organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2,2-Bis(1,3-benzimidazol-1-ylmeth­yl)-3-bromo­prop­yl]-1,3-benzimidazole

aCollege of Chemistry and Chemical Engineering, Key Laboratory of Eco-Environment-Related Polymer Materials of the Ministry of Education, Gansu Key Laboratory of Polymer Materials, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: zhangnwnu@126.com

(Received 3 May 2011; accepted 16 June 2011; online 30 June 2011)

The title compound, C26H23BrN6, has been synthesized as a potential ligand for the construction of metal–organic frameworks. The three benzimidazolyl groups present three potential coordination nodes. The dihedral angles between the benzimidazole ring systems are 74.03 (10), 66.49 (9) and 74.09 (9)°. The structure contains large voids, which contain highly disordered solvent mol­ecules that may be CH3CH2OH. Since the solvent mol­ecules could not be located, the PLATON/SQUEEZE procedure [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155] was used.

Related literature

For applications of metal organic frameworks, see: Ferey et al. (2005[Ferey, G., Mellot-Draznieks, C., Serre, C. & Millange, F. (2005). Acc. Chem. Res. 38, 217-225.]); Bradshaw et al. (2005[Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273-282.]); Pan et al. (2004[Pan, L., Sander, M. B., Huang, X., Li, J., Smith, M. R. Jr, Bittner, E. W., Bockrath, B. C. & Johnson, J. K. (2004). J. Am. Chem. Soc. 126, 1308-1309.]); Ko et al. (2002[Ko, J. W., Min, K. S. & Suh, M. P. (2002). Inorg. Chem. 41, 2151-2157.]); Pan et al. (2006[Pan, L., Olson, D. H., Ciemnolonski, L. R., Heddy, R. & Li, J. (2006). Angew. Chem. Int. Ed. 45, 616-619.]); Barnett & Champness (2003[Barnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145-168.]); Yang et al. (2003[Yang, X. P., Kang, B. S., Wong, W. K., Su, C. Y. & Liu, H. Q. (2003). Inorg. Chem. 42, 169-179.]); Liu et al. (2010[Liu, H. Y., Wu, H., Ma, J. F., Liu, Y. Y., Liu, B. & Yang, J. (2010). Cryst. Growth Des. 10, 4795-4805.]). For a related structure, see: Clegg & Martin (2007[Clegg, W. & Martin, N. C. (2007). Acta Cryst. E63, m856.]).

[Scheme 1]

Experimental

Crystal data
  • C26H23BrN6

  • Mr = 499.41

  • Triclinic, [P \overline 1]

  • a = 9.297 (4) Å

  • b = 11.869 (5) Å

  • c = 13.661 (6) Å

  • α = 68.956 (4)°

  • β = 77.398 (4)°

  • γ = 84.805 (4)°

  • V = 1372.9 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 293 K

  • 0.32 × 0.30 × 0.29 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.642, Tmax = 0.667

  • 9233 measured reflections

  • 5012 independent reflections

  • 3417 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.086

  • S = 1.01

  • 5012 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, metal-organic frameworks (MOFs) with network structures have received remarkable attention as a unique class of multifunctional hybrid materials with potential applications in such fields as sorption, molecular separation, luminescence, catalysis, and magnetism (Ferey et al., 2005; Bradshaw et al., 2005; Pan et al., 2004; Ko et al., 2002; Pan et al., 2006). Several N-donor bridging ligands have been investigated for the construction of novel MOFs, for example 1,3-bis(4'-pyridyl)propane, 1,4-bis(4-pyridyl)butane (Barnett et al., 2003), bis(2-benzimidazolylmethyl)(2-pyridylmethyl)amine and bis(2-pyridylmethyl)(2-benzimidazolylmethyl)amine (Yang et al., 2003), 1,1' -(1,4-butanediyl)-bis[2-(2-pyridyl)benzimidazole], 1,1'-(1,6-hexanediyl)bis[2-(2-pyridyl)benzimidazole] and 1,1'-(1,1'-decanediyl)bis-[2-(2-pyridyl)benzimidazole] (Liu et al., 2010).

We designed and synthesized the title compound to be applied as a tridentate ligand. The molecular structure is show in Fig. 1. This ligand is expected to be a good candidate for the construction of coordination polymers with diverse structures. First, the three benzimidazole N atoms of the ligand can act as three potential coordination nodes. Second, the three benzimidazole groups can freely twist around the quaternary carbon atom and the two –CH2– groups to match the requirements of various coordination geometries.

Related literature top

For applications of metal organic frameworks, see: Ferey et al. (2005); Bradshaw et al. (2005); Pan et al. (2004); Ko et al. (2002); Pan et al. (2006); Barnett & Champness (2003); Yang et al. (2003); Liu et al. (2010). For a related structure, see: Clegg & Martin (2007).

Experimental top

To a solution of 1H-benzimidazole (30 mmol) in 100 ml of dry THF/DMSO (10:1 v/v) under nitrogen was added sodium hydroxide (30 mmol) with vigorous stirring at 60 °C. After 1/2 h a solution of tetrakis(bromomethyl)methane(10 mmol) in 20 ml of THF was added over a period of 1 h. The reaction mixture was stirred continuously overnight at 80 °C. A 100 ml portion of water was added to give a precipitant that was recrystallized in EtOH. Then colorless crystals suitable for X-ray diffraction analysis were grown by recrystallization from a 9:1 ethanol:water mixture (yield: 86%).

Refinement top

H atoms were included in calclulated positions and refined in a riding-model approximation with C—H distances ranging from 0.93Å to 0.97Å and Uiso(H) = 1.2 Ueq(C). The structure contains large voids, but the disordered solvent molecules could not be located from difference Fourier maps. The PLATON/SQUEEZE procedure (Spek, 2009) was used to account for the electron density in this region.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
1-[2,2-Bis(1,3-benzimidazol-1-ylmethyl)-3-bromopropyl]-1,3-benzimidazole top
Crystal data top
C26H23BrN6Z = 2
Mr = 499.41F(000) = 512
Triclinic, P1Dx = 1.208 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.297 (4) ÅCell parameters from 2851 reflections
b = 11.869 (5) Åθ = 2.2–22.5°
c = 13.661 (6) ŵ = 1.52 mm1
α = 68.956 (4)°T = 293 K
β = 77.398 (4)°Block, colourless
γ = 84.805 (4)°0.32 × 0.30 × 0.29 mm
V = 1372.9 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5012 independent reflections
Radiation source: fine-focus sealed tube3417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1011
Tmin = 0.642, Tmax = 0.667k = 1414
9233 measured reflectionsl = 1216
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5012 reflectionsΔρmax = 0.41 e Å3
299 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (7)
Crystal data top
C26H23BrN6γ = 84.805 (4)°
Mr = 499.41V = 1372.9 (10) Å3
Triclinic, P1Z = 2
a = 9.297 (4) ÅMo Kα radiation
b = 11.869 (5) ŵ = 1.52 mm1
c = 13.661 (6) ÅT = 293 K
α = 68.956 (4)°0.32 × 0.30 × 0.29 mm
β = 77.398 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
5012 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3417 reflections with I > 2σ(I)
Tmin = 0.642, Tmax = 0.667Rint = 0.025
9233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
5012 reflectionsΔρmin = 0.20 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.02589 (3)0.37659 (2)0.17904 (2)0.05951 (14)
C180.1102 (3)0.7601 (2)0.0752 (2)0.0474 (7)
H18A0.19100.80260.08030.057*
H18B0.12630.76130.00230.057*
C90.1151 (3)0.6271 (2)0.15110 (19)0.0398 (6)
C260.0088 (3)0.5573 (2)0.1246 (2)0.0475 (7)
H26A0.02110.58460.04730.057*
H26B0.09070.57910.15230.057*
C100.0700 (3)0.6261 (2)0.26770 (19)0.0463 (6)
H10A0.14180.67220.27910.056*
H10B0.02420.66800.27480.056*
C80.2758 (3)0.5812 (2)0.13182 (18)0.0430 (6)
H8A0.33600.62270.15760.052*
H8B0.27940.49580.17350.052*
C20.5675 (3)0.7424 (3)0.2327 (2)0.0725 (10)
H20.58740.73200.29870.087*
C50.5050 (3)0.7772 (3)0.0330 (2)0.0596 (8)
H50.48430.78900.03240.072*
C10.4692 (3)0.6679 (3)0.1461 (2)0.0540 (7)
C60.4383 (3)0.6874 (2)0.0490 (2)0.0449 (6)
N20.3398 (2)0.59903 (18)0.01862 (16)0.0443 (5)
C30.6335 (4)0.8309 (4)0.2175 (3)0.0846 (11)
H30.70040.88120.27390.101*
N10.3930 (3)0.5689 (2)0.1371 (2)0.0638 (7)
C70.3198 (3)0.5320 (3)0.0377 (2)0.0541 (7)
H70.25920.46500.00880.065*
N50.0269 (2)0.82613 (18)0.09621 (16)0.0451 (5)
C210.0100 (4)1.0452 (3)0.2290 (3)0.0700 (9)
H210.05081.07860.25680.084*
C190.0459 (3)0.9106 (2)0.14554 (19)0.0411 (6)
C240.1927 (3)0.9483 (2)0.1476 (2)0.0473 (7)
C200.0481 (3)0.9582 (2)0.1851 (2)0.0574 (8)
H200.14610.93320.18260.069*
C220.1552 (4)1.0840 (2)0.2327 (2)0.0658 (8)
H220.18991.14350.26180.079*
C250.1577 (3)0.8192 (2)0.0705 (2)0.0570 (7)
H250.17220.76940.03430.068*
N60.2618 (3)0.8885 (2)0.1011 (2)0.0629 (7)
C230.2491 (3)1.0351 (2)0.1936 (2)0.0609 (8)
H230.34761.05940.19770.073*
N30.0574 (2)0.50904 (18)0.35181 (15)0.0449 (5)
C150.1751 (4)0.2541 (3)0.5510 (2)0.0690 (9)
H150.13160.18310.60080.083*
C110.1656 (3)0.4432 (2)0.40562 (19)0.0449 (6)
C140.3172 (4)0.2784 (3)0.5444 (3)0.0776 (10)
H140.37120.22300.59080.093*
N40.0525 (3)0.3426 (2)0.47523 (18)0.0602 (6)
C170.0684 (3)0.4455 (3)0.3981 (2)0.0558 (7)
H170.15800.47200.37740.067*
C160.0956 (3)0.3389 (2)0.4807 (2)0.0524 (7)
C130.3842 (4)0.3829 (3)0.4708 (3)0.0735 (9)
H130.48170.39640.46950.088*
C120.3103 (3)0.4681 (3)0.3990 (2)0.0558 (7)
H120.35560.53810.34900.067*
C40.6031 (3)0.8479 (3)0.1189 (3)0.0792 (10)
H40.65080.90900.11130.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0688 (2)0.05000 (18)0.0600 (2)0.00572 (13)0.00812 (15)0.02107 (14)
C180.0433 (16)0.0465 (14)0.0429 (15)0.0003 (12)0.0019 (12)0.0106 (12)
C90.0348 (14)0.0419 (13)0.0385 (14)0.0003 (11)0.0007 (11)0.0138 (12)
C260.0453 (15)0.0486 (15)0.0469 (16)0.0027 (12)0.0081 (13)0.0160 (13)
C100.0509 (16)0.0438 (14)0.0379 (15)0.0012 (12)0.0021 (12)0.0110 (12)
C80.0403 (15)0.0491 (14)0.0373 (15)0.0027 (12)0.0040 (12)0.0151 (12)
C20.0505 (19)0.103 (3)0.0463 (19)0.0172 (19)0.0022 (16)0.0139 (19)
C50.0447 (17)0.076 (2)0.0490 (18)0.0088 (15)0.0048 (14)0.0120 (16)
C10.0388 (16)0.0732 (19)0.0470 (18)0.0132 (14)0.0046 (13)0.0229 (16)
C60.0312 (14)0.0562 (16)0.0407 (16)0.0026 (12)0.0033 (12)0.0120 (13)
N20.0353 (12)0.0538 (13)0.0438 (13)0.0039 (10)0.0035 (10)0.0208 (11)
C30.047 (2)0.111 (3)0.064 (2)0.0079 (19)0.0009 (17)0.002 (2)
N10.0553 (15)0.0879 (19)0.0571 (16)0.0131 (14)0.0085 (13)0.0406 (15)
C70.0444 (17)0.0694 (18)0.0553 (19)0.0089 (14)0.0068 (15)0.0341 (16)
N50.0389 (13)0.0449 (12)0.0477 (13)0.0017 (10)0.0091 (10)0.0117 (11)
C210.077 (2)0.0537 (18)0.087 (2)0.0039 (17)0.0230 (19)0.0290 (18)
C190.0403 (15)0.0350 (13)0.0406 (15)0.0025 (11)0.0032 (12)0.0068 (12)
C240.0426 (16)0.0414 (14)0.0509 (16)0.0054 (12)0.0074 (13)0.0101 (13)
C200.0459 (17)0.0478 (16)0.074 (2)0.0052 (13)0.0127 (15)0.0149 (15)
C220.079 (2)0.0481 (17)0.069 (2)0.0018 (16)0.0088 (18)0.0223 (16)
C250.0565 (19)0.0576 (17)0.0657 (19)0.0096 (15)0.0276 (16)0.0254 (15)
N60.0518 (15)0.0614 (15)0.0823 (18)0.0124 (12)0.0266 (13)0.0287 (14)
C230.0544 (18)0.0502 (16)0.0648 (19)0.0089 (14)0.0052 (15)0.0104 (15)
N30.0456 (13)0.0468 (12)0.0356 (12)0.0061 (10)0.0002 (10)0.0100 (10)
C150.098 (3)0.0493 (17)0.0428 (18)0.0025 (18)0.0012 (18)0.0049 (14)
C110.0558 (18)0.0424 (14)0.0349 (15)0.0002 (13)0.0059 (13)0.0135 (12)
C140.087 (3)0.076 (2)0.059 (2)0.016 (2)0.018 (2)0.0117 (19)
N40.0685 (18)0.0572 (15)0.0433 (14)0.0157 (12)0.0054 (12)0.0100 (12)
C170.0486 (17)0.0661 (19)0.0484 (17)0.0073 (14)0.0019 (14)0.0198 (16)
C160.063 (2)0.0474 (16)0.0401 (16)0.0034 (14)0.0019 (14)0.0144 (14)
C130.070 (2)0.092 (2)0.063 (2)0.0081 (19)0.0207 (18)0.030 (2)
C120.0565 (19)0.0617 (17)0.0452 (17)0.0004 (14)0.0085 (14)0.0150 (14)
C40.052 (2)0.090 (2)0.079 (3)0.0160 (17)0.0116 (18)0.008 (2)
Geometric parameters (Å, º) top
Br1—C262.005 (3)N5—C191.375 (3)
C18—N51.463 (3)C21—C221.383 (4)
C18—C91.550 (3)C21—C201.384 (4)
C18—H18A0.9700C21—H210.9300
C18—H18B0.9700C19—C201.375 (4)
C9—C261.522 (3)C19—C241.395 (3)
C9—C81.543 (3)C24—N61.381 (3)
C9—C101.552 (3)C24—C231.398 (4)
C26—H26A0.9700C20—H200.9300
C26—H26B0.9700C22—C231.379 (4)
C10—N31.445 (3)C22—H220.9300
C10—H10A0.9700C25—N61.310 (3)
C10—H10B0.9700C25—H250.9300
C8—N21.475 (3)C23—H230.9300
C8—H8A0.9700N3—C171.354 (3)
C8—H8B0.9700N3—C111.389 (3)
C2—C31.362 (5)C15—C141.354 (4)
C2—C11.393 (4)C15—C161.401 (4)
C2—H20.9300C15—H150.9300
C5—C41.370 (4)C11—C121.380 (4)
C5—C61.383 (4)C11—C161.397 (3)
C5—H50.9300C14—C131.382 (4)
C1—N11.381 (4)C14—H140.9300
C1—C61.393 (4)N4—C171.316 (3)
C6—N21.379 (3)N4—C161.391 (4)
N2—C71.337 (3)C17—H170.9300
C3—C41.397 (5)C13—C121.383 (4)
C3—H30.9300C13—H130.9300
N1—C71.313 (3)C12—H120.9300
C7—H70.9300C4—H40.9300
N5—C251.354 (3)
N5—C18—C9115.32 (19)C25—N5—C18128.1 (2)
N5—C18—H18A108.4C19—N5—C18125.5 (2)
C9—C18—H18A108.4C22—C21—C20122.2 (3)
N5—C18—H18B108.4C22—C21—H21118.9
C9—C18—H18B108.4C20—C21—H21118.9
H18A—C18—H18B107.5C20—C19—N5132.8 (2)
C26—C9—C8112.7 (2)C20—C19—C24122.2 (2)
C26—C9—C18107.1 (2)N5—C19—C24105.0 (2)
C8—C9—C18107.56 (18)N6—C24—C19110.6 (2)
C26—C9—C10112.5 (2)N6—C24—C23129.6 (3)
C8—C9—C10109.21 (19)C19—C24—C23119.8 (3)
C18—C9—C10107.49 (19)C19—C20—C21116.9 (3)
C9—C26—Br1117.62 (17)C19—C20—H20121.5
C9—C26—H26A107.9C21—C20—H20121.5
Br1—C26—H26A107.9C23—C22—C21120.5 (3)
C9—C26—H26B107.9C23—C22—H22119.7
Br1—C26—H26B107.9C21—C22—H22119.7
H26A—C26—H26B107.2N6—C25—N5114.2 (3)
N3—C10—C9116.5 (2)N6—C25—H25122.9
N3—C10—H10A108.2N5—C25—H25122.9
C9—C10—H10A108.2C25—N6—C24103.8 (2)
N3—C10—H10B108.2C22—C23—C24118.4 (3)
C9—C10—H10B108.2C22—C23—H23120.8
H10A—C10—H10B107.3C24—C23—H23120.8
N2—C8—C9113.94 (19)C17—N3—C11106.5 (2)
N2—C8—H8A108.8C17—N3—C10125.3 (2)
C9—C8—H8A108.8C11—N3—C10128.1 (2)
N2—C8—H8B108.8C14—C15—C16118.0 (3)
C9—C8—H8B108.8C14—C15—H15121.0
H8A—C8—H8B107.7C16—C15—H15121.0
C3—C2—C1117.7 (3)C12—C11—N3132.1 (2)
C3—C2—H2121.1C12—C11—C16122.6 (2)
C1—C2—H2121.1N3—C11—C16105.1 (2)
C4—C5—C6116.3 (3)C15—C14—C13121.9 (3)
C4—C5—H5121.8C15—C14—H14119.0
C6—C5—H5121.8C13—C14—H14119.0
N1—C1—C6109.9 (2)C17—N4—C16104.3 (2)
N1—C1—C2130.2 (3)N4—C17—N3113.9 (3)
C6—C1—C2120.0 (3)N4—C17—H17123.0
N2—C6—C5132.1 (3)N3—C17—H17123.0
N2—C6—C1105.3 (2)N4—C16—C11110.1 (2)
C5—C6—C1122.5 (3)N4—C16—C15130.4 (3)
C7—N2—C6106.4 (2)C11—C16—C15119.3 (3)
C7—N2—C8127.9 (2)C14—C13—C12121.8 (3)
C6—N2—C8125.7 (2)C14—C13—H13119.1
C2—C3—C4121.5 (3)C12—C13—H13119.1
C2—C3—H3119.3C11—C12—C13116.2 (3)
C4—C3—H3119.3C11—C12—H12121.9
C7—N1—C1104.1 (2)C13—C12—H12121.9
N1—C7—N2114.3 (3)C5—C4—C3121.9 (3)
N1—C7—H7122.9C5—C4—H4119.0
N2—C7—H7122.9C3—C4—H4119.0
C25—N5—C19106.4 (2)
N5—C18—C9—C2669.8 (3)N5—C19—C24—N60.1 (3)
N5—C18—C9—C8168.8 (2)C20—C19—C24—C231.6 (4)
N5—C18—C9—C1051.3 (3)N5—C19—C24—C23179.8 (2)
C8—C9—C26—Br146.0 (3)N5—C19—C20—C21178.9 (3)
C18—C9—C26—Br1164.16 (16)C24—C19—C20—C210.8 (4)
C10—C9—C26—Br177.9 (2)C22—C21—C20—C190.4 (4)
C26—C9—C10—N358.1 (3)C20—C21—C22—C231.0 (5)
C8—C9—C10—N367.7 (3)C19—N5—C25—N61.9 (3)
C18—C9—C10—N3175.8 (2)C18—N5—C25—N6179.1 (2)
C26—C9—C8—N264.9 (3)N5—C25—N6—C241.9 (3)
C18—C9—C8—N253.0 (3)C19—C24—N6—C251.2 (3)
C10—C9—C8—N2169.4 (2)C23—C24—N6—C25179.2 (3)
C3—C2—C1—N1176.6 (3)C21—C22—C23—C241.8 (4)
C3—C2—C1—C61.8 (4)N6—C24—C23—C22178.3 (3)
C4—C5—C6—N2177.7 (3)C19—C24—C23—C222.1 (4)
C4—C5—C6—C10.7 (4)C9—C10—N3—C1793.6 (3)
N1—C1—C6—N20.9 (3)C9—C10—N3—C1190.9 (3)
C2—C1—C6—N2179.5 (2)C17—N3—C11—C12174.1 (3)
N1—C1—C6—C5176.8 (2)C10—N3—C11—C122.1 (4)
C2—C1—C6—C51.8 (4)C17—N3—C11—C162.1 (3)
C5—C6—N2—C7176.0 (3)C10—N3—C11—C16178.3 (2)
C1—C6—N2—C71.4 (3)C16—C15—C14—C130.3 (5)
C5—C6—N2—C81.7 (4)C16—N4—C17—N30.6 (3)
C1—C6—N2—C8179.1 (2)C11—N3—C17—N41.7 (3)
C9—C8—N2—C779.6 (3)C10—N3—C17—N4178.1 (2)
C9—C8—N2—C6103.2 (3)C17—N4—C16—C110.8 (3)
C1—C2—C3—C40.7 (5)C17—N4—C16—C15176.5 (3)
C6—C1—N1—C70.1 (3)C12—C11—C16—N4174.8 (2)
C2—C1—N1—C7178.5 (3)N3—C11—C16—N41.8 (3)
C1—N1—C7—N20.9 (3)C12—C11—C16—C151.5 (4)
C6—N2—C7—N11.5 (3)N3—C11—C16—C15178.1 (2)
C8—N2—C7—N1179.1 (2)C14—C15—C16—N4174.1 (3)
C9—C18—N5—C2577.3 (3)C14—C15—C16—C111.3 (4)
C9—C18—N5—C19103.9 (3)C15—C14—C13—C120.7 (5)
C25—N5—C19—C20177.4 (3)N3—C11—C12—C13176.1 (3)
C18—N5—C19—C201.6 (4)C16—C11—C12—C130.5 (4)
C25—N5—C19—C241.0 (3)C14—C13—C12—C110.6 (5)
C18—N5—C19—C24180.0 (2)C6—C5—C4—C30.4 (4)
C20—C19—C24—N6178.7 (2)C2—C3—C4—C50.4 (5)

Experimental details

Crystal data
Chemical formulaC26H23BrN6
Mr499.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.297 (4), 11.869 (5), 13.661 (6)
α, β, γ (°)68.956 (4), 77.398 (4), 84.805 (4)
V3)1372.9 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.32 × 0.30 × 0.29
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.642, 0.667
No. of measured, independent and
observed [I > 2σ(I)] reflections
9233, 5012, 3417
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.086, 1.01
No. of reflections5012
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.20

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

This work was supported by the NSFC (No. 21064006) and the Natural Science Foundation of Gansu (1010RJZA018), which are gratefully acknowledged.

References

First citationBarnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145–168.  Web of Science CrossRef CAS Google Scholar
First citationBradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273–282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W. & Martin, N. C. (2007). Acta Cryst. E63, m856.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFerey, G., Mellot-Draznieks, C., Serre, C. & Millange, F. (2005). Acc. Chem. Res. 38, 217–225.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKo, J. W., Min, K. S. & Suh, M. P. (2002). Inorg. Chem. 41, 2151–2157.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, H. Y., Wu, H., Ma, J. F., Liu, Y. Y., Liu, B. & Yang, J. (2010). Cryst. Growth Des. 10, 4795–4805.  CrossRef CAS Google Scholar
First citationPan, L., Olson, D. H., Ciemnolonski, L. R., Heddy, R. & Li, J. (2006). Angew. Chem. Int. Ed. 45, 616–619.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, L., Sander, M. B., Huang, X., Li, J., Smith, M. R. Jr, Bittner, E. W., Bockrath, B. C. & Johnson, J. K. (2004). J. Am. Chem. Soc. 126, 1308–1309.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X. P., Kang, B. S., Wong, W. K., Su, C. Y. & Liu, H. Q. (2003). Inorg. Chem. 42, 169–179.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds