organic compounds
1-Benzyl-4-(naphthalen-1-yl)-1H-1,2,3-triazole
aCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500 Tijuana, BC, Mexico
*Correspondence e-mail: iarivero@yahoo.com.mx
In the title compound, C19H15N3, the benzyl group is almost perpendicular to the triazole ring [dihedral angle = 80.64 (8)°], while the napthyl group makes an angle of 30.27 (12)° with the plane of the triazole ring. This conformation is different from the 1-benzyl-4-phenyl-1H-1,2,3-triazole analogue, which has the benzyl ring system at an angle of 87.94° and the phenyl group at an angle of 3.35° to the plane of the triazole ring.
Related literature
For the biological activity of triazoles, see: Alvarez et al. (1994); Brockunier et al. (2000); Genin et al. (2000); Katritsky et al. (1996). For related structures, see: Bi (2010); Huang et al. (2010); Jabli et al. (2010); Key et al. (2008); Makam & Yulin (2004); Santos-Contreras et al. (2009): Vaqueiro (2006).
Experimental
Crystal data
|
Data collection: XSCANS (Siemens, 1996); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811019994/fl2334sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811019994/fl2334Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811019994/fl2334Isup3.cml
Experimental
All reagents were purchased in the highest quality available and were used without further purification. The solvents used in δ 8.39–8.34 (m, 1H), 7.88–7.82 (m, 2H), 7.71 (s, 1H), 7.69–7.66 (d, J = 7.33 Hz, 1H), 7.52–7.47 (dd, J = 6.42, 3.48 Hz, 4H), 7.37–7.36 (d, J = 1.83 Hz, 4H), 5.61 (s, 2H); 13C-NMR (CDCl3, 50 MHz): δ 147.3, 134.6, 133.8, 131.0, 129.1, 128.8, 128.7, 128.3, 128.0, 127.1, 126.5, 125.9, 125.4, 125.2, 122.4, 54.1; IR (KBr, pellet): 1686, 1601, 1454 cm-1; ESI-MS m/z: 286 [M+H]+, 308 [M+Na]+, 324 [M+K]+, 593 [2M+Na]+.
were obtained from commercial suppliers and used without distillation. To a solution tert-BuOH/H2O (6 ml 1:1 v/v) was added benzyl bromide (1.684 mmol), sodium azide (1.684 mmol), 1-ethynyl-naphthalene (1.684 mmol), copper(II) sulfate (0.084 mmol, 5% mol) and sodium ascorbate (0.168 mmol, 10% mol) with vigorous stirring at 60 °C for 8 h. The reaction mixture was filtered with diatomaceous earth (kieselguhr) or zeolite and silica gel in vacuo, then extracted with ethyl acetate (60 ml). The extracts were combined and dried over anhydrous sodium sulfate. After evaporation of the solvent, the residual oil solidified and was purified by flash to give (I) (petroleum ether/EtOAc 1:1 v/v). Yield 85%; pale yellow solid; mp 89–90 °C; 1H-NMR (CDCl3, 200 MHz):Crystallization
50 mg of (I) compound was placed for diffusion in a glass vial with chloroform-petroleum ether for one day. The crystals, suitable for data collection, were separated by filtration.
Refinement for H atoms was carried out using a riding model, with distances constrained to: 0.93 Å for aromatic CH, 0.98 Å for methine CH. Isotropic U parameters were fixed to Uiso(H)=1.2Ueq(carrier atom) for aromatic CH.
Data collection: XSCANS (Siemens, 1996); cell
XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The title compound (I) with displacement ellipsoids drawn at 30% probability level. |
C19H15N3 | F(000) = 600 |
Mr = 285.34 | Dx = 1.258 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 36 reflections |
a = 9.896 (2) Å | θ = 4.6–12.4° |
b = 11.038 (3) Å | µ = 0.08 mm−1 |
c = 14.136 (4) Å | T = 298 K |
β = 102.701 (13)° | Prismatic, colorless |
V = 1506.2 (6) Å3 | 0.5 × 0.48 × 0.28 mm |
Z = 4 |
Siemens P4 diffractometer | Rint = 0.028 |
Radiation source: fine-focus sealed tube | θmax = 27.5°, θmin = 2.1° |
Graphite monochromator | h = 0→12 |
2θ/ω scans | k = 0→14 |
3663 measured reflections | l = −18→17 |
3471 independent reflections | 3 standard reflections every 97 reflections |
1730 reflections with I > 2σ(I) | intensity decay: 5.4% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.069 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.202 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0839P)2 + 0.308P] where P = (Fo2 + 2Fc2)/3 |
3471 reflections | (Δ/σ)max < 0.001 |
199 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C19H15N3 | V = 1506.2 (6) Å3 |
Mr = 285.34 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.896 (2) Å | µ = 0.08 mm−1 |
b = 11.038 (3) Å | T = 298 K |
c = 14.136 (4) Å | 0.5 × 0.48 × 0.28 mm |
β = 102.701 (13)° |
Siemens P4 diffractometer | Rint = 0.028 |
3663 measured reflections | 3 standard reflections every 97 reflections |
3471 independent reflections | intensity decay: 5.4% |
1730 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.069 | 0 restraints |
wR(F2) = 0.202 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.40 e Å−3 |
3471 reflections | Δρmin = −0.17 e Å−3 |
199 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.2899 (2) | 0.3968 (2) | 0.18018 (16) | 0.0603 (7) | |
N2 | 0.3058 (3) | 0.2778 (3) | 0.19682 (18) | 0.0688 (7) | |
N3 | 0.4044 (3) | 0.2660 (2) | 0.27619 (18) | 0.0665 (7) | |
C1 | 0.5662 (3) | 0.4031 (3) | 0.39312 (19) | 0.0548 (7) | |
C2 | 0.6434 (3) | 0.5043 (3) | 0.3915 (2) | 0.0688 (9) | |
H2B | 0.6208 | 0.5550 | 0.3377 | 0.083* | |
C3 | 0.7552 (4) | 0.5365 (3) | 0.4664 (2) | 0.0779 (10) | |
H3B | 0.8053 | 0.6066 | 0.4613 | 0.093* | |
C4 | 0.7905 (4) | 0.4661 (3) | 0.5459 (2) | 0.0773 (10) | |
H4A | 0.8655 | 0.4870 | 0.5954 | 0.093* | |
C5 | 0.7114 (3) | 0.3581 (3) | 0.55387 (19) | 0.0592 (8) | |
C6 | 0.7469 (4) | 0.2850 (3) | 0.6363 (2) | 0.0756 (10) | |
H6A | 0.8207 | 0.3068 | 0.6864 | 0.091* | |
C7 | 0.6745 (4) | 0.1828 (3) | 0.6434 (2) | 0.0779 (10) | |
H7A | 0.6995 | 0.1339 | 0.6981 | 0.093* | |
C8 | 0.5616 (3) | 0.1501 (3) | 0.5686 (2) | 0.0726 (9) | |
H8A | 0.5123 | 0.0799 | 0.5748 | 0.087* | |
C9 | 0.5231 (3) | 0.2188 (3) | 0.4877 (2) | 0.0657 (8) | |
H9A | 0.4475 | 0.1958 | 0.4394 | 0.079* | |
C10 | 0.5991 (3) | 0.3282 (2) | 0.47587 (18) | 0.0519 (7) | |
C11 | 0.4501 (3) | 0.3772 (3) | 0.30902 (19) | 0.0530 (7) | |
C12 | 0.3770 (3) | 0.4599 (3) | 0.2479 (2) | 0.0627 (8) | |
H12A | 0.3856 | 0.5438 | 0.2521 | 0.075* | |
C13 | 0.1908 (3) | 0.4396 (4) | 0.0935 (2) | 0.0837 (11) | |
H13A | 0.1334 | 0.3723 | 0.0644 | 0.100* | |
H13B | 0.2413 | 0.4688 | 0.0465 | 0.100* | |
C14 | 0.0994 (3) | 0.5392 (3) | 0.11590 (18) | 0.0559 (7) | |
C15 | 0.1201 (3) | 0.6574 (3) | 0.0925 (2) | 0.0713 (9) | |
H15A | 0.1931 | 0.6762 | 0.0634 | 0.086* | |
C16 | 0.0351 (4) | 0.7485 (3) | 0.1112 (2) | 0.0768 (10) | |
H16A | 0.0509 | 0.8280 | 0.0946 | 0.092* | |
C17 | −0.0723 (3) | 0.7230 (3) | 0.1539 (2) | 0.0687 (9) | |
H17A | −0.1301 | 0.7846 | 0.1664 | 0.082* | |
C18 | −0.0945 (3) | 0.6056 (3) | 0.1783 (2) | 0.0680 (9) | |
H18A | −0.1673 | 0.5875 | 0.2078 | 0.082* | |
C19 | −0.0089 (3) | 0.5140 (3) | 0.1592 (2) | 0.0617 (8) | |
H19A | −0.0247 | 0.4345 | 0.1759 | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0498 (14) | 0.0771 (18) | 0.0486 (13) | 0.0138 (13) | −0.0007 (11) | −0.0144 (12) |
N2 | 0.0644 (16) | 0.0719 (19) | 0.0660 (16) | −0.0103 (14) | 0.0052 (13) | −0.0132 (14) |
N3 | 0.0671 (16) | 0.0661 (17) | 0.0624 (15) | −0.0031 (13) | 0.0060 (13) | 0.0003 (13) |
C1 | 0.0597 (17) | 0.0507 (17) | 0.0522 (16) | 0.0095 (14) | 0.0082 (13) | −0.0086 (13) |
C2 | 0.078 (2) | 0.0553 (19) | 0.0652 (19) | −0.0055 (17) | −0.0020 (16) | −0.0066 (15) |
C3 | 0.093 (2) | 0.0549 (19) | 0.075 (2) | −0.0171 (17) | −0.0047 (19) | −0.0025 (17) |
C4 | 0.083 (2) | 0.069 (2) | 0.068 (2) | −0.0057 (18) | −0.0085 (18) | −0.0155 (18) |
C5 | 0.0637 (18) | 0.0638 (19) | 0.0460 (15) | 0.0207 (15) | 0.0033 (14) | −0.0046 (13) |
C6 | 0.078 (2) | 0.086 (3) | 0.0567 (18) | 0.023 (2) | 0.0022 (17) | −0.0063 (17) |
C7 | 0.084 (2) | 0.083 (3) | 0.067 (2) | 0.021 (2) | 0.0194 (19) | 0.0096 (18) |
C8 | 0.076 (2) | 0.076 (2) | 0.071 (2) | 0.0046 (18) | 0.0274 (18) | 0.0163 (17) |
C9 | 0.0626 (19) | 0.069 (2) | 0.0681 (19) | 0.0069 (16) | 0.0205 (15) | 0.0056 (16) |
C10 | 0.0551 (16) | 0.0530 (16) | 0.0463 (14) | 0.0164 (14) | 0.0085 (13) | −0.0066 (12) |
C11 | 0.0507 (15) | 0.0598 (18) | 0.0459 (14) | 0.0107 (13) | 0.0049 (12) | −0.0105 (13) |
C12 | 0.0637 (18) | 0.0594 (18) | 0.0568 (16) | 0.0166 (15) | −0.0043 (14) | −0.0165 (14) |
C13 | 0.068 (2) | 0.126 (3) | 0.0482 (17) | 0.034 (2) | −0.0059 (15) | −0.0121 (18) |
C14 | 0.0457 (15) | 0.076 (2) | 0.0414 (14) | 0.0091 (14) | −0.0001 (12) | 0.0008 (14) |
C15 | 0.0512 (18) | 0.098 (3) | 0.0633 (19) | −0.0065 (18) | 0.0092 (15) | 0.0198 (18) |
C16 | 0.080 (2) | 0.067 (2) | 0.074 (2) | −0.0104 (19) | −0.0025 (19) | 0.0197 (17) |
C17 | 0.068 (2) | 0.063 (2) | 0.0697 (19) | 0.0095 (16) | 0.0046 (17) | 0.0042 (16) |
C18 | 0.0528 (18) | 0.081 (2) | 0.075 (2) | −0.0010 (17) | 0.0227 (16) | 0.0033 (17) |
C19 | 0.0641 (18) | 0.0548 (18) | 0.0645 (18) | −0.0021 (15) | 0.0109 (15) | 0.0042 (14) |
N1—C12 | 1.335 (3) | C8—C9 | 1.356 (4) |
N1—N2 | 1.337 (3) | C8—H8A | 0.9300 |
N1—C13 | 1.470 (3) | C9—C10 | 1.452 (4) |
N2—N3 | 1.321 (3) | C9—H9A | 0.9300 |
N3—C11 | 1.353 (3) | C11—C12 | 1.353 (4) |
C1—C2 | 1.357 (4) | C12—H12A | 0.9300 |
C1—C10 | 1.410 (4) | C13—C14 | 1.500 (4) |
C1—C11 | 1.488 (4) | C13—H13A | 0.9700 |
C2—C3 | 1.399 (4) | C13—H13B | 0.9700 |
C2—H2B | 0.9300 | C14—C15 | 1.372 (4) |
C3—C4 | 1.348 (4) | C14—C19 | 1.375 (4) |
C3—H3B | 0.9300 | C15—C16 | 1.374 (5) |
C4—C5 | 1.444 (5) | C15—H15A | 0.9300 |
C4—H4A | 0.9300 | C16—C17 | 1.363 (5) |
C5—C6 | 1.397 (4) | C16—H16A | 0.9300 |
C5—C10 | 1.421 (4) | C17—C18 | 1.371 (4) |
C6—C7 | 1.352 (5) | C17—H17A | 0.9300 |
C6—H6A | 0.9300 | C18—C19 | 1.384 (4) |
C7—C8 | 1.407 (5) | C18—H18A | 0.9300 |
C7—H7A | 0.9300 | C19—H19A | 0.9300 |
C12—N1—N2 | 110.8 (2) | C1—C10—C9 | 123.5 (3) |
C12—N1—C13 | 129.6 (3) | C5—C10—C9 | 116.1 (3) |
N2—N1—C13 | 119.6 (3) | C12—C11—N3 | 107.6 (2) |
N3—N2—N1 | 106.4 (2) | C12—C11—C1 | 126.2 (3) |
N2—N3—C11 | 109.3 (2) | N3—C11—C1 | 126.1 (3) |
C2—C1—C10 | 117.9 (3) | N1—C12—C11 | 106.0 (3) |
C2—C1—C11 | 118.9 (3) | N1—C12—H12A | 127.0 |
C10—C1—C11 | 123.2 (3) | C11—C12—H12A | 127.0 |
C1—C2—C3 | 123.4 (3) | N1—C13—C14 | 112.5 (2) |
C1—C2—H2B | 118.3 | N1—C13—H13A | 109.1 |
C3—C2—H2B | 118.3 | C14—C13—H13A | 109.1 |
C4—C3—C2 | 120.1 (3) | N1—C13—H13B | 109.1 |
C4—C3—H3B | 120.0 | C14—C13—H13B | 109.1 |
C2—C3—H3B | 120.0 | H13A—C13—H13B | 107.8 |
C3—C4—C5 | 119.7 (3) | C15—C14—C19 | 118.1 (3) |
C3—C4—H4A | 120.1 | C15—C14—C13 | 121.1 (3) |
C5—C4—H4A | 120.1 | C19—C14—C13 | 120.7 (3) |
C6—C5—C10 | 121.6 (3) | C14—C15—C16 | 121.4 (3) |
C6—C5—C4 | 120.0 (3) | C14—C15—H15A | 119.3 |
C10—C5—C4 | 118.4 (3) | C16—C15—H15A | 119.3 |
C7—C6—C5 | 120.3 (3) | C17—C16—C15 | 120.2 (3) |
C7—C6—H6A | 119.9 | C17—C16—H16A | 119.9 |
C5—C6—H6A | 119.9 | C15—C16—H16A | 119.9 |
C6—C7—C8 | 120.3 (3) | C16—C17—C18 | 119.4 (3) |
C6—C7—H7A | 119.9 | C16—C17—H17A | 120.3 |
C8—C7—H7A | 119.9 | C18—C17—H17A | 120.3 |
C9—C8—C7 | 121.4 (3) | C17—C18—C19 | 120.2 (3) |
C9—C8—H8A | 119.3 | C17—C18—H18A | 119.9 |
C7—C8—H8A | 119.3 | C19—C18—H18A | 119.9 |
C8—C9—C10 | 120.4 (3) | C14—C19—C18 | 120.7 (3) |
C8—C9—H9A | 119.8 | C14—C19—H19A | 119.7 |
C10—C9—H9A | 119.8 | C18—C19—H19A | 119.7 |
C1—C10—C5 | 120.4 (3) | ||
C12—N1—N2—N3 | 0.0 (3) | C8—C9—C10—C5 | −1.2 (4) |
C13—N1—N2—N3 | 177.3 (2) | N2—N3—C11—C12 | 0.1 (3) |
N1—N2—N3—C11 | −0.1 (3) | N2—N3—C11—C1 | −176.1 (2) |
C10—C1—C2—C3 | 1.4 (5) | C2—C1—C11—C12 | −27.0 (4) |
C11—C1—C2—C3 | −179.5 (3) | C10—C1—C11—C12 | 151.9 (3) |
C1—C2—C3—C4 | −0.6 (5) | C2—C1—C11—N3 | 148.4 (3) |
C2—C3—C4—C5 | −0.7 (5) | C10—C1—C11—N3 | −32.6 (4) |
C3—C4—C5—C6 | −179.7 (3) | N2—N1—C12—C11 | 0.1 (3) |
C3—C4—C5—C10 | 1.1 (5) | C13—N1—C12—C11 | −176.9 (3) |
C10—C5—C6—C7 | 0.2 (5) | N3—C11—C12—N1 | −0.1 (3) |
C4—C5—C6—C7 | −179.0 (3) | C1—C11—C12—N1 | 176.0 (2) |
C5—C6—C7—C8 | −0.9 (5) | C12—N1—C13—C14 | −50.4 (4) |
C6—C7—C8—C9 | 0.5 (5) | N2—N1—C13—C14 | 132.8 (3) |
C7—C8—C9—C10 | 0.6 (5) | N1—C13—C14—C15 | 104.8 (3) |
C2—C1—C10—C5 | −1.0 (4) | N1—C13—C14—C19 | −76.2 (4) |
C11—C1—C10—C5 | −179.9 (2) | C19—C14—C15—C16 | −0.3 (4) |
C2—C1—C10—C9 | 178.7 (3) | C13—C14—C15—C16 | 178.7 (3) |
C11—C1—C10—C9 | −0.2 (4) | C14—C15—C16—C17 | 0.1 (5) |
C6—C5—C10—C1 | −179.5 (3) | C15—C16—C17—C18 | 0.2 (5) |
C4—C5—C10—C1 | −0.3 (4) | C16—C17—C18—C19 | −0.3 (5) |
C6—C5—C10—C9 | 0.8 (4) | C15—C14—C19—C18 | 0.2 (4) |
C4—C5—C10—C9 | −180.0 (3) | C13—C14—C19—C18 | −178.8 (3) |
C8—C9—C10—C1 | 179.1 (3) | C17—C18—C19—C14 | 0.1 (5) |
Experimental details
Crystal data | |
Chemical formula | C19H15N3 |
Mr | 285.34 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 9.896 (2), 11.038 (3), 14.136 (4) |
β (°) | 102.701 (13) |
V (Å3) | 1506.2 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.5 × 0.48 × 0.28 |
Data collection | |
Diffractometer | Siemens P4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3663, 3471, 1730 |
Rint | 0.028 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.069, 0.202, 1.01 |
No. of reflections | 3471 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.17 |
Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).
Acknowledgements
We gratefully acknowledge support of this project by the Consejo Nacional de Ciencia y Tecnología (CONACyT, grant No. SEP-2004-CO1–47835) and the Dirección General de Educación Superior Tecnológica (DGEST). JS thanks CONACYT for a graduate scholarship.
References
Alvarez, R., Elazquez, S. V., San, F., Aquaro, S., De, C., Perno, C. F., Karlesson, A., Balzarini, J. & Camarasa, M. J. (1994). J. Med. Chem. 37, 4185–4194. CrossRef CAS PubMed Web of Science Google Scholar
Bi, Y. (2010). Acta Cryst. E66, o951. Web of Science CrossRef IUCr Journals Google Scholar
Brockunier, L. L., Parmee, E. R., Ok, H. O., Candelore, M. R., Cascieri, M. A., Colwell, L. F., Deng, L., Feeney, W. P., Forest, M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2111–2114. Web of Science CrossRef PubMed CAS Google Scholar
Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenco, G. E., Hamel, J. C., Schaadt, R. D., Stapertand, D. & Yagi, B. H. (2000). J. Med. Chem. 43, 953–970. Web of Science CrossRef PubMed CAS Google Scholar
Huang, C.-C., Wu, F.-L., Lo, Y. H., Lai, W.-R. & Lin, C.-H. (2010). Acta Cryst. E66, o1690. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jabli, H., Ouazzani Chahdi, F., Saffon, N., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o232. Web of Science CSD CrossRef IUCr Journals Google Scholar
Katritsky, A. R., Rees, C. W. & Scriven, C. W. V. (1996). Editors. Comprehensive Heterocyclic Chemistry II, Vol. 4, pp. 1–126. Oxford: Elsevier Science. Google Scholar
Key, J. A., Cairo, C. W. & Ferguson, M. J. (2008). Acta Cryst. E64, o1910. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Makam, S. R. & Yulin, L. (2004). Tetrahedron Lett. 45, 6129–6132. Google Scholar
Santos-Contreras, R. J., Ramos-Organillo, A., García-Báez, E. V., Padilla-Martínez, I. I. & Martínez-Martínez, F. J. (2009). Acta Cryst. C65, o8–o10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Vaqueiro, P. (2006). Acta Cryst. E62, o2632–o2633. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, triazole compounds have received much attention due to their wide range of applications in organic and medicinal chemistry. Specifically, 1,2,3-triazoles have been used in pharmaceuticals, agrochemicals, dyes, photographic materials and corrosion inhibitors (Katritsky et al., 1996). There are numerous examples in the literature of the biological activity of triazole compounds acting as as anti-HIV agents (Alvarez et al., 1994) or as antibiotics due to their antimicrobial activity against Gram positive bacteria (Genin et al., 2000) and as selective β3 adrenergic agonist receptors (Brockunier et al., 2000).
The molecular structure of (I) is shown in Fig. 1. The molecule shows that the phenyl group and the triazole heterocycle are linked by the methylene group. The carbon atom C13 with a C14—C13—N1 angle of 112.5 (2)o is distorted from ideal tetrahedral geometry (109.7¯). This can be attributed to steric factors of adjacent cyclic systems. Also, the bonds distances N3—C11, C11—C12, C12—N1, N1—N2 and N2—N3 are 1.353 (3), 1.353 (4), 1.335 (3), 1.337 (3) and 1.321 (3) Å, respectively, which agree with the C═C, N═N and C—N distances found in the literature for compounds having triazole heterocycles (Huang et al., 2010; Jabli et al., 2010; Key et al. 2008). In addition, C12—N1 and C11—N3 are significantly shorter that the C—N single bonds (1.47 Å) (Vaqueiro, 2006; Bi, 2010) but longer than true C—N double bonds (1.28 Å) (Santos-Contreras et al., 2009). This indicates a delocalization of electrons in the triazolyl system.
As shown in Fig. 1, the molecule shows the benzyl group is located above the plane of the triazole at a dihedral angle of 80.64 (0.08)° and the naphthyl group is at an angle fo 30.27 (0.12)°. This conformation is different from its analogue 1-benzyl-4-phenyl-1H-1, 2,3-triazole which presents the benzyl at an dihedral angle of 87.94° and the phenyl at an angle of 3.35° to the plane of the triazole (Makam & Yulin, 2004).