organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Imidazo[1,2-b]iso­quinoline-5,10-dione

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 22 May 2011; accepted 7 June 2011; online 18 June 2011)

The title butterfly-shaped mol­ecule, C11H6N2O2, is folded slightly along the O=C⋯C=O line, the dihedral angle between the two parts being 6.42 (3)°. In the crystal, adjacent mol­ecules are linked through C—H⋯O hydrogen bonds into infinite layers parallel to the ac plane. The layers are further connected into a three-dimensional netweork via ππ inter­actions formed between pairs of anti­parallel arranged mol­ecules, with a centroid–centroid distance between the central six-membered ring and the benzene ring of 3.4349 (9) Å.

Related literature

For the structure of isoquinoline­dione-pyrrole fused system in 1,3-dinitro­pyrrolo­[1,2-b]isoquinoline-5,10-dione, see: Du & Hitchcock (1992[Du, M.-H. & Hitchcock, P. B. (1992). Acta Cryst. C48, 2058-2060.]).

[Scheme 1]

Experimental

Crystal data
  • C11H6N2O2

  • Mr = 198.18

  • Monoclinic, P 21 /c

  • a = 7.6518 (7) Å

  • b = 7.2469 (6) Å

  • c = 15.5197 (13) Å

  • β = 99.947 (1)°

  • V = 847.66 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.21 × 0.17 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.990

  • 4894 measured reflections

  • 1925 independent reflections

  • 1583 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.04

  • 1925 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.46 3.2828 (17) 146
C6—H6⋯O1ii 0.95 2.57 3.5190 (19) 179
C8—H8⋯O2iii 0.95 2.55 3.2233 (17) 128
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem, 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

This work reports the first crystal structure of an isoquinolinedione-fused imidazole. The structure of an isoquinolinedione-pyrrole fused system has been reported previously (Du & Hitchcock, 1992). The present molecule (Fig. 1) is almost planar (r.m.s deviation = 0.0718 Å) but slighly bent along the O=C···.C=O line with the corresponding dihedral angle of 6.42 (3)°. In the crystal, intermolecular C—H···O interactions (Table 1) connect the molecules into a two-dimensional array in the ac plane (Fig. 2). The isoquinoline rings of pairs of the molecule related by symmetry –x + 1, -y + 1, -z, are placed above each other in an anti-parallel manner with the centriods of the six-membered heterocyclic ring and the benzene ring at a distance of 3.4349 (9) Å.

Related literature top

For the structure of isoquinolinedione-pyrrole fused system in 1,3-dinitropyrrolo[1,2-b]isoquinoline-5,10-dione, see: Du & Hitchcock (1992).

Experimental top

A solution of phthaloyl chloride (5.58 g, 27.5 mmol) in dry pyridine (20 ml) was added dropwise to a mixture of imidazole (1.7 g, 25 mmol) and bis (triphenylphosphine)palladium (II) chloride (0.87 g) in dry pyridine (15 ml) at 273 K. The mixture was refluxed for 4 h, then cooled to room temperature and poured into ice water (150 ml). The aqueous solution was extracted with chloroform and the chloroform solution was washed with 2 % aqueous HCl solution and distilled water (3 x15 ml). It was dried over magnesium sulfate and evaporated under vacuum. The amorphous residue was re-crystallized from acetonitrile to give yellow crystals of the title compound (m.p. = 232-234° C).

Refinement top

Hydrogen atoms were placed at calculated positions and refined as riding atoms with C—H distance of 0.95 Å and with Uiso(H) set to 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The 2D-network formed by C—H···O hydrogen bonds.
Imidazo[1,2-b]isoquinoline-5,10-dione top
Crystal data top
C11H6N2O2F(000) = 408
Mr = 198.18Dx = 1.553 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1521 reflections
a = 7.6518 (7) Åθ = 2.7–29.5°
b = 7.2469 (6) ŵ = 0.11 mm1
c = 15.5197 (13) ÅT = 100 K
β = 99.947 (1)°Block, yellow
V = 847.66 (13) Å30.21 × 0.17 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1925 independent reflections
Radiation source: fine-focus sealed tube1583 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.977, Tmax = 0.990k = 98
4894 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.3219P]
where P = (Fo2 + 2Fc2)/3
1925 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C11H6N2O2V = 847.66 (13) Å3
Mr = 198.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6518 (7) ŵ = 0.11 mm1
b = 7.2469 (6) ÅT = 100 K
c = 15.5197 (13) Å0.21 × 0.17 × 0.09 mm
β = 99.947 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1925 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1583 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.990Rint = 0.021
4894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
1925 reflectionsΔρmin = 0.22 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26338 (13)0.48928 (15)0.19588 (7)0.0219 (3)
O20.82600 (13)0.21685 (15)0.07219 (7)0.0224 (3)
N10.62688 (16)0.52159 (17)0.28827 (8)0.0186 (3)
N20.70971 (15)0.36883 (16)0.17748 (7)0.0152 (3)
C10.80899 (19)0.5005 (2)0.30252 (10)0.0202 (3)
H10.88660.54530.35260.024*
C20.86301 (19)0.4074 (2)0.23580 (9)0.0197 (3)
H20.98110.37570.23040.024*
C30.69589 (18)0.28089 (19)0.09539 (9)0.0160 (3)
C40.51463 (18)0.27899 (19)0.04292 (9)0.0154 (3)
C50.4917 (2)0.20479 (19)0.04108 (9)0.0190 (3)
H50.59070.15670.06320.023*
C60.3242 (2)0.2012 (2)0.09248 (10)0.0222 (3)
H60.30890.15160.15000.027*
C70.1790 (2)0.2701 (2)0.06005 (9)0.0217 (3)
H70.06440.26650.09530.026*
C80.20076 (18)0.3441 (2)0.02357 (9)0.0186 (3)
H80.10110.39130.04540.022*
C90.36831 (18)0.34932 (19)0.07565 (9)0.0150 (3)
C100.38834 (18)0.43063 (19)0.16455 (9)0.0155 (3)
C110.57142 (18)0.44126 (19)0.21262 (9)0.0151 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0171 (5)0.0277 (6)0.0215 (5)0.0024 (4)0.0055 (4)0.0027 (4)
O20.0182 (5)0.0241 (6)0.0262 (6)0.0027 (4)0.0073 (4)0.0027 (5)
N10.0194 (6)0.0195 (6)0.0161 (6)0.0011 (5)0.0012 (5)0.0007 (5)
N20.0137 (6)0.0157 (6)0.0160 (6)0.0003 (4)0.0022 (4)0.0007 (5)
C10.0191 (7)0.0209 (7)0.0189 (7)0.0032 (6)0.0013 (5)0.0004 (6)
C20.0145 (7)0.0201 (7)0.0229 (7)0.0012 (6)0.0006 (5)0.0029 (6)
C30.0179 (7)0.0131 (6)0.0175 (7)0.0002 (5)0.0044 (5)0.0017 (5)
C40.0185 (7)0.0120 (6)0.0156 (7)0.0010 (5)0.0027 (5)0.0027 (5)
C50.0265 (8)0.0150 (7)0.0165 (7)0.0012 (6)0.0064 (6)0.0012 (6)
C60.0343 (9)0.0166 (7)0.0147 (7)0.0056 (6)0.0015 (6)0.0003 (5)
C70.0226 (7)0.0215 (8)0.0186 (7)0.0052 (6)0.0037 (6)0.0032 (6)
C80.0163 (7)0.0195 (7)0.0194 (7)0.0017 (6)0.0017 (5)0.0029 (6)
C90.0169 (7)0.0134 (7)0.0146 (7)0.0018 (5)0.0024 (5)0.0032 (5)
C100.0159 (7)0.0146 (7)0.0163 (7)0.0007 (5)0.0038 (5)0.0021 (5)
C110.0155 (7)0.0143 (7)0.0160 (7)0.0003 (5)0.0043 (5)0.0019 (5)
Geometric parameters (Å, º) top
O1—C101.2215 (16)C4—C91.4027 (19)
O2—C31.2084 (17)C5—C61.388 (2)
N1—C111.3135 (18)C5—H50.9500
N1—C11.3812 (19)C6—C71.390 (2)
N2—C111.3754 (17)C6—H60.9500
N2—C21.3808 (18)C7—C81.387 (2)
N2—C31.4121 (18)C7—H70.9500
C1—C21.359 (2)C8—C91.3930 (19)
C1—H10.9500C8—H80.9500
C2—H20.9500C9—C101.4836 (19)
C3—C41.4821 (19)C10—C111.4710 (18)
C4—C51.3930 (19)
C11—N1—C1104.80 (12)C5—C6—C7120.15 (14)
C11—N2—C2106.70 (12)C5—C6—H6119.9
C11—N2—C3125.95 (12)C7—C6—H6119.9
C2—N2—C3127.27 (12)C8—C7—C6120.21 (14)
C2—C1—N1111.36 (13)C8—C7—H7119.9
C2—C1—H1124.3C6—C7—H7119.9
N1—C1—H1124.3C7—C8—C9120.21 (13)
C1—C2—N2105.33 (13)C7—C8—H8119.9
C1—C2—H2127.3C9—C8—H8119.9
N2—C2—H2127.3C8—C9—C4119.48 (13)
O2—C3—N2120.33 (13)C8—C9—C10119.16 (12)
O2—C3—C4125.01 (13)C4—C9—C10121.35 (12)
N2—C3—C4114.65 (12)O1—C10—C11121.49 (13)
C5—C4—C9120.00 (13)O1—C10—C9123.10 (13)
C5—C4—C3118.17 (12)C11—C10—C9115.39 (12)
C9—C4—C3121.83 (12)N1—C11—N2111.81 (12)
C6—C5—C4119.95 (13)N1—C11—C10127.51 (12)
C6—C5—H5120.0N2—C11—C10120.63 (12)
C4—C5—H5120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.463.2828 (17)146
C6—H6···O1ii0.952.573.5190 (19)179
C8—H8···O2iii0.952.553.2233 (17)128
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC11H6N2O2
Mr198.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.6518 (7), 7.2469 (6), 15.5197 (13)
β (°) 99.947 (1)
V3)847.66 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.21 × 0.17 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
4894, 1925, 1583
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.04
No. of reflections1925
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.463.2828 (17)146
C6—H6···O1ii0.952.573.5190 (19)179
C8—H8···O2iii0.952.553.2233 (17)128
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: m_nassir1971@yahoo.com.

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP001/2010 A).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem, 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, M.-H. & Hitchcock, P. B. (1992). Acta Cryst. C48, 2058–2060.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds