metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino-6-methyl-1,3-benzo­thia­zole-κN3)bis­­(4-nitro­benzoato-κO1)zinc

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: xiaojun_zhao15@yahoo.com.cn

(Received 26 May 2011; accepted 9 June 2011; online 18 June 2011)

In the title mononuclear complex, [Zn(C7H4NO4)2(C8H8N2S)2], the ZnII atom is coordinated by two N atoms from two 2-amino-6-methyl-1,3-benzothia­zole and by two carboxylate O atoms from two 4-nitro­benzoate ligands, adopting a slightly distorted tetra­hedral coordination geometry. In the crystal, inter­molecular N—H⋯O hydrogen bonds between the amino group of 2-amino-6-methyl-1,3-benzothia­zole and the carboxyl­ate group of 4-nitro­benzoate link these discrete mononuclear units into a one-dimensional supra­molecular chain extending parallel to [100].

Related literature

For the properties of metal complexes with amino­benzothia­zole and its derivatives, see: Sun & Cui (2008[Sun, Y. F. & Cui, Y. P. (2008). Chin. J. Struct. Chem. 27, 1526-1532.]); Chen et al. (2008[Chen, Q., Yang, E.-C., Zhang, R.-W., Wang, X.-G. & Zhao, X.-J. (2008). J. Coord. Chem. 12, 1951-1962.]); Kovalska et al. (2006[Kovalska, V. B., Volkova, K. D., Losytskyy, M. Y., Tolmachev, O. I., Balanda, A. O. & Yarmoluk, S. M. (2006). Spectrochim. Acta Part A, 65, 271-277.]); Batista et al. (2007[Batista, R. M. F., Costa, S. P. G., Malheiro, E. L., Belsley, M. & Raposo, M. M. M. (2007). Tetrahedron, 63, 4258-4265.]); Marconato et al. (1998[Marconato, J. C., Bulhoes, L. O. & Temperini, M. L. (1998). Electrochim. Acta, 43, 771-780.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H4NO4)2(C8H8N2S)2]

  • Mr = 726.04

  • Monoclinic, P 21 /c

  • a = 13.2240 (8) Å

  • b = 10.7369 (7) Å

  • c = 21.8863 (13) Å

  • β = 96.099 (1)°

  • V = 3089.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 296 K

  • 0.05 × 0.04 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.971

  • 15119 measured reflections

  • 5418 independent reflections

  • 4724 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.05

  • 5418 reflections

  • 426 parameters

  • H-atom parameters constrained

  • Δρmax = 1.24 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O6 1.9489 (18)
Zn1—O1 1.9717 (18)
Zn1—N3 2.036 (2)
Zn1—N1 2.054 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 2.27 3.008 (3) 144
N2—H2B⋯O5i 0.86 2.05 2.845 (3) 153
N4—H4A⋯O6 0.86 2.20 2.971 (3) 149
N4—H4B⋯O2ii 0.86 2.05 2.860 (3) 156
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organic compounds containing benzothiazole and their metal complexes are of optical, biological, and pharmaceutical importance used extensively as electroluminescent device, fluorescent probes for DNA and corrosion inhibitors (Kovalska et al. 2006; Batista et al. 2007; Marconato et al. 1998). As our continuing investigation on the coordination behavior of the benzothiazole ligand (Chen et al. 2008), herein, we report the structure of a mononuclear complex, I.

The molecular structure of the title mononuclear complex is shown in Fig.1 and selected bond lengths and angles are listed in Table 1. The ZnII atom in the mononuclear stucture of I exhibits a slightly distorted tetrahedral coordination geometry involving two thiazole N atoms from two different 2-amino-6-methyl-1,3-benzothiazole ligands and two monodentate carboxylate O atoms from two separate 4-nitrobenzolate anions. Both ligands act as typically terminal ligands to coordinate to ZnII ion in monodentate mode with the intramolecular N—H···O hydrogen bonds between amino group of neutral 2-amino-6-methyl-1,3-benzothiazole and anionic 4-nitrobenzolate ligand stabilized the molecular structure.

In the crystal structure, intermolecular N—H···O hydrogen bonds between amino group of neutral 2-amino-6-methyl-1,3-benzothiazole and anionic 4-nitrobenzolate ligands link the discrete mononuclear entities into a one-dimensional supramolecular chain (Fig.2 and Table 2).

Related literature top

For the properties of metal complexes with aminobenzothiazole and its derivatives, see: Sun & Cui (2008); Chen et al. (2008); Kovalska et al. (2006); Batista et al. (2007); Marconato et al. (1998).

Experimental top

To an ethanol solution (6.0 ml) containing 2-amino-6-methyl-1,3-benzothiazole (32.8 mg, 0.2 mmol) and 4-nitrobenzoic acid (33.4 mg, 0.2 mmol) was dropwise added an aqueous solution (4.0 ml) of ZnCl2 (13.6 mg, 0.1 mmol) with constant stirring. The reaction was stirred at room temperature for about 20 min and the precipitate was filtered off, leaving the filtrate to evaporate at room temperature. Yellow block-shaped crystals were obtained with five days. Yield: 50% based on ZnII salt. Anal. Calcd. for C30H24N6O8S2Zn: C, 49.63; H, 3.33; N, 11.57%. Found: C, 49.60; H, 3.31; N, 11.61%.

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Part of the one-dimensional chain of (I) formed by N—H···O hydrogen bonds interactions. Only H atoms involving hydrogen bonds are included.
Bis(2-amino-6-methyl-1,3-benzothiazole-κN3)bis(4-nitrobenzoato- κO1)zinc top
Crystal data top
[Zn(C7H4NO4)2(C8H8N2S)2]F(000) = 1488
Mr = 726.04Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.2240 (8) ÅCell parameters from 7342 reflections
b = 10.7369 (7) Åθ = 2.7–27.7°
c = 21.8863 (13) ŵ = 0.99 mm1
β = 96.099 (1)°T = 296 K
V = 3089.9 (3) Å3Block, yellow
Z = 40.05 × 0.04 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
5418 independent reflections
Radiation source: fine-focus sealed tube4724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1511
Tmin = 0.952, Tmax = 0.971k = 1012
15119 measured reflectionsl = 2226
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0476P)2 + 4.110P]
where P = (Fo2 + 2Fc2)/3
5418 reflections(Δ/σ)max = 0.001
426 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Zn(C7H4NO4)2(C8H8N2S)2]V = 3089.9 (3) Å3
Mr = 726.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2240 (8) ŵ = 0.99 mm1
b = 10.7369 (7) ÅT = 296 K
c = 21.8863 (13) Å0.05 × 0.04 × 0.03 mm
β = 96.099 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5418 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4724 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.971Rint = 0.028
15119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 1.24 e Å3
5418 reflectionsΔρmin = 0.42 e Å3
426 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

A small void of about 37Å3 was ignored and was not dealt with SQUEEZE in PLATON, because it is so small that no solvent molecules can be kept in.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.26944 (2)0.00802 (3)0.480986 (13)0.02098 (11)
S10.47182 (6)0.30130 (7)0.40799 (3)0.03297 (19)
S20.01802 (5)0.24653 (7)0.48211 (3)0.02783 (17)
O10.34638 (13)0.01142 (17)0.56266 (8)0.0247 (4)
O20.19228 (14)0.0698 (2)0.58293 (9)0.0302 (5)
O30.5423 (2)0.2293 (3)0.84770 (12)0.0759 (10)
O40.40207 (17)0.3229 (2)0.85604 (10)0.0459 (6)
O50.30961 (15)0.27205 (19)0.47934 (9)0.0323 (5)
O60.20619 (13)0.12869 (17)0.43234 (8)0.0244 (4)
O70.0259 (2)0.5840 (3)0.24530 (15)0.0772 (10)
O80.0226 (2)0.7233 (3)0.31379 (15)0.0694 (8)
N10.36676 (16)0.1045 (2)0.43113 (10)0.0233 (5)
N20.49494 (17)0.1583 (2)0.50904 (10)0.0294 (5)
H2A0.47850.09880.53230.035*
H2B0.54450.20720.52140.035*
N30.15791 (16)0.1385 (2)0.48208 (10)0.0226 (5)
N40.02296 (17)0.0328 (2)0.42585 (11)0.0272 (5)
H4A0.06220.02580.41560.033*
H4B0.04100.03080.41350.033*
N50.4538 (2)0.2505 (3)0.83008 (12)0.0405 (7)
N60.0226 (2)0.6164 (3)0.29378 (15)0.0495 (8)
C10.3274 (2)0.1474 (3)0.37255 (12)0.0244 (6)
C20.3728 (2)0.2560 (3)0.35280 (13)0.0284 (6)
C30.3393 (2)0.3119 (3)0.29694 (14)0.0358 (7)
H30.36910.38530.28520.043*
C40.2610 (2)0.2571 (3)0.25899 (15)0.0381 (7)
C50.2186 (2)0.1459 (3)0.27823 (14)0.0345 (7)
H50.16730.10780.25250.041*
C60.2504 (2)0.0908 (3)0.33415 (13)0.0282 (6)
H60.22080.01720.34580.034*
C70.44390 (19)0.1748 (3)0.45406 (12)0.0257 (6)
C80.2202 (3)0.3160 (4)0.19792 (16)0.0505 (9)
H8A0.20120.40080.20460.076*
H8B0.16170.27030.18040.076*
H8C0.27180.31390.17030.076*
C90.1747 (2)0.2472 (3)0.51684 (12)0.0243 (6)
C100.0875 (2)0.3181 (3)0.52264 (13)0.0266 (6)
C110.0913 (2)0.4282 (3)0.55639 (13)0.0308 (6)
H110.03230.47330.56020.037*
C120.1845 (2)0.4698 (3)0.58424 (14)0.0339 (7)
C130.2717 (2)0.3993 (3)0.57735 (14)0.0359 (7)
H130.33430.42790.59530.043*
C140.2679 (2)0.2894 (3)0.54497 (13)0.0312 (7)
H140.32690.24370.54190.037*
C150.06120 (19)0.1267 (2)0.46081 (12)0.0228 (6)
C160.1951 (3)0.5880 (3)0.62144 (16)0.0459 (8)
H16A0.12880.61980.62690.069*
H16B0.23170.64870.60030.069*
H16C0.23140.57090.66090.069*
C170.32872 (19)0.0954 (3)0.66182 (12)0.0228 (6)
C180.4305 (2)0.0734 (3)0.68280 (12)0.0267 (6)
H180.47100.02740.65890.032*
C190.4716 (2)0.1198 (3)0.73917 (13)0.0306 (6)
H190.53900.10410.75390.037*
C200.4098 (2)0.1901 (3)0.77294 (12)0.0300 (6)
C210.3074 (2)0.2099 (3)0.75424 (13)0.0305 (6)
H210.26700.25550.77840.037*
C220.2671 (2)0.1600 (3)0.69863 (13)0.0277 (6)
H220.19820.16970.68580.033*
C230.2843 (2)0.0555 (3)0.59863 (12)0.0236 (6)
C250.18095 (19)0.3394 (3)0.40249 (12)0.0230 (6)
C260.1996 (2)0.4654 (3)0.41508 (13)0.0271 (6)
H260.24630.48820.44790.032*
C270.1490 (2)0.5567 (3)0.37901 (14)0.0336 (7)
H270.16110.64070.38730.040*
C280.0805 (2)0.5203 (3)0.33078 (15)0.0364 (7)
C290.0623 (2)0.3960 (3)0.31583 (14)0.0364 (7)
H290.01770.37410.28180.044*
C300.1120 (2)0.3053 (3)0.35279 (13)0.0285 (6)
H300.09930.22150.34440.034*
C310.23768 (19)0.2413 (3)0.44193 (12)0.0231 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01631 (17)0.02239 (18)0.02357 (18)0.00094 (12)0.00095 (12)0.00048 (12)
S10.0306 (4)0.0337 (4)0.0346 (4)0.0124 (3)0.0033 (3)0.0041 (3)
S20.0185 (3)0.0242 (4)0.0404 (4)0.0044 (3)0.0012 (3)0.0016 (3)
O10.0204 (9)0.0301 (11)0.0233 (9)0.0020 (8)0.0007 (8)0.0001 (8)
O20.0186 (10)0.0376 (12)0.0328 (11)0.0003 (8)0.0050 (8)0.0015 (9)
O30.0495 (16)0.119 (3)0.0528 (16)0.0286 (17)0.0247 (13)0.0367 (17)
O40.0456 (13)0.0576 (16)0.0341 (12)0.0051 (12)0.0026 (10)0.0146 (11)
O50.0272 (10)0.0308 (11)0.0360 (11)0.0024 (9)0.0101 (9)0.0026 (9)
O60.0221 (9)0.0225 (10)0.0284 (10)0.0001 (8)0.0010 (8)0.0011 (8)
O70.082 (2)0.065 (2)0.075 (2)0.0077 (16)0.0390 (17)0.0271 (16)
O80.0672 (19)0.0440 (17)0.095 (2)0.0024 (14)0.0005 (16)0.0192 (16)
N10.0185 (11)0.0266 (12)0.0244 (11)0.0008 (9)0.0000 (9)0.0019 (9)
N20.0215 (11)0.0353 (14)0.0303 (13)0.0038 (10)0.0016 (10)0.0061 (11)
N30.0181 (11)0.0233 (12)0.0261 (11)0.0027 (9)0.0010 (9)0.0011 (9)
N40.0157 (11)0.0276 (13)0.0373 (13)0.0010 (9)0.0026 (9)0.0018 (10)
N50.0344 (15)0.0565 (18)0.0290 (14)0.0043 (13)0.0041 (11)0.0049 (13)
N60.0456 (17)0.0400 (18)0.061 (2)0.0002 (14)0.0041 (15)0.0193 (15)
C10.0217 (13)0.0252 (14)0.0268 (14)0.0011 (11)0.0049 (11)0.0009 (11)
C20.0268 (14)0.0284 (15)0.0305 (15)0.0046 (12)0.0059 (12)0.0063 (12)
C30.0393 (17)0.0306 (17)0.0376 (17)0.0060 (14)0.0049 (14)0.0050 (13)
C40.0400 (17)0.0360 (18)0.0377 (17)0.0017 (14)0.0010 (14)0.0054 (14)
C50.0320 (16)0.0353 (17)0.0344 (16)0.0044 (13)0.0049 (13)0.0024 (13)
C60.0258 (14)0.0262 (15)0.0316 (15)0.0035 (12)0.0010 (12)0.0025 (12)
C70.0188 (13)0.0304 (15)0.0285 (14)0.0008 (11)0.0057 (11)0.0068 (12)
C80.058 (2)0.051 (2)0.0410 (19)0.0048 (18)0.0004 (17)0.0123 (17)
C90.0240 (14)0.0223 (14)0.0265 (14)0.0023 (11)0.0018 (11)0.0017 (11)
C100.0242 (14)0.0240 (14)0.0312 (15)0.0035 (11)0.0009 (11)0.0040 (12)
C110.0322 (15)0.0265 (15)0.0334 (15)0.0103 (12)0.0024 (12)0.0006 (12)
C120.0378 (17)0.0258 (15)0.0367 (17)0.0067 (13)0.0034 (13)0.0024 (13)
C130.0318 (16)0.0333 (17)0.0402 (17)0.0016 (13)0.0069 (13)0.0046 (14)
C140.0246 (14)0.0326 (16)0.0348 (16)0.0072 (12)0.0036 (12)0.0041 (13)
C150.0209 (13)0.0213 (14)0.0263 (14)0.0025 (11)0.0028 (11)0.0049 (11)
C160.051 (2)0.0349 (18)0.048 (2)0.0092 (16)0.0126 (16)0.0103 (15)
C170.0212 (13)0.0246 (14)0.0225 (13)0.0039 (11)0.0014 (10)0.0048 (11)
C180.0223 (13)0.0327 (16)0.0252 (14)0.0001 (12)0.0038 (11)0.0009 (12)
C190.0219 (14)0.0403 (17)0.0283 (15)0.0017 (12)0.0031 (11)0.0027 (13)
C200.0325 (15)0.0352 (17)0.0216 (14)0.0010 (13)0.0000 (12)0.0001 (12)
C210.0282 (15)0.0379 (17)0.0261 (14)0.0029 (13)0.0052 (12)0.0007 (13)
C220.0222 (13)0.0322 (16)0.0281 (14)0.0008 (12)0.0005 (11)0.0039 (12)
C230.0227 (14)0.0214 (14)0.0258 (14)0.0037 (11)0.0007 (11)0.0031 (11)
C250.0190 (13)0.0241 (14)0.0260 (14)0.0006 (11)0.0029 (10)0.0008 (11)
C260.0234 (14)0.0285 (15)0.0288 (15)0.0040 (12)0.0006 (11)0.0007 (12)
C270.0309 (16)0.0258 (15)0.0434 (17)0.0043 (13)0.0009 (13)0.0067 (13)
C280.0322 (16)0.0332 (17)0.0423 (18)0.0004 (13)0.0027 (14)0.0130 (14)
C290.0338 (16)0.0376 (18)0.0349 (16)0.0050 (14)0.0103 (13)0.0052 (14)
C300.0263 (14)0.0263 (15)0.0317 (15)0.0020 (12)0.0024 (12)0.0011 (12)
C310.0195 (13)0.0263 (15)0.0235 (13)0.0012 (11)0.0020 (11)0.0010 (11)
Geometric parameters (Å, º) top
Zn1—O61.9489 (18)C8—H8A0.9600
Zn1—O11.9717 (18)C8—H8B0.9600
Zn1—N32.036 (2)C8—H8C0.9600
Zn1—N12.054 (2)C9—C141.393 (4)
S1—C21.754 (3)C9—C101.399 (4)
S1—C71.755 (3)C10—C111.392 (4)
S2—C101.750 (3)C11—C121.389 (4)
S2—C151.754 (3)C11—H110.9300
O1—C231.287 (3)C12—C131.401 (4)
O2—C231.238 (3)C12—C161.507 (4)
O3—N51.214 (3)C13—C141.375 (4)
O4—N51.216 (3)C13—H130.9300
O5—C311.232 (3)C14—H140.9300
O6—C311.289 (3)C16—H16A0.9600
O7—N61.230 (4)C16—H16B0.9600
O8—N61.229 (4)C16—H16C0.9600
N1—C71.324 (3)C17—C221.390 (4)
N1—C11.409 (3)C17—C181.396 (4)
N2—C71.327 (3)C17—C231.506 (4)
N2—H2A0.8600C18—C191.387 (4)
N2—H2B0.8600C18—H180.9300
N3—C151.320 (3)C19—C201.383 (4)
N3—C91.398 (3)C19—H190.9300
N4—C151.332 (4)C20—C211.388 (4)
N4—H4A0.8600C21—C221.384 (4)
N4—H4B0.8600C21—H210.9300
N5—C201.472 (4)C22—H220.9300
N6—C281.474 (4)C25—C301.392 (4)
C1—C61.389 (4)C25—C261.397 (4)
C1—C21.401 (4)C25—C311.510 (4)
C2—C31.391 (4)C26—C271.386 (4)
C3—C41.388 (4)C26—H260.9300
C3—H30.9300C27—C281.373 (4)
C4—C51.403 (4)C27—H270.9300
C4—C81.525 (4)C28—C291.389 (4)
C5—C61.384 (4)C29—C301.387 (4)
C5—H50.9300C29—H290.9300
C6—H60.9300C30—H300.9300
O6—Zn1—O1124.45 (8)C12—C11—H11120.5
O6—Zn1—N3104.78 (8)C10—C11—H11120.5
O1—Zn1—N3111.52 (8)C11—C12—C13118.8 (3)
O6—Zn1—N1110.27 (8)C11—C12—C16122.3 (3)
O1—Zn1—N1104.06 (8)C13—C12—C16118.9 (3)
N3—Zn1—N198.91 (9)C14—C13—C12122.3 (3)
C2—S1—C789.64 (13)C14—C13—H13118.9
C10—S2—C1589.45 (13)C12—C13—H13118.9
C23—O1—Zn1106.99 (16)C13—C14—C9119.3 (3)
C31—O6—Zn1120.34 (16)C13—C14—H14120.4
C7—N1—C1110.8 (2)C9—C14—H14120.4
C7—N1—Zn1125.95 (18)N3—C15—N4124.7 (2)
C1—N1—Zn1117.15 (16)N3—C15—S2114.8 (2)
C7—N2—H2A120.0N4—C15—S2120.4 (2)
C7—N2—H2B120.0C12—C16—H16A109.5
H2A—N2—H2B120.0C12—C16—H16B109.5
C15—N3—C9111.4 (2)H16A—C16—H16B109.5
C15—N3—Zn1127.29 (19)C12—C16—H16C109.5
C9—N3—Zn1120.47 (17)H16A—C16—H16C109.5
C15—N4—H4A120.0H16B—C16—H16C109.5
C15—N4—H4B120.0C22—C17—C18119.9 (2)
H4A—N4—H4B120.0C22—C17—C23118.6 (2)
O3—N5—O4122.9 (3)C18—C17—C23121.5 (2)
O3—N5—C20118.0 (3)C19—C18—C17120.3 (3)
O4—N5—C20119.1 (2)C19—C18—H18119.8
O8—N6—O7123.4 (3)C17—C18—H18119.8
O8—N6—C28118.5 (3)C20—C19—C18118.2 (3)
O7—N6—C28118.0 (3)C20—C19—H19120.9
C6—C1—C2119.2 (3)C18—C19—H19120.9
C6—C1—N1125.7 (2)C19—C20—C21122.6 (3)
C2—C1—N1115.1 (2)C19—C20—N5119.4 (3)
C3—C2—C1121.6 (3)C21—C20—N5117.9 (3)
C3—C2—S1129.1 (2)C22—C21—C20118.2 (3)
C1—C2—S1109.4 (2)C22—C21—H21120.9
C4—C3—C2119.4 (3)C20—C21—H21120.9
C4—C3—H3120.3C21—C22—C17120.5 (3)
C2—C3—H3120.3C21—C22—H22119.7
C3—C4—C5118.5 (3)C17—C22—H22119.7
C3—C4—C8121.4 (3)O2—C23—O1123.2 (2)
C5—C4—C8120.0 (3)O2—C23—C17119.7 (2)
C6—C5—C4122.4 (3)O1—C23—C17117.0 (2)
C6—C5—H5118.8C30—C25—C26119.7 (3)
C4—C5—H5118.8C30—C25—C31120.5 (2)
C5—C6—C1118.9 (3)C26—C25—C31119.8 (2)
C5—C6—H6120.6C27—C26—C25120.6 (3)
C1—C6—H6120.6C27—C26—H26119.7
N1—C7—N2124.4 (3)C25—C26—H26119.7
N1—C7—S1115.1 (2)C28—C27—C26118.4 (3)
N2—C7—S1120.4 (2)C28—C27—H27120.8
C4—C8—H8A109.5C26—C27—H27120.8
C4—C8—H8B109.5C27—C28—C29122.6 (3)
H8A—C8—H8B109.5C27—C28—N6119.0 (3)
C4—C8—H8C109.5C29—C28—N6118.4 (3)
H8A—C8—H8C109.5C30—C29—C28118.6 (3)
H8B—C8—H8C109.5C30—C29—H29120.7
C14—C9—N3126.5 (2)C28—C29—H29120.7
C14—C9—C10118.8 (3)C29—C30—C25120.1 (3)
N3—C9—C10114.7 (2)C29—C30—H30120.0
C11—C10—C9121.8 (3)C25—C30—H30120.0
C11—C10—S2128.6 (2)O5—C31—O6124.9 (2)
C9—C10—S2109.6 (2)O5—C31—C25119.6 (2)
C12—C11—C10119.1 (3)O6—C31—C25115.4 (2)
O6—Zn1—O1—C2361.77 (19)S2—C10—C11—C12178.7 (2)
N3—Zn1—O1—C2365.32 (18)C10—C11—C12—C130.0 (5)
N1—Zn1—O1—C23171.00 (17)C10—C11—C12—C16179.9 (3)
O1—Zn1—O6—C3122.1 (2)C11—C12—C13—C141.2 (5)
N3—Zn1—O6—C31151.97 (19)C16—C12—C13—C14178.9 (3)
N1—Zn1—O6—C31102.47 (19)C12—C13—C14—C91.3 (5)
O6—Zn1—N1—C7157.5 (2)N3—C9—C14—C13179.5 (3)
O1—Zn1—N1—C721.9 (2)C10—C9—C14—C130.2 (4)
N3—Zn1—N1—C793.1 (2)C9—N3—C15—N4179.4 (2)
O6—Zn1—N1—C152.8 (2)Zn1—N3—C15—N411.3 (4)
O1—Zn1—N1—C1171.65 (18)C9—N3—C15—S20.7 (3)
N3—Zn1—N1—C156.7 (2)Zn1—N3—C15—S2168.56 (13)
O6—Zn1—N3—C157.2 (2)C10—S2—C15—N30.1 (2)
O1—Zn1—N3—C15129.9 (2)C10—S2—C15—N4180.0 (2)
N1—Zn1—N3—C15121.1 (2)C22—C17—C18—C192.5 (4)
O6—Zn1—N3—C9175.59 (19)C23—C17—C18—C19174.8 (3)
O1—Zn1—N3—C938.5 (2)C17—C18—C19—C201.4 (4)
N1—Zn1—N3—C970.6 (2)C18—C19—C20—C213.7 (5)
C7—N1—C1—C6175.9 (3)C18—C19—C20—N5174.2 (3)
Zn1—N1—C1—C629.9 (3)O3—N5—C20—C194.8 (5)
C7—N1—C1—C23.3 (3)O4—N5—C20—C19172.1 (3)
Zn1—N1—C1—C2150.81 (19)O3—N5—C20—C21177.2 (3)
C6—C1—C2—C33.2 (4)O4—N5—C20—C215.9 (4)
N1—C1—C2—C3177.5 (3)C19—C20—C21—C221.9 (5)
C6—C1—C2—S1176.4 (2)N5—C20—C21—C22176.0 (3)
N1—C1—C2—S12.9 (3)C20—C21—C22—C172.1 (4)
C7—S1—C2—C3179.2 (3)C18—C17—C22—C214.3 (4)
C7—S1—C2—C11.3 (2)C23—C17—C22—C21173.1 (3)
C1—C2—C3—C41.8 (5)Zn1—O1—C23—O25.9 (3)
S1—C2—C3—C4177.7 (2)Zn1—O1—C23—C17171.76 (18)
C2—C3—C4—C50.5 (5)C22—C17—C23—O27.0 (4)
C2—C3—C4—C8178.8 (3)C18—C17—C23—O2175.7 (3)
C3—C4—C5—C61.6 (5)C22—C17—C23—O1170.7 (2)
C8—C4—C5—C6177.7 (3)C18—C17—C23—O16.6 (4)
C4—C5—C6—C10.3 (5)C30—C25—C26—C270.9 (4)
C2—C1—C6—C52.1 (4)C31—C25—C26—C27179.4 (2)
N1—C1—C6—C5178.7 (3)C25—C26—C27—C280.1 (4)
C1—N1—C7—N2178.7 (2)C26—C27—C28—C291.9 (5)
Zn1—N1—C7—N227.3 (4)C26—C27—C28—N6177.2 (3)
C1—N1—C7—S12.3 (3)O8—N6—C28—C2713.7 (5)
Zn1—N1—C7—S1149.09 (14)O7—N6—C28—C27168.6 (3)
C2—S1—C7—N10.6 (2)O8—N6—C28—C29165.4 (3)
C2—S1—C7—N2177.2 (2)O7—N6—C28—C2912.2 (5)
C15—N3—C9—C14178.7 (3)C27—C28—C29—C302.9 (5)
Zn1—N3—C9—C1411.2 (4)N6—C28—C29—C30176.2 (3)
C15—N3—C9—C101.0 (3)C28—C29—C30—C252.0 (5)
Zn1—N3—C9—C10169.03 (19)C26—C25—C30—C290.2 (4)
C14—C9—C10—C111.0 (4)C31—C25—C30—C29178.3 (3)
N3—C9—C10—C11179.3 (2)Zn1—O6—C31—O52.6 (4)
C14—C9—C10—S2178.9 (2)Zn1—O6—C31—C25178.49 (16)
N3—C9—C10—S20.9 (3)C30—C25—C31—O5168.5 (3)
C15—S2—C10—C11179.8 (3)C26—C25—C31—O510.0 (4)
C15—S2—C10—C90.4 (2)C30—C25—C31—O610.5 (4)
C9—C10—C11—C121.0 (4)C26—C25—C31—O6171.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.273.008 (3)144
N2—H2B···O5i0.862.052.845 (3)153
N4—H4A···O60.862.202.971 (3)149
N4—H4B···O2ii0.862.052.860 (3)156
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C7H4NO4)2(C8H8N2S)2]
Mr726.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.2240 (8), 10.7369 (7), 21.8863 (13)
β (°) 96.099 (1)
V3)3089.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.05 × 0.04 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
15119, 5418, 4724
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.05
No. of reflections5418
No. of parameters426
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.24, 0.42

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999).

Selected bond lengths (Å) top
Zn1—O61.9489 (18)Zn1—N32.036 (2)
Zn1—O11.9717 (18)Zn1—N12.054 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.273.008 (3)144.4
N2—H2B···O5i0.862.052.845 (3)152.8
N4—H4A···O60.862.202.971 (3)149.3
N4—H4B···O2ii0.862.052.860 (3)155.8
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support from Tianjin Normal University.

References

First citationBatista, R. M. F., Costa, S. P. G., Malheiro, E. L., Belsley, M. & Raposo, M. M. M. (2007). Tetrahedron, 63, 4258–4265.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Q., Yang, E.-C., Zhang, R.-W., Wang, X.-G. & Zhao, X.-J. (2008). J. Coord. Chem. 12, 1951–1962.  Web of Science CSD CrossRef Google Scholar
First citationKovalska, V. B., Volkova, K. D., Losytskyy, M. Y., Tolmachev, O. I., Balanda, A. O. & Yarmoluk, S. M. (2006). Spectrochim. Acta Part A, 65, 271–277.  CrossRef Google Scholar
First citationMarconato, J. C., Bulhoes, L. O. & Temperini, M. L. (1998). Electrochim. Acta, 43, 771–780.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. F. & Cui, Y. P. (2008). Chin. J. Struct. Chem. 27, 1526–1532.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds