organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Chloro-6-iodo-2-phenyl­chromeno[4,3-c]pyrazol-4(2H)-one N,N-di­methyl­formamide monosolvate

aDepartment of Chemistry, University of Pune, Pune 411007, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 20 May 2011; accepted 7 June 2011; online 18 June 2011)

In the title compound, C16H8ClIN2O2·C3H7NO, the fused tricyclic pyrazolo­coumarin ring and the N-phenyl ring are almost coplanar, the dihedral angle between them being 1.86 (9)°. In the crystal, these rings stack on top of each other via ππ inter­actions [centroid–centroid distances = 3.489 (2), 3.637 (2), 3.505 (2) and 3.662 (2) Å], forming infinite chains along the a axis. The chains are connected into layers parallel to ac plane through I⋯O inter­actions [3.0011 (18) Å] between pairs of symmetry-related mol­ecules. The DMF solvent mol­ecules are C—H⋯O bonded to this network.

Related literature

For related structures, see: Strakova et al. (2003[Strakova, I., Petrova, M., Belyakov, S. & Strakov, A. (2003). Khim. Get. Soedin. pp. 1827-1836.]); Kanwal et al. (2007[Kanwal, P., Gupta, V. K., Brahmbhatt, D. I. & Patel, M. A. (2007). Anal. Sci. X-Ray Struct. Anal. Online, 23, x237-238.]). For a crystal structure (p-iodo­benzaldehyde) having I⋯O inter­actions, see: Britton & Young (1997)[Britton, D. & Young, V. G. (1997). Acta Cryst. C53, 1359-1362.]. For a background to the I2/DMSO reagent, see: Lokhande et al. (2005[Lokhande, P. D., Sakate, S. S., Taksande, K. N. & Navghare, B. (2005). Tetrahedron Lett. 46, 1573-1574.]).

[Scheme 1]

Experimental

Crystal data
  • C16H8ClIN2O2·C3H7NO

  • Mr = 495.69

  • Triclinic, [P \overline 1]

  • a = 7.7297 (5) Å

  • b = 11.5196 (2) Å

  • c = 12.0326 (3) Å

  • α = 118.484 (1)°

  • β = 99.841 (1)°

  • γ = 90.968 (1)°

  • V = 921.86 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.91 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.598, Tmax = 0.963

  • 7205 measured reflections

  • 3392 independent reflections

  • 3075 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.052

  • S = 1.10

  • 3392 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O3 0.95 2.19 3.122 (3) 167
C16—H16⋯O3 0.95 2.49 3.415 (3) 164

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem, 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was obtained through a cyclization/iodination reaction, using I2/DMSO reagent (Lokhande et al., 2005). The crystal structure consists of the heterocyclic molecules, solvated by DMF molecules. The pyrazolocoumarin moiety is essentially planar (r.m.s deviation of the tricyclic ring atoms = 0.018 Å) as is in the similar structures (Strakova et al., 2003; Kanwal et al., 2007). The plane of the tricyclic ring is inclined slightly with respect to the N-phenyl ring, making an angle of 1.86 (9)°. The iodine atom and the carbonyl O atom of the symmetry related molecule at -x, -y + 2, -z + 1 are brought close together with I1···O2 distance of 3.0011 (18) Å which is significantly shorter than the sum of the Van der Waals radii of the relevant atoms (3.50 A°). Similar intermolecular interactions have been reported for the structure of p-iodobenzaldehyde (Britton & Young, 1997) with I···O distances of 3.068 (4) and 3.074 (4)Å and suggested to be an interaction between the Lewis base, –CHO, and the Lewis acid, I. The crystal packing consists of layers parallel to the ac plane formed by the I···O and the π-π interactions [Cg1···Cg1i = 3.489 (2) Å; Cg1···Cg3ii = 3.637 (2) Å; Cg2···Cg4i = 3.505 (2) Å; Cg4···Cg4i = 3.662 (2) Å, where Cg1, Cg2, Cg3 and Cg4 are the centroids of the rings N1/N2/C7/C8/C10, O1/C6—C9, C1—C6 and C11—C16, respectively, for i: -x + 1, -y + 2, -z + 2; ii: -x, -y + 2, -z + 2]. The DMF solvent molecules are hydrogen bonded to the layers (Table 1).

Related literature top

For related structures, see: Strakova et al. (2003); Kanwal et al. (2007). For a crystal structure (p-iodobenzaldehyde) having I···O interactions, see: Britton & Young (1997). For a background to the I2/DMSO reagent, see: Lokhande et al. (2005).

Experimental top

A solution of 5-chloro-2-hydroxyacetophenone (2.4 mmol, 0.41 g) and phenylhydrazine (2.4 mmol, 0.62 g) in methanol (40 ml), was refluxed for 2 hr to give 5-chloro-2-hydroxy acetophenone phenylhydrazone as a yellow solid (91%). To a solution of the obtained hydrazone (2 mmol, 0.52 g) in DMF (15 ml), POCl3 (6 mmol, 0.918 g) was added dropwise at 0 oC. After completion of the addition, the mixture was heated at 60–70 oC for 2.5–3 hr, then poured onto crushed ice and neutralized with 10% aqueous NaOH solution. The precipitate was filtered, washed with water and recrystallized from ethanol to give 3-(5-chloro-2-hydroxyphenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde (85%). To a solution of this solid (1 mmol, 0.298 g) in DMSO (20 ml), iodine (1.2 equivalent, 0.304 g) and 4–5 drops of concentrated H2SO4 was added. The mixture was heated at 120 oC for 3 hr, then cooled to room temperature and poured into ice-cooled water. The separated solid was filtered and washed with a cold dilute sodium thiosulfate solution and recrystallized from DMF to give the colorless crystals of the title compound.

Refinement top

Hydrogen atoms were placed at calculated positions and refined as riding atoms with distances of H—C(sp2) = 0.95 and HC(methyl) = 0.98 Å and withUiso(H) set to 1.2(1.5 for methyl)Ueq(C). The most disagreeable reflections with delta(F2)/e.s.d. >10 were omitted (5 reflections).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular strucrure of the title compound (50% probability ellipsoids). Hydrogen atoms are drawn as spheres of arbitrary radius.
8-Chloro-6-iodo-2-phenylchromeno[4,3-c]pyrazol-4(2H)-one N,N-dimethylformamide monosolvate top
Crystal data top
C16H8ClIN2O2·C3H7NOZ = 2
Mr = 495.69F(000) = 488
Triclinic, P1Dx = 1.786 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7297 (5) ÅCell parameters from 4487 reflections
b = 11.5196 (2) Åθ = 2.7–30.3°
c = 12.0326 (3) ŵ = 1.91 mm1
α = 118.484 (1)°T = 100 K
β = 99.841 (1)°Needle, colorless
γ = 90.968 (1)°0.30 × 0.10 × 0.02 mm
V = 921.86 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3392 independent reflections
Radiation source: fine-focus sealed tube3075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.598, Tmax = 0.963k = 1313
7205 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0269P)2]
where P = (Fo2 + 2Fc2)/3
3392 reflections(Δ/σ)max = 0.003
246 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C16H8ClIN2O2·C3H7NOγ = 90.968 (1)°
Mr = 495.69V = 921.86 (7) Å3
Triclinic, P1Z = 2
a = 7.7297 (5) ÅMo Kα radiation
b = 11.5196 (2) ŵ = 1.91 mm1
c = 12.0326 (3) ÅT = 100 K
α = 118.484 (1)°0.30 × 0.10 × 0.02 mm
β = 99.841 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3392 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3075 reflections with I > 2σ(I)
Tmin = 0.598, Tmax = 0.963Rint = 0.021
7205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.10Δρmax = 0.58 e Å3
3392 reflectionsΔρmin = 0.56 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.11384 (2)1.169294 (17)0.628935 (17)0.01600 (7)
Cl10.02765 (10)1.45032 (7)1.17754 (7)0.02134 (15)
O10.0778 (2)0.97585 (17)0.70964 (18)0.0149 (4)
O20.1906 (3)0.78881 (18)0.60164 (18)0.0198 (4)
N10.2949 (3)0.9833 (2)1.0488 (2)0.0135 (5)
N20.3677 (3)0.8654 (2)0.9952 (2)0.0123 (5)
C10.0571 (3)1.0858 (2)0.8236 (2)0.0127 (5)
C20.0335 (3)1.1827 (3)0.8102 (3)0.0147 (6)
C30.0607 (3)1.2950 (3)0.9203 (3)0.0146 (6)
H30.12421.36170.91280.017*
C40.0055 (3)1.3084 (3)1.0406 (3)0.0153 (6)
C50.0988 (3)1.2139 (3)1.0556 (3)0.0148 (6)
H50.14501.22601.13930.018*
C60.1240 (3)1.1004 (3)0.9457 (3)0.0130 (5)
C70.2193 (3)0.9941 (3)0.9470 (3)0.0127 (5)
C80.2419 (3)0.8862 (3)0.8304 (3)0.0142 (5)
C90.1744 (3)0.8750 (3)0.7064 (3)0.0144 (6)
C100.3400 (3)0.8053 (3)0.8657 (3)0.0142 (5)
H100.37960.72390.80980.017*
C110.4601 (3)0.8195 (3)1.0783 (3)0.0139 (5)
C120.4788 (3)0.8972 (3)1.2102 (3)0.0163 (6)
H120.43230.98041.24560.020*
C130.5671 (4)0.8521 (3)1.2909 (3)0.0186 (6)
H130.58170.90501.38200.022*
C140.6333 (3)0.7306 (3)1.2387 (3)0.0190 (6)
H140.69210.69961.29390.023*
C150.6140 (4)0.6541 (3)1.1063 (3)0.0187 (6)
H150.66060.57111.07090.022*
C160.5267 (3)0.6980 (3)1.0246 (3)0.0170 (6)
H160.51310.64560.93360.020*
O30.5295 (3)0.5613 (2)0.70310 (19)0.0253 (5)
N30.3732 (3)0.3775 (2)0.5253 (2)0.0204 (5)
C170.5161 (4)0.4454 (3)0.6173 (3)0.0228 (7)
H170.61710.39930.61620.027*
C180.3726 (4)0.2405 (3)0.4280 (3)0.0292 (7)
H18A0.48550.20900.44590.044*
H18B0.35590.23420.34260.044*
H18C0.27590.18540.42950.044*
C190.2124 (4)0.4393 (3)0.5173 (3)0.0274 (7)
H19A0.23350.53400.58160.041*
H19B0.11760.39610.53410.041*
H19C0.17790.42950.43070.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01706 (10)0.01850 (10)0.01258 (10)0.00408 (7)0.00108 (7)0.00823 (8)
Cl10.0319 (4)0.0175 (3)0.0138 (3)0.0083 (3)0.0068 (3)0.0061 (3)
O10.0175 (9)0.0147 (9)0.0114 (10)0.0039 (8)0.0018 (8)0.0057 (8)
O20.0308 (11)0.0178 (10)0.0112 (10)0.0104 (9)0.0056 (9)0.0068 (9)
N10.0135 (11)0.0133 (11)0.0135 (12)0.0010 (9)0.0012 (9)0.0068 (10)
N20.0122 (11)0.0120 (11)0.0130 (12)0.0005 (9)0.0010 (9)0.0069 (10)
C10.0121 (13)0.0131 (13)0.0099 (13)0.0015 (10)0.0019 (11)0.0035 (11)
C20.0121 (13)0.0180 (14)0.0150 (15)0.0005 (11)0.0017 (11)0.0093 (12)
C30.0130 (13)0.0156 (14)0.0168 (15)0.0031 (11)0.0037 (11)0.0090 (12)
C40.0169 (13)0.0127 (13)0.0145 (14)0.0010 (11)0.0051 (12)0.0047 (12)
C50.0177 (14)0.0163 (13)0.0102 (14)0.0004 (11)0.0014 (11)0.0070 (12)
C60.0103 (12)0.0152 (13)0.0149 (14)0.0006 (10)0.0029 (11)0.0084 (12)
C70.0131 (12)0.0139 (13)0.0119 (14)0.0030 (10)0.0027 (11)0.0069 (11)
C80.0159 (13)0.0151 (13)0.0120 (14)0.0002 (11)0.0014 (11)0.0074 (11)
C90.0132 (13)0.0165 (14)0.0146 (15)0.0006 (11)0.0009 (11)0.0092 (12)
C100.0168 (13)0.0134 (13)0.0123 (14)0.0002 (11)0.0034 (11)0.0060 (11)
C110.0095 (12)0.0173 (14)0.0177 (15)0.0024 (10)0.0011 (11)0.0121 (12)
C120.0171 (14)0.0175 (14)0.0143 (14)0.0007 (11)0.0023 (12)0.0080 (12)
C130.0180 (14)0.0265 (15)0.0121 (14)0.0012 (12)0.0003 (12)0.0112 (13)
C140.0144 (13)0.0268 (16)0.0221 (16)0.0032 (12)0.0029 (12)0.0191 (14)
C150.0155 (13)0.0162 (14)0.0256 (17)0.0015 (11)0.0003 (12)0.0127 (13)
C160.0189 (14)0.0159 (14)0.0162 (15)0.0015 (11)0.0008 (12)0.0088 (12)
O30.0324 (12)0.0209 (11)0.0172 (11)0.0065 (9)0.0037 (10)0.0053 (10)
N30.0241 (13)0.0185 (12)0.0163 (13)0.0046 (10)0.0033 (11)0.0068 (11)
C170.0267 (16)0.0267 (17)0.0217 (17)0.0097 (13)0.0093 (14)0.0155 (15)
C180.0326 (18)0.0234 (16)0.0236 (18)0.0047 (14)0.0034 (15)0.0059 (14)
C190.0230 (16)0.0296 (17)0.0278 (18)0.0081 (13)0.0046 (14)0.0126 (15)
Geometric parameters (Å, º) top
I1—C22.092 (3)C11—C121.380 (4)
Cl1—C41.744 (3)C11—C161.384 (4)
O1—C91.380 (3)C12—C131.395 (4)
O1—C11.391 (3)C12—H120.9500
O2—C91.206 (3)C13—C141.383 (4)
N1—C71.327 (3)C13—H130.9500
N1—N21.375 (3)C14—C151.383 (4)
N2—C101.344 (3)C14—H140.9500
N2—C111.436 (3)C15—C161.392 (4)
C1—C21.387 (4)C15—H150.9500
C1—C61.398 (4)C16—H160.9500
C2—C31.394 (4)O3—C171.227 (3)
C3—C41.383 (4)N3—C171.335 (4)
C3—H30.9500N3—C181.449 (4)
C4—C51.381 (4)N3—C191.454 (4)
C5—C61.394 (4)C17—H170.9500
C5—H50.9500C18—H18A0.9800
C6—C71.445 (4)C18—H18B0.9800
C7—C81.404 (4)C18—H18C0.9800
C8—C101.383 (4)C19—H19A0.9800
C8—C91.437 (4)C19—H19B0.9800
C10—H100.9500C19—H19C0.9800
C9—O1—C1123.4 (2)C12—C11—N2119.0 (2)
C7—N1—N2103.4 (2)C16—C11—N2119.5 (2)
C10—N2—N1113.3 (2)C11—C12—C13119.1 (3)
C10—N2—C11127.5 (2)C11—C12—H12120.5
N1—N2—C11119.2 (2)C13—C12—H12120.5
C2—C1—O1116.1 (2)C14—C13—C12120.1 (3)
C2—C1—C6121.0 (2)C14—C13—H13119.9
O1—C1—C6122.9 (2)C12—C13—H13119.9
C1—C2—C3119.2 (2)C15—C14—C13120.0 (3)
C1—C2—I1121.04 (19)C15—C14—H14120.0
C3—C2—I1119.61 (19)C13—C14—H14120.0
C4—C3—C2119.4 (2)C14—C15—C16120.5 (3)
C4—C3—H3120.3C14—C15—H15119.8
C2—C3—H3120.3C16—C15—H15119.8
C5—C4—C3122.1 (3)C11—C16—C15118.8 (3)
C5—C4—Cl1119.1 (2)C11—C16—H16120.6
C3—C4—Cl1118.8 (2)C15—C16—H16120.6
C4—C5—C6118.8 (3)C17—N3—C18121.6 (2)
C4—C5—H5120.6C17—N3—C19121.2 (2)
C6—C5—H5120.6C18—N3—C19117.2 (3)
C5—C6—C1119.5 (2)O3—C17—N3126.3 (3)
C5—C6—C7124.8 (2)O3—C17—H17116.8
C1—C6—C7115.7 (2)N3—C17—H17116.8
N1—C7—C8112.2 (2)N3—C18—H18A109.5
N1—C7—C6127.8 (2)N3—C18—H18B109.5
C8—C7—C6120.0 (2)H18A—C18—H18B109.5
C10—C8—C7105.3 (2)N3—C18—H18C109.5
C10—C8—C9131.7 (3)H18A—C18—H18C109.5
C7—C8—C9123.0 (2)H18B—C18—H18C109.5
O2—C9—O1117.0 (2)N3—C19—H19A109.5
O2—C9—C8128.1 (2)N3—C19—H19B109.5
O1—C9—C8114.8 (2)H19A—C19—H19B109.5
N2—C10—C8105.8 (2)N3—C19—H19C109.5
N2—C10—H10127.1H19A—C19—H19C109.5
C8—C10—H10127.1H19B—C19—H19C109.5
C12—C11—C16121.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O30.952.193.122 (3)167
C16—H16···O30.952.493.415 (3)164

Experimental details

Crystal data
Chemical formulaC16H8ClIN2O2·C3H7NO
Mr495.69
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.7297 (5), 11.5196 (2), 12.0326 (3)
α, β, γ (°)118.484 (1), 99.841 (1), 90.968 (1)
V3)921.86 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.91
Crystal size (mm)0.30 × 0.10 × 0.02
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.598, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
7205, 3392, 3075
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.052, 1.10
No. of reflections3392
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.56

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O30.952.193.122 (3)167
C16—H16···O30.952.493.415 (3)164
 

Acknowledgements

The University of Malaya is acknowledged for providing the X-ray facilities.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem, 1, 189–191.  CrossRef CAS Google Scholar
First citationBritton, D. & Young, V. G. (1997). Acta Cryst. C53, 1359–1362.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKanwal, P., Gupta, V. K., Brahmbhatt, D. I. & Patel, M. A. (2007). Anal. Sci. X-Ray Struct. Anal. Online, 23, x237–238.  CrossRef CAS Google Scholar
First citationLokhande, P. D., Sakate, S. S., Taksande, K. N. & Navghare, B. (2005). Tetrahedron Lett. 46, 1573–1574.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrakova, I., Petrova, M., Belyakov, S. & Strakov, A. (2003). Khim. Get. Soedin. pp. 1827–1836.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds