organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′,6,6′-Tetra­methyl-3,3′-bi-1,2,4-tri­azine

aDepartment of Chemistry, University of Podlasie, ul. 3 Maja 54, 08-110 Siedlce, Poland
*Correspondence e-mail: kar@uph.edu.pl

(Received 18 May 2011; accepted 30 May 2011; online 11 June 2011)

In the title compound, C10H12N6, the two 5,6-dimethyl-1,2,4-triazine halves of the mol­ecule are related by a centre of symmetry. The two triazine rings are coplanar to within a maximum deviation of 0.013 (2) Å from the mean plane of the ring atoms. In the crystal, mol­ecules form layers parallel to the (100) crystallographic plane. Adjacent layers are held together via a C—H⋯π inter­action involving mol­ecules related by an a-glide plane.

Related literature

For background information, see: Branowska & Rykowski (2002[Branowska, D. & Rykowski, A. (2002). Synlett, pp. 1892-1894.]); Branowska (2003[Branowska, D. (2003). Synthesis, pp. 2096-2100.]); Boger & Weinrab (1987[Boger, D. L. & Weinrab, S. N. (1987). Hetero Diels-Alder Methodology in Organic Synthesis. Organic Chemistry: A Series of Monographs, Vol. 47, pp. 323-335. San Diego: Academic Press.]); Pabst et al. (1998[Pabst, R. G., Schmid, K. & Sauer, J. (1998). Tetrahedron Lett. 39, 6691-6695.]). For the synthesis, see: Dedichen (1936[Dedichen, G. (1936). Avh. Nor. Vidensk. Akad. Oslo Mat. Naturvidensk. Kl. 5, 42. ], 1937[Dedichen, G. (1937). Chem. Abstr 31, 4985-4988. ]). For a related structure, see: Breu & Range (1993[Breu, J. & Range, K.-J. (1993). Acta Cryst. C49, 1541-1543.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N6

  • Mr = 216.26

  • Orthorhombic, P b c a

  • a = 8.1167 (7) Å

  • b = 10.6662 (12) Å

  • c = 12.7127 (11) Å

  • V = 1100.59 (18) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Kuma KM4 four-circle diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.830, Tmax = 0.929

  • 1637 measured reflections

  • 1205 independent reflections

  • 910 reflections with I > 2σ(I)

  • Rint = 0.100

  • 2 standard reflections every 100 reflections intensity decay: 1.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.272

  • S = 1.16

  • 1205 reflections

  • 92 parameters

  • All H-atom parameters refined

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

CgA is the centroid of the triazine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C51—H511⋯CgAi 1.09 (5) 2.96 (4) 3.616 (3) 119 (3)
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: KM4B8 (Gałdecki et al., 1996[Gałdecki, Z., Kowalski, A., Kucharczyk, D. & Uszyński, L. (1996). KM4B8. Kuma Diffraction, Wrocław, Poland.]); cell refinement: KM4B8; data reduction: DATAPROC (Gałdecki et al., 1995[Gałdecki, Z., Kowalski, A. & Uszyński, L. (1995). DATAPROC. Kuma Diffraction, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the course of our research we widely explored the synthesis of cycloalkeno[c]fused 2,2'-bipyridines using Diels–Alder reactions of 5,5'-bi-1,2,4-triazine derivatives as dienes (Branowska & Rykowski, 2002; Branowska, 2003). However, when we turned our attention to the synthesis of 5,5',6,6'-tetrasubstituted-2,2'-bipyridines, these dienes did not appear useful. Considering the mechanism of the Diels–Alder reaction of 5,5'-bi-1,2,4-triazine, it is clear that to obtain 5,5',6,6'-tetrasubstituted-2,2'-bipyridines, the substituents in positions 5 and 5' of the product have to originate from an unsymmetrical dienofile. Unfortunately, application of such a dienofile can lead to a mixture of 5,5',6,6'- and 3,3',6,6'-tetrasubstituted-2,2'-bipyridines (Boger & Weinrab, 1987). To solve the problem with selectivity, we envisaged that 3,3'-bi-1,2,4-triazines with substituents in 5 and 5' positions can be structurally ideal diene partners in the Diels–Alder synthesis of 5,5',6,6'-tetrasubstituted-2,2'-bipyridines (Pabst et al., 1998). The title compound 5,5',6,6'-tetramethyl-3,3'-bi-1,2,4-triazine was synthesized and its X-ray structure was determined as a part of this research.

The two 5,6-dimethyl-1,2,4-triazine parts of the molecule (I) are related by a crystallographic center of symmetry and possess the trans conformation, with the triazine rings being coplanar to within a 0.013 (2) Å maximum deviation from the mean plane. The geometry and conformation of (I) are very similar to those observed in the related structure of 5,5',6,6'-tetraphenyl-3,3'-bi-1,2,4-triazine (Breu & Range, 1993).

In the crystal structure, the molecules of (I) form molecular layers parallel to the (100) crystallographic plane (Fig. 2), with the molecular mean planes being inclined to this plane at an angle of 34.8 (5)°. The layers are held together via C—H···π interaction involving the C51—H151 atoms of the methyl group and the triazine ring from the molecule related by an a-glide plane.

Related literature top

For background information, see: Branowska & Rykowski (2002); Branowska (2003); Boger & Weinrab (1987); Pabst et al. (1998). For the synthesis, see: Dedichen (1936, 1937). For a related structure, see: Breu & Range (1993).

Experimental top

The title compound, (I), was prepared by the condensation of oxalhydrazidine with 2,3-butanedione according to the procedure of Dedichen (1936, 1937). Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a benzene solution.

Refinement top

All H atoms were located in a difference Fourier map and their coordinates were refined freely with isotropic displacement parameters Uiso(H) = 1.5Ueq(C). Refined C—H distances were in the range 0.96 (5)–1.09 (5) Å.

Computing details top

Data collection: KM4B8 (Gałdecki et al., 1996); cell refinement: KM4B8 (Gałdecki et al., 1996); data reduction: DATAPROC (Gałdecki et al., 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the molecular packing in (I). H atoms are omitted for clarity.
3-(5,6-dimethyl-1,2,4-triazin-3-yl)-5,6-dimethyl-1,2,4-triazine top
Crystal data top
C10H12N6Dx = 1.305 Mg m3
Mr = 216.26Melting point = 441–442 K
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 8.1167 (7) Åθ = 11.5–22.4°
b = 10.6662 (12) ŵ = 0.71 mm1
c = 12.7127 (11) ÅT = 293 K
V = 1100.59 (18) Å3Prism, yellow
Z = 40.20 × 0.20 × 0.10 mm
F(000) = 456
Data collection top
Kuma KM4 four-circle
diffractometer
910 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.100
Graphite monochromatorθmax = 80.2°, θmin = 7.0°
ω/2θ scansh = 110
Absorption correction: ψ scan
(North et al., 1968)
k = 113
Tmin = 0.830, Tmax = 0.929l = 116
1637 measured reflections2 standard reflections every 100 reflections
1205 independent reflections intensity decay: 1.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064All H-atom parameters refined
wR(F2) = 0.272 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
1205 reflectionsΔρmax = 0.29 e Å3
92 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.032 (7)
Crystal data top
C10H12N6V = 1100.59 (18) Å3
Mr = 216.26Z = 4
Orthorhombic, PbcaCu Kα radiation
a = 8.1167 (7) ŵ = 0.71 mm1
b = 10.6662 (12) ÅT = 293 K
c = 12.7127 (11) Å0.20 × 0.20 × 0.10 mm
Data collection top
Kuma KM4 four-circle
diffractometer
910 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.100
Tmin = 0.830, Tmax = 0.9292 standard reflections every 100 reflections
1637 measured reflections intensity decay: 1.3%
1205 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.272All H-atom parameters refined
S = 1.16Δρmax = 0.29 e Å3
1205 reflectionsΔρmin = 0.24 e Å3
92 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4275 (4)0.2701 (2)0.50737 (19)0.0750 (8)
N20.4248 (3)0.1532 (2)0.4693 (2)0.0733 (8)
N40.58882 (19)0.08158 (18)0.61103 (13)0.0491 (6)
C30.5036 (2)0.0648 (2)0.52195 (15)0.0488 (7)
C50.5959 (2)0.1973 (2)0.64669 (16)0.0501 (7)
C60.5112 (3)0.2946 (2)0.59397 (18)0.0541 (7)
C510.6953 (4)0.2213 (3)0.7429 (2)0.0750 (9)
H5110.771 (6)0.142 (5)0.767 (3)0.113*
H5120.762 (7)0.297 (4)0.732 (3)0.113*
H5130.621 (6)0.241 (6)0.803 (3)0.113*
C610.5097 (4)0.4263 (3)0.6326 (3)0.0733 (9)
H6110.482 (6)0.431 (4)0.709 (4)0.110*
H6120.427 (5)0.476 (6)0.599 (4)0.110*
H6130.617 (5)0.462 (5)0.618 (3)0.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.1042 (18)0.0492 (13)0.0717 (14)0.0018 (11)0.0267 (12)0.0010 (10)
N20.1037 (18)0.0482 (12)0.0680 (13)0.0020 (10)0.0359 (11)0.0007 (9)
N40.0483 (9)0.0560 (12)0.0431 (9)0.0048 (6)0.0053 (6)0.0018 (6)
C30.0512 (10)0.0529 (13)0.0424 (10)0.0044 (8)0.0061 (7)0.0006 (8)
C50.0484 (10)0.0574 (13)0.0445 (10)0.0097 (7)0.0017 (7)0.0064 (8)
C60.0610 (12)0.0471 (12)0.0543 (11)0.0093 (8)0.0071 (8)0.0029 (8)
C510.0804 (16)0.0834 (19)0.0613 (14)0.0116 (15)0.0183 (12)0.0177 (13)
C610.092 (2)0.0515 (15)0.0760 (18)0.0118 (12)0.0119 (14)0.0092 (12)
Geometric parameters (Å, º) top
N1—C61.320 (3)C6—C611.488 (3)
N1—N21.337 (3)C51—H5111.09 (5)
N2—C31.322 (3)C51—H5120.98 (5)
N4—C51.316 (3)C51—H5131.00 (5)
N4—C31.339 (2)C61—H6111.00 (5)
C3—C3i1.492 (4)C61—H6120.96 (5)
C5—C61.414 (4)C61—H6130.97 (5)
C5—C511.488 (3)
C6—N1—N2119.7 (2)C5—C51—H511114 (2)
C3—N2—N1118.3 (2)C5—C51—H512109 (3)
C5—N4—C3116.05 (19)H511—C51—H512112 (4)
N2—C3—N4125.6 (2)C5—C51—H513110 (3)
N2—C3—C3i116.9 (2)H511—C51—H513107 (4)
N4—C3—C3i117.4 (2)H512—C51—H513106 (4)
N4—C5—C6120.27 (19)C6—C61—H611112 (3)
N4—C5—C51118.0 (2)C6—C61—H612113 (3)
C6—C5—C51121.8 (2)H611—C61—H612105 (4)
N1—C6—C5120.0 (2)C6—C61—H613108 (3)
N1—C6—C61117.3 (2)H611—C61—H613111 (4)
C5—C6—C61122.7 (2)H612—C61—H613109 (4)
C6—N1—N2—C31.8 (4)N2—N1—C6—C50.8 (4)
N1—N2—C3—N40.7 (4)N2—N1—C6—C61180.0 (2)
N1—N2—C3—C3i179.2 (2)N4—C5—C6—N11.4 (3)
C5—N4—C3—N21.4 (3)C51—C5—C6—N1178.4 (3)
C5—N4—C3—C3i178.6 (2)N4—C5—C6—C61177.8 (2)
C3—N4—C5—C62.4 (3)C51—C5—C6—C612.4 (3)
C3—N4—C5—C51177.4 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
CgA is the centroid of the triazine ring.
D—H···AD—HH···AD···AD—H···A
C51—H511···CgAii1.09 (5)2.96 (4)3.616 (3)119 (3)
Symmetry code: (ii) x1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H12N6
Mr216.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)8.1167 (7), 10.6662 (12), 12.7127 (11)
V3)1100.59 (18)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerKuma KM4 four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.830, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
1637, 1205, 910
Rint0.100
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.272, 1.16
No. of reflections1205
No. of parameters92
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: KM4B8 (Gałdecki et al., 1996), DATAPROC (Gałdecki et al., 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
CgA is the centroid of the triazine ring.
D—H···AD—HH···AD···AD—H···A
C51—H511···CgAi1.09 (5)2.96 (4)3.616 (3)119 (3)
Symmetry code: (i) x1/2, y, z+3/2.
 

References

First citationBoger, D. L. & Weinrab, S. N. (1987). Hetero Diels–Alder Methodology in Organic Synthesis. Organic Chemistry: A Series of Monographs, Vol. 47, pp. 323–335. San Diego: Academic Press.  Google Scholar
First citationBranowska, D. (2003). Synthesis, pp. 2096–2100.  CrossRef Google Scholar
First citationBranowska, D. & Rykowski, A. (2002). Synlett, pp. 1892–1894.  CrossRef Google Scholar
First citationBreu, J. & Range, K.-J. (1993). Acta Cryst. C49, 1541–1543.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDedichen, G. (1936). Avh. Nor. Vidensk. Akad. Oslo Mat. Naturvidensk. Kl. 5, 42.  Google Scholar
First citationDedichen, G. (1937). Chem. Abstr 31, 4985–4988.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGałdecki, Z., Kowalski, A., Kucharczyk, D. & Uszyński, L. (1996). KM4B8. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationGałdecki, Z., Kowalski, A. & Uszyński, L. (1995). DATAPROC. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPabst, R. G., Schmid, K. & Sauer, J. (1998). Tetrahedron Lett. 39, 6691–6695.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds