organic compounds
(5R)-5-[(1R)-2,2-Dichloro-1-methylcyclopropyl]-2-methylcyclohex-2-en-1-one
aLaboratoire de Chimie de Coordination, Université Cadi Ayyad, Faculté des Sciences-Semlalia, BP 2390, 40001 Marrakech, Morocco, and bDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43124 Parma, Italy
*Correspondence e-mail: corrado.rizzoli@unipr.it
The title compound, C11H14Cl2O, was synthesized by the reaction of a dichloromethane solution of (R)-carvone and potassium tert-butanolate in the presence of a catalytic amount of benzyltriethylammonium chloride in chloroform. The cyclohexene ring adopts a half-boat conformation. The cyclopropyl ring is unsymmetrical, the shortest C—C bond being distal to the alkyl-substituted C atom. The crystal packing is stabilized only by van der Waals interactions.
Related literature
For background to and applications of dichlorocyclopropane derivatives, see: Hirota et al. (1996); Künzer et al. (1996); Ziyat et al. (2004); Fedorynski (2003). For the synthesis and structures of optically active dihalogenocylopropanes reported by our group, see: Ziyat et al. (2002); Boualy et al. (2009); Ziyat et al. (2006). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: AED (Belletti et al., 1993); cell AED; data reduction: AED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).
Supporting information
10.1107/S1600536811021933/gk2382sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811021933/gk2382Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811021933/gk2382Isup3.cml
Potassium tert-butanolate (4.00 g, 19.8 mmol) was added to (R)-carvone (1.47 g, 9.8 mmol) and benzyltriethylammonium chloride (0.02 g, 0.1 mmol) in dichloromethane (60 ml). The mixture was stirred for 10 min, then chloroform (0.8 ml, 9.8 mmol) was added dropwise over a period of 30 min. The mixture was stirred for 8 h at 25°C, and then hydrolyzed by addition of water (20 ml). The organic layer was separated and the aqueous layer was extracted with dichloromethane (3 × 10 ml). The combined organic extracts were dried over Na2SO4 and the solvent was removed under reduced pressure. α]20D = +7.72° (c 1, chloroform). 1H NMR (300 MHz, CDCl3, δp.p.m.): 1.18 (s, 2H), 1.3 (s, 3H), 1.78 (d, J = 0.9 Hz, 3H), 2.1 (m, 1H), 2.3–2.5 (m, 4H), 6.77 (m, 1H). 13C NMR (75 MHz, CDCl3, δp.p.m.): 15.6 (CH3), 16.0 (CH3), 28.5 (CH2), 32.5 (CH2), 40.8 (Cq), 41.4 (CH2), 41.8 (CH), 65.8 (Cq), 135.5 (═ Cq), 144.5 (═CH), 199 (C═O). MS (70 eV) m/z (%): 233 [M+].
on silica gel (hexane/ethyl acetate, 5:1 v/v) of the residue gave 1.24 g (5.3 mmol, 54% yield) of the title compound as colourless crystals. Slow evaporation of a chloroform solution of the title compound at 25°C afforded crystals suitable for X-ray crystallographic analysis. M.p. 392 K. [All H atoms were fixed geometrically and treated as riding, with C–H = 0.93–0.98 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. The σ(F2)] and wR(F2) increased to 0.0583 and 0.1695, respectively.
of the molecule was established by the known of the (R)-carvone starting material and, in spite of the low coverage (40%), the value of the resulting Flack (1983) parameter was in accordance with this configuration. For the inverted structure, the refined to 0.71 (3), and the values of R[F2>2Data collection: AED (Belletti et al., 1993); cell
AED (Belletti et al., 1993); data reduction: AED (Belletti et al., 1993); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995)'.C11H14Cl2O | F(000) = 244 |
Mr = 233.12 | Dx = 1.328 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2yb | Cell parameters from 48 reflections |
a = 6.5722 (3) Å | θ = 22.5–35.9° |
b = 8.4802 (4) Å | µ = 4.73 mm−1 |
c = 10.8022 (5) Å | T = 294 K |
β = 104.435 (4)° | Irregular block, colourless |
V = 583.04 (5) Å3 | 0.25 × 0.20 × 0.14 mm |
Z = 2 |
Siemens AED diffractometer | 1554 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.057 |
Graphite monochromator | θmax = 69.8°, θmin = 4.2° |
θ/2θ scans | h = −7→6 |
Absorption correction: part of the (DIFABS; Walker & Stuart, 1983) | model (ΔF) k = −10→6 |
Tmin = 0.327, Tmax = 0.519 | l = −12→13 |
2295 measured reflections | 3 standard reflections every 100 reflections |
1576 independent reflections | intensity decay: 0.3% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.083P)2 + 0.0912P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.126 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 0.43 e Å−3 |
1576 reflections | Δρmin = −0.30 e Å−3 |
130 parameters | Extinction correction: SHELXL |
1 restraint | Extinction coefficient: 0.014 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 394 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.00 (2) |
C11H14Cl2O | V = 583.04 (5) Å3 |
Mr = 233.12 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 6.5722 (3) Å | µ = 4.73 mm−1 |
b = 8.4802 (4) Å | T = 294 K |
c = 10.8022 (5) Å | 0.25 × 0.20 × 0.14 mm |
β = 104.435 (4)° |
Siemens AED diffractometer | 1554 reflections with I > 2σ(I) |
Absorption correction: part of the (DIFABS; Walker & Stuart, 1983) | model (ΔF) Rint = 0.057 |
Tmin = 0.327, Tmax = 0.519 | 3 standard reflections every 100 reflections |
2295 measured reflections | intensity decay: 0.3% |
1576 independent reflections |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.126 | Δρmax = 0.43 e Å−3 |
S = 1.09 | Δρmin = −0.30 e Å−3 |
1576 reflections | Absolute structure: Flack (1983), 394 Friedel pairs |
130 parameters | Absolute structure parameter: 0.00 (2) |
1 restraint |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.34023 (13) | 0.77757 (15) | 0.58246 (8) | 0.0824 (4) | |
Cl2 | 0.90330 (12) | 0.84462 (16) | 0.47313 (8) | 0.0858 (4) | |
O1 | 0.7651 (5) | 0.7920 (6) | −0.1253 (3) | 0.0987 (12) | |
C1 | 1.0031 (5) | 0.7536 (6) | 0.0774 (3) | 0.0693 (10) | |
H1A | 1.0523 | 0.8597 | 0.0677 | 0.083* | |
H1B | 1.1099 | 0.6805 | 0.0652 | 0.083* | |
C2 | 0.8020 (5) | 0.7244 (5) | −0.0244 (3) | 0.0636 (8) | |
C3 | 0.6586 (5) | 0.6053 (4) | 0.0053 (3) | 0.0554 (7) | |
C4 | 0.7023 (5) | 0.5357 (4) | 0.1185 (3) | 0.0571 (7) | |
H4 | 0.6091 | 0.4590 | 0.1322 | 0.069* | |
C5 | 0.8894 (4) | 0.5702 (4) | 0.2264 (3) | 0.0548 (7) | |
H5A | 0.9982 | 0.4927 | 0.2270 | 0.066* | |
H5B | 0.8499 | 0.5627 | 0.3069 | 0.066* | |
C6 | 0.9740 (4) | 0.7342 (4) | 0.2127 (3) | 0.0496 (6) | |
H6 | 0.8668 | 0.8101 | 0.2227 | 0.059* | |
C7 | 1.1744 (4) | 0.7717 (5) | 0.3144 (3) | 0.0584 (7) | |
C8 | 1.2112 (6) | 0.9436 (6) | 0.3526 (4) | 0.0799 (11) | |
H8A | 1.3547 | 0.9822 | 0.3731 | 0.096* | |
H8B | 1.1062 | 1.0197 | 0.3108 | 0.096* | |
C9 | 1.1528 (4) | 0.8301 (5) | 0.4415 (3) | 0.0614 (7) | |
C10 | 0.4642 (6) | 0.5669 (7) | −0.0993 (4) | 0.0791 (11) | |
H10A | 0.3966 | 0.6630 | −0.1344 | 0.119* | |
H10B | 0.3692 | 0.5055 | −0.0644 | 0.119* | |
H10C | 0.5037 | 0.5079 | −0.1655 | 0.119* | |
C11 | 1.3618 (5) | 0.6704 (8) | 0.3127 (4) | 0.0909 (15) | |
H11A | 1.3816 | 0.6673 | 0.2276 | 0.136* | |
H11B | 1.3386 | 0.5654 | 0.3395 | 0.136* | |
H11C | 1.4848 | 0.7138 | 0.3699 | 0.136* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0728 (5) | 0.0887 (7) | 0.0691 (5) | 0.0062 (4) | −0.0133 (3) | −0.0101 (5) |
Cl2 | 0.0610 (4) | 0.1189 (9) | 0.0741 (5) | 0.0072 (5) | 0.0107 (3) | −0.0351 (6) |
O1 | 0.115 (2) | 0.115 (3) | 0.0616 (14) | −0.024 (2) | 0.0147 (13) | 0.028 (2) |
C1 | 0.0660 (16) | 0.081 (3) | 0.0632 (17) | −0.0162 (17) | 0.0201 (13) | 0.007 (2) |
C2 | 0.0756 (17) | 0.066 (2) | 0.0503 (15) | −0.0062 (16) | 0.0182 (13) | 0.0030 (17) |
C3 | 0.0608 (14) | 0.0537 (16) | 0.0500 (14) | −0.0017 (14) | 0.0104 (11) | −0.0062 (15) |
C4 | 0.0616 (15) | 0.0554 (17) | 0.0544 (16) | −0.0067 (13) | 0.0146 (12) | −0.0029 (15) |
C5 | 0.0571 (14) | 0.0535 (17) | 0.0515 (15) | 0.0014 (12) | 0.0091 (11) | 0.0047 (14) |
C6 | 0.0467 (12) | 0.0490 (16) | 0.0512 (14) | 0.0010 (10) | 0.0087 (10) | −0.0009 (13) |
C7 | 0.0443 (12) | 0.0613 (18) | 0.0666 (17) | −0.0028 (13) | 0.0083 (11) | −0.0043 (17) |
C8 | 0.075 (2) | 0.064 (2) | 0.090 (3) | −0.0173 (18) | 0.0005 (17) | −0.001 (2) |
C9 | 0.0511 (13) | 0.0621 (19) | 0.0632 (15) | 0.0017 (13) | −0.0003 (11) | −0.0075 (17) |
C10 | 0.081 (2) | 0.086 (3) | 0.0612 (18) | −0.019 (2) | 0.0007 (15) | −0.007 (2) |
C11 | 0.0462 (15) | 0.124 (4) | 0.097 (3) | 0.015 (2) | 0.0073 (16) | −0.027 (3) |
Cl1—C9 | 1.760 (3) | C6—C7 | 1.523 (4) |
Cl2—C9 | 1.761 (3) | C6—H6 | 0.9800 |
O1—C2 | 1.202 (4) | C7—C9 | 1.500 (4) |
C1—C2 | 1.514 (4) | C7—C11 | 1.506 (5) |
C1—C6 | 1.529 (4) | C7—C8 | 1.518 (6) |
C1—H1A | 0.9700 | C8—C9 | 1.477 (6) |
C1—H1B | 0.9700 | C8—H8A | 0.9700 |
C2—C3 | 1.470 (5) | C8—H8B | 0.9700 |
C3—C4 | 1.323 (4) | C10—H10A | 0.9600 |
C3—C10 | 1.515 (4) | C10—H10B | 0.9600 |
C4—C5 | 1.497 (4) | C10—H10C | 0.9600 |
C4—H4 | 0.9300 | C11—H11A | 0.9600 |
C5—C6 | 1.519 (5) | C11—H11B | 0.9600 |
C5—H5A | 0.9700 | C11—H11C | 0.9600 |
C5—H5B | 0.9700 | ||
C2—C1—C6 | 112.4 (2) | C11—C7—C8 | 118.4 (3) |
C2—C1—H1A | 109.1 | C9—C7—C6 | 117.9 (2) |
C6—C1—H1A | 109.1 | C11—C7—C6 | 115.8 (3) |
C2—C1—H1B | 109.1 | C8—C7—C6 | 116.5 (3) |
C6—C1—H1B | 109.1 | C9—C8—C7 | 60.1 (3) |
H1A—C1—H1B | 107.8 | C9—C8—H8A | 117.8 |
O1—C2—C3 | 122.0 (3) | C7—C8—H8A | 117.8 |
O1—C2—C1 | 121.5 (3) | C9—C8—H8B | 117.8 |
C3—C2—C1 | 116.5 (3) | C7—C8—H8B | 117.8 |
C4—C3—C2 | 120.3 (3) | H8A—C8—H8B | 114.9 |
C4—C3—C10 | 122.8 (3) | C8—C9—C7 | 61.3 (3) |
C2—C3—C10 | 116.9 (3) | C8—C9—Cl1 | 119.2 (2) |
C3—C4—C5 | 125.4 (3) | C7—C9—Cl1 | 120.2 (2) |
C3—C4—H4 | 117.3 | C8—C9—Cl2 | 119.1 (3) |
C5—C4—H4 | 117.3 | C7—C9—Cl2 | 120.4 (2) |
C4—C5—C6 | 110.7 (3) | Cl1—C9—Cl2 | 109.55 (18) |
C4—C5—H5A | 109.5 | C3—C10—H10A | 109.5 |
C6—C5—H5A | 109.5 | C3—C10—H10B | 109.5 |
C4—C5—H5B | 109.5 | H10A—C10—H10B | 109.5 |
C6—C5—H5B | 109.5 | C3—C10—H10C | 109.5 |
H5A—C5—H5B | 108.1 | H10A—C10—H10C | 109.5 |
C5—C6—C7 | 113.1 (3) | H10B—C10—H10C | 109.5 |
C5—C6—C1 | 109.1 (3) | C7—C11—H11A | 109.5 |
C7—C6—C1 | 112.1 (2) | C7—C11—H11B | 109.5 |
C5—C6—H6 | 107.4 | H11A—C11—H11B | 109.5 |
C7—C6—H6 | 107.4 | C7—C11—H11C | 109.5 |
C1—C6—H6 | 107.4 | H11A—C11—H11C | 109.5 |
C9—C7—C11 | 117.6 (3) | H11B—C11—H11C | 109.5 |
C9—C7—C8 | 58.6 (3) |
Experimental details
Crystal data | |
Chemical formula | C11H14Cl2O |
Mr | 233.12 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 294 |
a, b, c (Å) | 6.5722 (3), 8.4802 (4), 10.8022 (5) |
β (°) | 104.435 (4) |
V (Å3) | 583.04 (5) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 4.73 |
Crystal size (mm) | 0.25 × 0.20 × 0.14 |
Data collection | |
Diffractometer | Siemens AED diffractometer |
Absorption correction | Part of the refinement model (ΔF) (DIFABS; Walker & Stuart, 1983) |
Tmin, Tmax | 0.327, 0.519 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2295, 1576, 1554 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.126, 1.09 |
No. of reflections | 1576 |
No. of parameters | 130 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.30 |
Absolute structure | Flack (1983), 394 Friedel pairs |
Absolute structure parameter | 0.00 (2) |
Computer programs: AED (Belletti et al., 1993), SIR97 (Altomare et al., 1999), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995)'.
Acknowledgements
Financial support from the Universitá degli Studi di Parma is gratefully acknowledged.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Belletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy. Google Scholar
Boualy, B., El Firdoussi, L., Ait Ali, M., Karim, A. & Spannenberg, A. (2009). Z. Kristallogr. New Cryst. Struct. 224, 1–2. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fedorynski, M. (2003). Chem. Rev. 103, 1099–1132. Web of Science PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hirota, H., Tomono, Y. & Fusetani, N. (1996). Tetrahedron, 52, 2359–2368. CrossRef CAS Google Scholar
Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany. Google Scholar
Künzer, H., Thiel, M. & Peschke, B. (1996). Tetrahedron Lett. 37, 1771–1772. Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ziyat, H., Ait Itto, M. Y., Ait Ali, M., Karim, A., Riahi, A. & Daran, J.-C. (2002). Acta Cryst. C58, o90–o93. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ziyat, H., Ait Itto, M. Y., Ait Ali, M., Riahi, A., Karim, A. & Daran, J.-C. (2006). ARKIVOC, XII, 152–160. CrossRef Google Scholar
Ziyat, H., El Houssame, S., Ait Ali, M., Ait Itto, M. Y., Karim, A., Wartchow, R. & Butenschen, H. (2004). Z. Naturforsch. Teil B, 59, 1177–1179. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dichlorocyclopropanes play an important role in organic synthesis, due to the widespread occurrence of these structures in biologically active compounds (Hirota et al., 1996; Künzer et al., 1996). These compounds have found wide applications as substrates for the synthesis of many class of compounds such as pyrethroides (Ziyat et al., 2004), benzocyclopropenes or cyclopentadiene derivatives (Fedorynski, 2003), which are not easily obtained using other starting materials. As a part of our ongoing research aimed at the synthesis of optically active dihalogenocylopropanes from terpenes (Ziyat et al., 2002; Ziyat et al., 2004; Boualy et al., 2009; Ziyat et al., 2006), the title compound has been prepared and its crystal structure is reported herein.
In the title compound (Fig. 1), the cyclohexene ring adopts a half-boat conformation [puckering parameters for ring C6/C1/C2/C3/C4/C5: Q = 0.478 (4) Å, θ = 126.7 (4)°, ϕ = -171.0 (6)°; Cremer & Pople, 1975] with atom C6 displaced by 0.645 (3) Å from the mean plane through the C1–C5 atoms. The cyclopropyl ring (C7–C9) is tilted by 57.64 (19)° with respect to this plane. As already observed in related compounds (Ziyat et al., 2002), the geometry of the cyclopropyl ring is unsymmetrical, the distal bond to the alkyl-substituted C7 carbon atom (C8—C9 = 1.477 (6) Å) being significantly shorter than the vicinal bonds (C7—C8 = 1.518 (6) Å; C7—C9 = 1.500 (4) Å). The crystal packing (Fig. 2) is governed only by van der Waals interactions. The shortest intermolecular halogen···halogen separation is Cl1···Cl2i = 3.990 (3) Å (symmetry code: (i) 2 - x, -1/2 + y, 1 - z).