organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1-Di­benzyl-3-(3-chloro­benzo­yl)thio­urea

aFuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia, bSchool of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia, and cDepartment of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia
*Correspondence e-mail: mbkassim@ukm.my

(Received 11 June 2011; accepted 14 June 2011; online 18 June 2011)

In the title compound, C22H19ClN2OS, the thiono and carbonyl groups are trans positioned with respect to a partially double C—N bond. The amide group is twisted relative to the thio­urea fragment, forming a dihedral angle of 46.75 (11)°. In the crystal, inter­molecular N—H⋯S and C—H⋯O hydrogen bonds link the mol­ecules into a one-dimensional polymeric structure parallel to the c axis.

Related literature

For related structures and background references, see: Al-abbasi & Kassim (2011[Al-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611.]); Nasir et al. (2011[Nasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1218.]). For metal complexes of benzoyl­thio­ureas, see: Weiqun et al. (2005[Weiqun, Z., Wen, Y., Liqun, X. & Xianchen, C. (2005). J. Inorg. Biochem. 99, 1314-1319.]); Circu et al. (2009[Circu, V., Ilie, M., Ilis, M., Dumitrascu, F., Neagoe, I. & Pasculescu, S. (2009). Polyhedron, 28, 3739-3746.]). For the synthetic procedure, see: Hassan et al. (2008[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008). Acta Cryst. E64, o1727.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19ClN2OS

  • Mr = 394.90

  • Triclinic, [P \overline 1]

  • a = 9.503 (4) Å

  • b = 9.650 (4) Å

  • c = 12.487 (5) Å

  • α = 72.422 (8)°

  • β = 72.869 (9)°

  • γ = 69.463 (8)°

  • V = 999.1 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.28 × 0.17 × 0.13 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.918, Tmax = 0.961

  • 13666 measured reflections

  • 5000 independent reflections

  • 2879 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.147

  • S = 1.03

  • 5000 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.74 3.410 (2) 136
C15—H15⋯O1ii 0.93 2.50 3.421 (3) 170
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzoylthiourea compounds contain strong donor groups (carbonyl and thioamide) which make them very attractive ligands in coordination chemistry. These ligands react with transition metals, mostly in monoanionic and bidentate form by deprotonation of the amide group, forming neutral complexes with S, O-coordination (Weiqun et al., 2005; Circu et al., 2009).

The title compound, I, is a thiourea derivative analogous to our previously reported compounds (Nasir et al., 2011; Al-abbasi & Kassim, 2011). The thiono S and the carbonyl O atoms are trans positioned at a partially double N1-C8 bond with C7N1C8S1 torsion angle of 127.37 (18)°. The dihedral angle between the mean planes of the thiourea (S1/N1/N2/C8) and the amide group (O1/N1/C1/C7) is 46.75 (11)°. The mean planes of the dibenzylamine (C9/C10/C11/C12/C13/C14/C15 and C16/C17/C18/C19/C19/C20/C21) make an angle of 20.54 (13)°.

Intermolecular N—H···S and C—H···O hydrogen bonds link the molecules into a one dimensional polymeric structure parallel to the c-axis.

Related literature top

For related structures and background references, see: Al-abbasi & Kassim (2011); Nasir et al. (2011). For metal complexes of benzoylthioureas, see: Weiqun et al. (2005); Circu et al. (2009). For the synthetic procedure, see: Hassan et al. (2008).

Experimental top

The title compound was prepared according to a previously reported compound (Hassan et al., 2008). A colourless crystal, suitable for X-ray crystallography, was obtained by a slow evaporation from a mixture of acetone/ethanol solution at room temperature (yield 80%).

Refinement top

All H atoms were postioned geometrically with C-H bond lengths in the range 0.93 - 0.97 Å and N-H bond of 0.86 Å,.and refined in the riding model approximation with Uiso(H)=1.2Ueq(C,N), except for methyl group where Uiso(H)= 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound down the a-axis showing the intermolecular hydrogen bonds N1—H1···S1 (-x + 2, -y + 1, -z + 1) and C15—H15··· O1 (-x + 2, -y + 1, -z).
1,1-Dibenzyl-3-(3-chlorobenzoyl)thiourea top
Crystal data top
C22H19ClN2OSZ = 2
Mr = 394.90F(000) = 412
Triclinic, P1Dx = 1.313 Mg m3
Hall symbol: -P 1Melting point: 409.15 K
a = 9.503 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.650 (4) ÅCell parameters from 1114 reflections
c = 12.487 (5) Åθ = 2.3–28.5°
α = 72.422 (8)°µ = 0.31 mm1
β = 72.869 (9)°T = 298 K
γ = 69.463 (8)°Block, colourless
V = 999.1 (7) Å30.28 × 0.17 × 0.13 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5000 independent reflections
Radiation source: fine-focus sealed tube2879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 28.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.918, Tmax = 0.961k = 1212
13666 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.0522P]
where P = (Fo2 + 2Fc2)/3
5000 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C22H19ClN2OSγ = 69.463 (8)°
Mr = 394.90V = 999.1 (7) Å3
Triclinic, P1Z = 2
a = 9.503 (4) ÅMo Kα radiation
b = 9.650 (4) ŵ = 0.31 mm1
c = 12.487 (5) ÅT = 298 K
α = 72.422 (8)°0.28 × 0.17 × 0.13 mm
β = 72.869 (9)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5000 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2879 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.961Rint = 0.036
13666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
5000 reflectionsΔρmin = 0.31 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.89445 (7)0.70137 (6)0.39746 (5)0.0651 (2)
Cl11.24059 (9)0.15952 (8)0.53858 (7)0.0984 (3)
O11.15882 (17)0.42880 (17)0.15716 (13)0.0614 (4)
N11.01426 (17)0.43643 (17)0.33839 (14)0.0475 (4)
H10.99400.38260.40670.057*
N20.86120 (18)0.62690 (17)0.21995 (14)0.0474 (4)
C80.9214 (2)0.5863 (2)0.31191 (17)0.0454 (5)
C11.2465 (2)0.2283 (2)0.30830 (18)0.0476 (5)
C71.1378 (2)0.3712 (2)0.25868 (19)0.0482 (5)
C61.1962 (2)0.1167 (2)0.39517 (18)0.0517 (5)
H61.09200.13150.42780.062*
C100.6590 (2)0.5487 (2)0.19232 (18)0.0502 (5)
C90.8302 (2)0.5205 (2)0.1730 (2)0.0541 (5)
H9A0.87670.41700.21040.065*
H9B0.87510.53380.09140.065*
C160.7941 (2)0.7885 (2)0.17143 (19)0.0542 (5)
H16A0.81380.84940.21150.065*
H16B0.68350.80950.18420.065*
C170.8578 (3)0.8343 (2)0.04457 (19)0.0569 (6)
C51.3029 (3)0.0172 (2)0.43277 (19)0.0607 (6)
C150.5883 (3)0.5901 (3)0.1013 (2)0.0658 (6)
H150.64720.59540.02690.079*
C41.4577 (3)0.0385 (3)0.3883 (2)0.0708 (7)
H41.52870.12830.41500.085*
C21.4025 (2)0.2061 (2)0.2627 (2)0.0633 (6)
H21.43700.28040.20390.076*
C31.5060 (3)0.0740 (3)0.3045 (2)0.0751 (8)
H31.61070.06090.27520.090*
C221.0129 (3)0.7936 (3)0.0005 (2)0.0719 (7)
H221.08050.72980.04660.086*
C110.5686 (3)0.5384 (3)0.3020 (2)0.0741 (7)
H110.61430.50880.36490.089*
C180.7596 (4)0.9279 (3)0.0270 (2)0.0797 (8)
H180.65400.95510.00210.096*
C140.4304 (3)0.6240 (3)0.1196 (3)0.0860 (8)
H140.38380.65190.05730.103*
C211.0691 (4)0.8466 (4)0.1150 (3)0.0994 (11)
H211.17440.81760.14490.119*
C190.8167 (6)0.9815 (4)0.1415 (3)0.1121 (13)
H190.75001.04530.18930.135*
C200.9722 (7)0.9406 (4)0.1848 (3)0.1165 (15)
H201.01110.97740.26190.140*
C120.4102 (4)0.5717 (4)0.3194 (3)0.0922 (9)
H120.35040.56330.39360.111*
C130.3428 (3)0.6166 (3)0.2279 (4)0.0907 (10)
H130.23640.64240.23930.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0793 (4)0.0510 (3)0.0616 (4)0.0073 (3)0.0289 (3)0.0249 (3)
Cl10.0963 (6)0.0616 (4)0.0962 (5)0.0036 (4)0.0078 (4)0.0053 (4)
O10.0552 (9)0.0614 (9)0.0517 (9)0.0035 (7)0.0041 (7)0.0128 (7)
N10.0469 (9)0.0392 (8)0.0447 (9)0.0005 (7)0.0070 (8)0.0106 (7)
N20.0481 (9)0.0393 (9)0.0529 (10)0.0012 (7)0.0168 (8)0.0152 (8)
C80.0391 (10)0.0428 (11)0.0480 (11)0.0037 (8)0.0078 (9)0.0122 (9)
C10.0418 (11)0.0433 (11)0.0541 (12)0.0008 (9)0.0097 (9)0.0197 (9)
C70.0428 (11)0.0468 (11)0.0532 (13)0.0074 (9)0.0068 (9)0.0181 (10)
C60.0427 (11)0.0502 (12)0.0567 (13)0.0010 (9)0.0083 (10)0.0210 (10)
C100.0497 (12)0.0441 (11)0.0553 (12)0.0084 (9)0.0111 (10)0.0149 (9)
C90.0539 (12)0.0463 (11)0.0630 (13)0.0027 (10)0.0180 (11)0.0217 (10)
C160.0556 (13)0.0414 (11)0.0614 (13)0.0017 (9)0.0216 (11)0.0149 (10)
C170.0731 (15)0.0413 (11)0.0611 (14)0.0108 (11)0.0246 (12)0.0147 (10)
C50.0633 (15)0.0476 (12)0.0619 (14)0.0004 (10)0.0125 (11)0.0180 (11)
C150.0576 (14)0.0784 (17)0.0654 (15)0.0165 (12)0.0158 (12)0.0224 (13)
C40.0574 (15)0.0530 (14)0.0874 (18)0.0118 (12)0.0208 (14)0.0226 (13)
C20.0465 (12)0.0501 (13)0.0797 (16)0.0031 (10)0.0024 (11)0.0187 (12)
C30.0410 (13)0.0644 (16)0.106 (2)0.0039 (11)0.0051 (13)0.0322 (16)
C220.0767 (18)0.0659 (16)0.0727 (17)0.0243 (14)0.0109 (14)0.0150 (13)
C110.0800 (18)0.0793 (18)0.0590 (15)0.0218 (15)0.0077 (13)0.0176 (13)
C180.110 (2)0.0598 (15)0.0720 (18)0.0091 (15)0.0449 (16)0.0109 (13)
C140.0605 (17)0.101 (2)0.108 (2)0.0165 (15)0.0323 (17)0.0332 (19)
C210.128 (3)0.087 (2)0.086 (2)0.058 (2)0.019 (2)0.0300 (19)
C190.203 (4)0.071 (2)0.069 (2)0.033 (3)0.059 (3)0.0023 (17)
C200.221 (5)0.078 (2)0.060 (2)0.074 (3)0.007 (3)0.0133 (17)
C120.079 (2)0.097 (2)0.095 (2)0.0399 (18)0.0271 (18)0.0401 (18)
C130.0533 (16)0.085 (2)0.144 (3)0.0193 (14)0.009 (2)0.051 (2)
Geometric parameters (Å, º) top
S1—C81.672 (2)C5—C41.375 (3)
Cl1—C51.731 (3)C15—C141.382 (4)
O1—C71.208 (3)C15—H150.9300
N1—C71.392 (2)C4—C31.365 (3)
N1—C81.402 (2)C4—H40.9300
N1—H10.8600C2—C31.373 (3)
N2—C81.326 (2)C2—H20.9300
N2—C91.470 (3)C3—H30.9300
N2—C161.471 (2)C22—C211.375 (4)
C1—C61.384 (3)C22—H220.9300
C1—C21.386 (3)C11—C121.388 (4)
C1—C71.488 (3)C11—H110.9300
C6—C51.383 (3)C18—C191.377 (4)
C6—H60.9300C18—H180.9300
C10—C151.374 (3)C14—C131.359 (4)
C10—C111.382 (3)C14—H140.9300
C10—C91.508 (3)C21—C201.356 (5)
C9—H9A0.9700C21—H210.9300
C9—H9B0.9700C19—C201.371 (6)
C16—C171.507 (3)C19—H190.9300
C16—H16A0.9700C20—H200.9300
C16—H16B0.9700C12—C131.357 (5)
C17—C221.372 (3)C12—H120.9300
C17—C181.378 (3)C13—H130.9300
C7—N1—C8122.70 (17)C10—C15—C14120.6 (2)
C7—N1—H1118.6C10—C15—H15119.7
C8—N1—H1118.6C14—C15—H15119.7
C8—N2—C9123.98 (17)C3—C4—C5119.2 (2)
C8—N2—C16120.06 (17)C3—C4—H4120.4
C9—N2—C16115.01 (16)C5—C4—H4120.4
N2—C8—N1117.33 (17)C3—C2—C1119.8 (2)
N2—C8—S1124.47 (15)C3—C2—H2120.1
N1—C8—S1118.19 (14)C1—C2—H2120.1
C6—C1—C2119.73 (19)C4—C3—C2121.1 (2)
C6—C1—C7122.07 (18)C4—C3—H3119.5
C2—C1—C7118.2 (2)C2—C3—H3119.5
O1—C7—N1122.69 (19)C17—C22—C21120.4 (3)
O1—C7—C1122.22 (18)C17—C22—H22119.8
N1—C7—C1115.04 (18)C21—C22—H22119.8
C5—C6—C1119.1 (2)C10—C11—C12120.7 (3)
C5—C6—H6120.4C10—C11—H11119.7
C1—C6—H6120.4C12—C11—H11119.7
C15—C10—C11118.3 (2)C19—C18—C17120.4 (3)
C15—C10—C9121.0 (2)C19—C18—H18119.8
C11—C10—C9120.7 (2)C17—C18—H18119.8
N2—C9—C10109.86 (16)C13—C14—C15120.4 (3)
N2—C9—H9A109.7C13—C14—H14119.8
C10—C9—H9A109.7C15—C14—H14119.8
N2—C9—H9B109.7C20—C21—C22120.5 (3)
C10—C9—H9B109.7C20—C21—H21119.7
H9A—C9—H9B108.2C22—C21—H21119.7
N2—C16—C17112.77 (16)C20—C19—C18119.9 (3)
N2—C16—H16A109.0C20—C19—H19120.0
C17—C16—H16A109.0C18—C19—H19120.0
N2—C16—H16B109.0C21—C20—C19119.9 (3)
C17—C16—H16B109.0C21—C20—H20120.1
H16A—C16—H16B107.8C19—C20—H20120.1
C22—C17—C18118.9 (2)C13—C12—C11119.9 (3)
C22—C17—C16121.5 (2)C13—C12—H12120.1
C18—C17—C16119.5 (2)C11—C12—H12120.1
C4—C5—C6121.1 (2)C12—C13—C14120.2 (3)
C4—C5—Cl1119.47 (18)C12—C13—H13119.9
C6—C5—Cl1119.44 (18)C14—C13—H13119.9
C9—N2—C8—N126.1 (3)C1—C6—C5—Cl1178.21 (16)
C16—N2—C8—N1165.58 (17)C11—C10—C15—C141.5 (4)
C9—N2—C8—S1154.11 (16)C9—C10—C15—C14176.4 (2)
C16—N2—C8—S114.2 (3)C6—C5—C4—C31.0 (4)
C7—N1—C8—N252.4 (3)Cl1—C5—C4—C3179.7 (2)
C7—N1—C8—S1127.36 (18)C6—C1—C2—C30.4 (3)
C8—N1—C7—O112.5 (3)C7—C1—C2—C3178.5 (2)
C8—N1—C7—C1164.86 (17)C5—C4—C3—C21.2 (4)
C6—C1—C7—O1140.7 (2)C1—C2—C3—C41.9 (4)
C2—C1—C7—O137.3 (3)C18—C17—C22—C210.5 (4)
C6—C1—C7—N141.9 (3)C16—C17—C22—C21174.9 (2)
C2—C1—C7—N1140.1 (2)C15—C10—C11—C121.1 (4)
C2—C1—C6—C51.7 (3)C9—C10—C11—C12176.8 (2)
C7—C1—C6—C5176.25 (19)C22—C17—C18—C191.0 (4)
C8—N2—C9—C10110.5 (2)C16—C17—C18—C19174.5 (2)
C16—N2—C9—C1058.3 (2)C10—C15—C14—C130.0 (4)
C15—C10—C9—N2119.3 (2)C17—C22—C21—C200.5 (4)
C11—C10—C9—N258.6 (3)C17—C18—C19—C200.5 (5)
C8—N2—C16—C17127.7 (2)C22—C21—C20—C191.1 (5)
C9—N2—C16—C1763.0 (2)C18—C19—C20—C210.6 (5)
N2—C16—C17—C2247.3 (3)C10—C11—C12—C130.7 (4)
N2—C16—C17—C18137.3 (2)C11—C12—C13—C142.3 (5)
C1—C6—C5—C42.5 (3)C15—C14—C13—C121.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···S10.972.513.029 (3)113
N1—H1···S1i0.862.743.410 (2)136
C15—H15···O1ii0.932.503.421 (3)170
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H19ClN2OS
Mr394.90
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.503 (4), 9.650 (4), 12.487 (5)
α, β, γ (°)72.422 (8), 72.869 (9), 69.463 (8)
V3)999.1 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.28 × 0.17 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.918, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
13666, 5000, 2879
Rint0.036
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.147, 1.03
No. of reflections5000
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.743.410 (2)136
C15—H15···O1ii0.932.503.421 (3)170
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for grants UKM-GUP-BTT-07–30-190 and UKM-OUP-TK-16–73/2010 and sabbatical leave for MBK. They also thank the Kementerian Pengajian Tinggi, Malaysia, for the research fund No. UKM-ST-06-FRGS0111–2009.

References

First citationAl-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCircu, V., Ilie, M., Ilis, M., Dumitrascu, F., Neagoe, I. & Pasculescu, S. (2009). Polyhedron, 28, 3739–3746.  CAS Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008). Acta Cryst. E64, o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeiqun, Z., Wen, Y., Liqun, X. & Xianchen, C. (2005). J. Inorg. Biochem. 99, 1314–1319.  Web of Science CSD CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds