); Jabli et al. (2010); Key et al. (2008); Makam & Yulin (2004); Santos-Contreras et al. (2009): Vaqueiro (2006).

Experimental top

Experimental

All reagents were purchased in the highest quality available and were used without further purification. The solvents used in column chromatography were obtained from commercial suppliers and used without distillation. To a solution tert-BuOH/H2O (6 ml 1:1 v/v) was added benzyl bromide (1.684 mmol), sodium azide (1.684 mmol), 1-ethynyl-naphthalene (1.684 mmol), copper(II) sulfate (0.084 mmol, 5% mol) and sodium ascorbate (0.168 mmol, 10% mol) with vigorous stirring at 60 °C for 8 h. The reaction mixture was filtered with diatomaceous earth (kieselguhr) or zeolite and silica gel in vacuo, then extracted with ethyl acetate (60 ml). The extracts were combined and dried over anhydrous sodium sulfate. After evaporation of the solvent, the residual oil solidified and was purified by flash chromatography to give (I) (petroleum ether/EtOAc 1:1 v/v). Yield 85%; pale yellow solid; mp 89–90 °C; 1H-NMR (CDCl3, 200 MHz): δ 8.39–8.34 (m, 1H), 7.88–7.82 (m, 2H), 7.71 (s, 1H), 7.69–7.66 (d, J = 7.33 Hz, 1H), 7.52–7.47 (dd, J = 6.42, 3.48 Hz, 4H), 7.37–7.36 (d, J = 1.83 Hz, 4H), 5.61 (s, 2H); 13C-NMR (CDCl3, 50 MHz): δ 147.3, 134.6, 133.8, 131.0, 129.1, 128.8, 128.7, 128.3, 128.0, 127.1, 126.5, 125.9, 125.4, 125.2, 122.4, 54.1; IR (KBr, pellet): 1686, 1601, 1454 cm-1; ESI-MS m/z: 286 [M+H]+, 308 [M+Na]+, 324 [M+K]+, 593 [2M+Na]+.

Crystallization

50 mg of (I) compound was placed for diffusion in a glass vial with chloroform-petroleum ether for one day. The crystals, suitable for data collection, were separated by filtration.

Refinement top

Refinement for H atoms was carried out using a riding model, with distances constrained to: 0.93 Å for aromatic CH, 0.98 Å for methine CH. Isotropic U parameters were fixed to Uiso(H)=1.2Ueq(carrier atom) for aromatic CH.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound (I) with displacement ellipsoids drawn at 30% probability level.
1-Benzyl-4-(naphthalen-1-yl)-1H-1,2,3-triazole top
Crystal data top
C19H15N3F(000) = 600
Mr = 285.34Dx = 1.258 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 36 reflections
a = 9.896 (2) Åθ = 4.6–12.4°
b = 11.038 (3) ŵ = 0.08 mm1
c = 14.136 (4) ÅT = 298 K
β = 102.701 (13)°Prismatic, colorless
V = 1506.2 (6) Å30.5 × 0.48 × 0.28 mm
Z = 4
Data collection top
Siemens P4
diffractometer
Rint = 0.028
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.1°
Graphite monochromatorh = 012
2θ/ω scansk = 014
3663 measured reflectionsl = 1817
3471 independent reflections3 standard reflections every 97 reflections
1730 reflections with I > 2σ(I) intensity decay: 5.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0839P)2 + 0.308P]
where P = (Fo2 + 2Fc2)/3
3471 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C19H15N3V = 1506.2 (6) Å3
Mr = 285.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.896 (2) ŵ = 0.08 mm1
b = 11.038 (3) ÅT = 298 K
c = 14.136 (4) Å0.5 × 0.48 × 0.28 mm
β = 102.701 (13)°
Data collection top
Siemens P4
diffractometer
Rint = 0.028
3663 measured reflections3 standard reflections every 97 reflections
3471 independent reflections intensity decay: 5.4%
1730 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.01Δρmax = 0.40 e Å3
3471 reflectionsΔρmin = 0.17 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2899 (2)0.3968 (2)0.18018 (16)0.0603 (7)
N20.3058 (3)0.2778 (3)0.19682 (18)0.0688 (7)
N30.4044 (3)0.2660 (2)0.27619 (18)0.0665 (7)
C10.5662 (3)0.4031 (3)0.39312 (19)0.0548 (7)
C20.6434 (3)0.5043 (3)0.3915 (2)0.0688 (9)
H2B0.62080.55500.33770.083*
C30.7552 (4)0.5365 (3)0.4664 (2)0.0779 (10)
H3B0.80530.60660.46130.093*
C40.7905 (4)0.4661 (3)0.5459 (2)0.0773 (10)
H4A0.86550.48700.59540.093*
C50.7114 (3)0.3581 (3)0.55387 (19)0.0592 (8)
C60.7469 (4)0.2850 (3)0.6363 (2)0.0756 (10)
H6A0.82070.30680.68640.091*
C70.6745 (4)0.1828 (3)0.6434 (2)0.0779 (10)
H7A0.69950.13390.69810.093*
C80.5616 (3)0.1501 (3)0.5686 (2)0.0726 (9)
H8A0.51230.07990.57480.087*
C90.5231 (3)0.2188 (3)0.4877 (2)0.0657 (8)
H9A0.44750.19580.43940.079*
C100.5991 (3)0.3282 (2)0.47587 (18)0.0519 (7)
C110.4501 (3)0.3772 (3)0.30902 (19)0.0530 (7)
C120.3770 (3)0.4599 (3)0.2479 (2)0.0627 (8)
H12A0.38560.54380.25210.075*
C130.1908 (3)0.4396 (4)0.0935 (2)0.0837 (11)
H13A0.13340.37230.06440.100*
H13B0.24130.46880.04650.100*
C140.0994 (3)0.5392 (3)0.11590 (18)0.0559 (7)
C150.1201 (3)0.6574 (3)0.0925 (2)0.0713 (9)
H15A0.19310.67620.06340.086*
C160.0351 (4)0.7485 (3)0.1112 (2)0.0768 (10)
H16A0.05090.82800.09460.092*
C170.0723 (3)0.7230 (3)0.1539 (2)0.0687 (9)
H17A0.13010.78460.16640.082*
C180.0945 (3)0.6056 (3)0.1783 (2)0.0680 (9)
H18A0.16730.58750.20780.082*
C190.0089 (3)0.5140 (3)0.1592 (2)0.0617 (8)
H19A0.02470.43450.17590.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0498 (14)0.0771 (18)0.0486 (13)0.0138 (13)0.0007 (11)0.0144 (12)
N20.0644 (16)0.0719 (19)0.0660 (16)0.0103 (14)0.0052 (13)0.0132 (14)
N30.0671 (16)0.0661 (17)0.0624 (15)0.0031 (13)0.0060 (13)0.0003 (13)
C10.0597 (17)0.0507 (17)0.0522 (16)0.0095 (14)0.0082 (13)0.0086 (13)
C20.078 (2)0.0553 (19)0.0652 (19)0.0055 (17)0.0020 (16)0.0066 (15)
C30.093 (2)0.0549 (19)0.075 (2)0.0171 (17)0.0047 (19)0.0025 (17)
C40.083 (2)0.069 (2)0.068 (2)0.0057 (18)0.0085 (18)0.0155 (18)
C50.0637 (18)0.0638 (19)0.0460 (15)0.0207 (15)0.0033 (14)0.0046 (13)
C60.078 (2)0.086 (3)0.0567 (18)0.023 (2)0.0022 (17)0.0063 (17)
C70.084 (2)0.083 (3)0.067 (2)0.021 (2)0.0194 (19)0.0096 (18)
C80.076 (2)0.076 (2)0.071 (2)0.0046 (18)0.0274 (18)0.0163 (17)
C90.0626 (19)0.069 (2)0.0681 (19)0.0069 (16)0.0205 (15)0.0056 (16)
C100.0551 (16)0.0530 (16)0.0463 (14)0.0164 (14)0.0085 (13)0.0066 (12)
C110.0507 (15)0.0598 (18)0.0459 (14)0.0107 (13)0.0049 (12)0.0105 (13)
C120.0637 (18)0.0594 (18)0.0568 (16)0.0166 (15)0.0043 (14)0.0165 (14)
C130.068 (2)0.126 (3)0.0482 (17)0.034 (2)0.0059 (15)0.0121 (18)
C140.0457 (15)0.076 (2)0.0414 (14)0.0091 (14)0.0001 (12)0.0008 (14)
C150.0512 (18)0.098 (3)0.0633 (19)0.0065 (18)0.0092 (15)0.0198 (18)
C160.080 (2)0.067 (2)0.074 (2)0.0104 (19)0.0025 (19)0.0197 (17)
C170.068 (2)0.063 (2)0.0697 (19)0.0095 (16)0.0046 (17)0.0042 (16)
C180.0528 (18)0.081 (2)0.075 (2)0.0010 (17)0.0227 (16)0.0033 (17)
C190.0641 (18)0.0548 (18)0.0645 (18)0.0021 (15)0.0109 (15)0.0042 (14)
Geometric parameters (Å, º) top
N1—C121.335 (3)C8—C91.356 (4)
N1—N21.337 (3)C8—H8A0.9300
N1—C131.470 (3)C9—C101.452 (4)
N2—N31.321 (3)C9—H9A0.9300
N3—C111.353 (3)C11—C121.353 (4)
C1—C21.357 (4)C12—H12A0.9300
C1—C101.410 (4)C13—C141.500 (4)
C1—C111.488 (4)C13—H13A0.9700
C2—C31.399 (4)C13—H13B0.9700
C2—H2B0.9300C14—C151.372 (4)
C3—C41.348 (4)C14—C191.375 (4)
C3—H3B0.9300C15—C161.374 (5)
C4—C51.444 (5)C15—H15A0.9300
C4—H4A0.9300C16—C171.363 (5)
C5—C61.397 (4)C16—H16A0.9300
C5—C101.421 (4)C17—C181.371 (4)
C6—C71.352 (5)C17—H17A0.9300
C6—H6A0.9300C18—C191.384 (4)
C7—C81.407 (5)C18—H18A0.9300
C7—H7A0.9300C19—H19A0.9300
C12—N1—N2110.8 (2)C1—C10—C9123.5 (3)
C12—N1—C13129.6 (3)C5—C10—C9116.1 (3)
N2—N1—C13119.6 (3)C12—C11—N3107.6 (2)
N3—N2—N1106.4 (2)C12—C11—C1126.2 (3)
N2—N3—C11109.3 (2)N3—C11—C1126.1 (3)
C2—C1—C10117.9 (3)N1—C12—C11106.0 (3)
C2—C1—C11118.9 (3)N1—C12—H12A127.0
C10—C1—C11123.2 (3)C11—C12—H12A127.0
C1—C2—C3123.4 (3)N1—C13—C14112.5 (2)
C1—C2—H2B118.3N1—C13—H13A109.1
C3—C2—H2B118.3C14—C13—H13A109.1
C4—C3—C2120.1 (3)N1—C13—H13B109.1
C4—C3—H3B120.0C14—C13—H13B109.1
C2—C3—H3B120.0H13A—C13—H13B107.8
C3—C4—C5119.7 (3)C15—C14—C19118.1 (3)
C3—C4—H4A120.1C15—C14—C13121.1 (3)
C5—C4—H4A120.1C19—C14—C13120.7 (3)
C6—C5—C10121.6 (3)C14—C15—C16121.4 (3)
C6—C5—C4120.0 (3)C14—C15—H15A119.3
C10—C5—C4118.4 (3)C16—C15—H15A119.3
C7—C6—C5120.3 (3)C17—C16—C15120.2 (3)
C7—C6—H6A119.9C17—C16—H16A119.9
C5—C6—H6A119.9C15—C16—H16A119.9
C6—C7—C8120.3 (3)C16—C17—C18119.4 (3)
C6—C7—H7A119.9C16—C17—H17A120.3
C8—C7—H7A119.9C18—C17—H17A120.3
C9—C8—C7121.4 (3)C17—C18—C19120.2 (3)
C9—C8—H8A119.3C17—C18—H18A119.9
C7—C8—H8A119.3C19—C18—H18A119.9
C8—C9—C10120.4 (3)C14—C19—C18120.7 (3)
C8—C9—H9A119.8C14—C19—H19A119.7
C10—C9—H9A119.8C18—C19—H19A119.7
C1—C10—C5120.4 (3)
C12—N1—N2—N30.0 (3)C8—C9—C10—C51.2 (4)
C13—N1—N2—N3177.3 (2)N2—N3—C11—C120.1 (3)
N1—N2—N3—C110.1 (3)N2—N3—C11—C1176.1 (2)
C10—C1—C2—C31.4 (5)C2—C1—C11—C1227.0 (4)
C11—C1—C2—C3179.5 (3)C10—C1—C11—C12151.9 (3)
C1—C2—C3—C40.6 (5)C2—C1—C11—N3148.4 (3)
C2—C3—C4—C50.7 (5)C10—C1—C11—N332.6 (4)
C3—C4—C5—C6179.7 (3)N2—N1—C12—C110.1 (3)
C3—C4—C5—C101.1 (5)C13—N1—C12—C11176.9 (3)
C10—C5—C6—C70.2 (5)N3—C11—C12—N10.1 (3)
C4—C5—C6—C7179.0 (3)C1—C11—C12—N1176.0 (2)
C5—C6—C7—C80.9 (5)C12—N1—C13—C1450.4 (4)
C6—C7—C8—C90.5 (5)N2—N1—C13—C14132.8 (3)
C7—C8—C9—C100.6 (5)N1—C13—C14—C15104.8 (3)
C2—C1—C10—C51.0 (4)N1—C13—C14—C1976.2 (4)
C11—C1—C10—C5179.9 (2)C19—C14—C15—C160.3 (4)
C2—C1—C10—C9178.7 (3)C13—C14—C15—C16178.7 (3)
C11—C1—C10—C90.2 (4)C14—C15—C16—C170.1 (5)
C6—C5—C10—C1179.5 (3)C15—C16—C17—C180.2 (5)
C4—C5—C10—C10.3 (4)C16—C17—C18—C190.3 (5)
C6—C5—C10—C90.8 (4)C15—C14—C19—C180.2 (4)
C4—C5—C10—C9180.0 (3)C13—C14—C19—C18178.8 (3)
C8—C9—C10—C1179.1 (3)C17—C18—C19—C140.1 (5)

Experimental details

Crystal data
Chemical formulaC19H15N3
Mr285.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.896 (2), 11.038 (3), 14.136 (4)
β (°) 102.701 (13)
V3)1506.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.5 × 0.48 × 0.28
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3663, 3471, 1730
Rint0.028
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.202, 1.01
No. of reflections3471
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.17

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

 

Acknowledgements

We gratefully acknowledge support of this project by the Consejo Nacional de Ciencia y Tecnología (CONACyT, grant No. SEP-2004-CO1–47835) and the Dirección General de Educación Superior Tecnológica (DGEST). JS thanks CONACYT for a graduate scholarship.

References

First citationAlvarez, R., Elazquez, S. V., San, F., Aquaro, S., De, C., Perno, C. F., Karlesson, A., Balzarini, J. & Camarasa, M. J. (1994). J. Med. Chem. 37, 4185–4194.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBi, Y. (2010). Acta Cryst. E66, o951.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrockunier, L. L., Parmee, E. R., Ok, H. O., Candelore, M. R., Cascieri, M. A., Colwell, L. F., Deng, L., Feeney, W. P., Forest, M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2111–2114.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGenin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenco, G. E., Hamel, J. C., Schaadt, R. D., Stapertand, D. & Yagi, B. H. (2000). J. Med. Chem. 43, 953–970.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, C.-C., Wu, F.-L., Lo, Y. H., Lai, W.-R. & Lin, C.-H. (2010). Acta Cryst. E66, o1690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJabli, H., Ouazzani Chahdi, F., Saffon, N., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o232.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatritsky, A. R., Rees, C. W. & Scriven, C. W. V. (1996). Editors. Comprehensive Heterocyclic Chemistry II, Vol. 4, pp. 1–126. Oxford: Elsevier Science.  Google Scholar
First citationKey, J. A., Cairo, C. W. & Ferguson, M. J. (2008). Acta Cryst. E64, o1910.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMakam, S. R. & Yulin, L. (2004). Tetrahedron Lett. 45, 6129–6132.  Google Scholar
First citationSantos-Contreras, R. J., Ramos-Organillo, A., García-Báez, E. V., Padilla-Martínez, I. I. & Martínez-Martínez, F. J. (2009). Acta Cryst. C65, o8–o10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationVaqueiro, P. (2006). Acta Cryst. E62, o2632–o2633.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds