organic compounds
Orthorhombic polymorph of (6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol
aLaboratory of Engineering of Organometallic and Molecular Materials, "LIMOM" URAC 19, Department of Chemistry, Faculty of Sciences, PO Box 1796, 30000 Fès, Morocco, bLaboratory of Mineral Solid and Analytical Chemistry "LCSMA", Department of Chemistry, Faculty of Sciences, University Mohamed I, PO Box 717, 60000 Oujda, Morocco, and cInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: b.elbali@fso.ump.ma
The 12H17NO3, contains two molecules with different conformations. It is a polymorph of the monoclinic form [El Antri et al. (2004). Molecules, 9, 650–657]; the samples were crystallized at different temperatures from the same solvent. In both structures, molecules are linked by O—H⋯N hydrogen bonds, forming chains. The conformations of the chains and their packing differ markedly in the two polymorphs.
of the title compound, CRelated literature
For background to ); Bernstein (2002). For background to and their pharmaceutical properties, see: Bently (1998); Herbert (1985). Kitamura et al. (1994); He et al. (2000); Gray et al. (1989). For natural-product isolation techniques, see: Dalton (1979). For the monoclinic polymorph, see: El Antri et al. (2004).
in drugs, see: Brittan (1999Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and COOT (Emsley et al., 2010); software used to prepare material for publication: JANA2006.
Supporting information
10.1107/S1600536811019866/hb5884sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811019866/hb5884Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811019866/hb5884Isup3.cml
Alkaloids under investigations were extracted from the seeds of Calycotome villosa (Poiret) Link Subsp as in (El Antri et al., 2004). The same procedure was used for extractions and crystals synthesis. However, the experiments took place at different room temperatures.
Positions of hydrogen atoms bounded to nitrogen and oxygen were refined using a distance restraint. The other H atoms were fixed in the ideal geometry. The methyl H atoms were allowed to rotate freely about the adjacent C—O bonds. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2×Ueq of the parent atom.
Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell
CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and COOT (Emsley et al., 2010); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).C12H17NO3 | F(000) = 960 |
Mr = 223.27 | Dx = 1.317 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 9027 reflections |
a = 8.9917 (11) Å | θ = 2.5–26.5° |
b = 13.4769 (12) Å | µ = 0.09 mm−1 |
c = 18.576 (4) Å | T = 150 K |
V = 2251.0 (6) Å3 | Irregular, colorless |
Z = 8 | 0.51 × 0.35 × 0.32 mm |
Oxford Diffraction Xcalibur 2 diffractometer with a Sapphire 2 CCD detector | 1515 reflections with I > 3σ(I) |
Radiation source: X-ray tube | Rint = 0.054 |
Graphite monochromator | θmax = 26.6°, θmin = 2.5° |
Detector resolution: 8.3438 pixels mm-1 | h = −11→11 |
Rotation method data acquisition using ω scans | k = −16→16 |
30187 measured reflections | l = −23→23 |
2679 independent reflections |
Refinement on F2 | 124 constraints |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.091 | Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2] |
S = 1.15 | (Δ/σ)max = 0.004 |
2679 reflections | Δρmax = 0.24 e Å−3 |
301 parameters | Δρmin = −0.15 e Å−3 |
0 restraints |
C12H17NO3 | V = 2251.0 (6) Å3 |
Mr = 223.27 | Z = 8 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.9917 (11) Å | µ = 0.09 mm−1 |
b = 13.4769 (12) Å | T = 150 K |
c = 18.576 (4) Å | 0.51 × 0.35 × 0.32 mm |
Oxford Diffraction Xcalibur 2 diffractometer with a Sapphire 2 CCD detector | 1515 reflections with I > 3σ(I) |
30187 measured reflections | Rint = 0.054 |
2679 independent reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.15 | Δρmax = 0.24 e Å−3 |
2679 reflections | Δρmin = −0.15 e Å−3 |
301 parameters |
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement. The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2415 (2) | 0.53891 (18) | 0.36542 (11) | 0.0430 (7) | |
O2 | 0.4410 (2) | 0.45708 (14) | 0.02813 (11) | 0.0351 (7) | |
O3 | 0.6069 (2) | 0.30148 (13) | 0.02562 (11) | 0.0333 (7) | |
O4 | 0.2946 (2) | −0.04072 (18) | 0.15204 (13) | 0.0501 (8) | |
O5 | 0.0403 (2) | 0.05130 (14) | 0.48188 (10) | 0.0355 (7) | |
O6 | −0.0888 (2) | 0.22154 (13) | 0.47614 (11) | 0.0369 (7) | |
N1 | 0.4198 (3) | 0.37470 (18) | 0.34959 (13) | 0.0347 (9) | |
N2 | 0.0505 (3) | 0.09105 (18) | 0.15335 (14) | 0.0377 (10) | |
C1 | 0.3258 (4) | 0.4076 (2) | 0.28954 (16) | 0.0375 (11) | |
C2 | 0.4044 (3) | 0.3779 (2) | 0.21914 (17) | 0.0319 (10) | |
C3 | 0.3811 (3) | 0.4319 (2) | 0.15544 (16) | 0.0335 (10) | |
C4 | 0.4524 (3) | 0.4070 (2) | 0.09213 (16) | 0.0298 (10) | |
C5 | 0.5455 (3) | 0.3232 (2) | 0.09070 (15) | 0.0281 (10) | |
C6 | 0.5657 (3) | 0.2694 (2) | 0.15306 (16) | 0.0291 (10) | |
C7 | 0.4979 (3) | 0.2972 (2) | 0.21772 (17) | 0.0301 (10) | |
C8 | 0.5328 (3) | 0.2388 (2) | 0.28580 (16) | 0.0344 (11) | |
C9 | 0.4336 (3) | 0.2665 (2) | 0.34811 (16) | 0.0349 (11) | |
C10 | 0.3029 (4) | 0.5168 (2) | 0.29733 (16) | 0.0437 (12) | |
C11 | 0.3469 (3) | 0.5421 (2) | 0.02716 (16) | 0.0416 (11) | |
C12 | 0.7128 (4) | 0.2228 (2) | 0.02437 (17) | 0.0428 (12) | |
C13 | 0.1076 (3) | 0.0400 (2) | 0.21832 (16) | 0.0370 (10) | |
C14 | 0.0628 (3) | 0.09610 (19) | 0.28544 (16) | 0.0300 (10) | |
C15 | 0.0789 (3) | 0.0489 (2) | 0.35197 (16) | 0.0335 (10) | |
C16 | 0.0308 (3) | 0.0923 (2) | 0.41458 (15) | 0.0272 (10) | |
C17 | −0.0383 (3) | 0.1861 (2) | 0.41197 (16) | 0.0300 (10) | |
C18 | −0.0500 (3) | 0.2338 (2) | 0.34686 (16) | 0.0310 (11) | |
C19 | 0.0006 (3) | 0.1904 (2) | 0.28279 (16) | 0.0288 (10) | |
C20 | −0.0159 (3) | 0.2449 (2) | 0.21245 (16) | 0.0355 (11) | |
C21 | 0.0785 (3) | 0.1987 (2) | 0.15450 (16) | 0.0390 (12) | |
C22 | 0.2709 (3) | 0.0187 (2) | 0.21388 (17) | 0.0437 (11) | |
C23 | 0.1144 (4) | −0.0419 (2) | 0.48738 (16) | 0.0497 (12) | |
C24 | −0.1827 (4) | 0.3079 (2) | 0.47324 (17) | 0.0472 (12) | |
H1 | 0.229284 | 0.377124 | 0.289174 | 0.045* | |
H3 | 0.314106 | 0.487379 | 0.155936 | 0.0402* | |
H6 | 0.627874 | 0.211478 | 0.15206 | 0.0349* | |
H8a | 0.523519 | 0.169103 | 0.276183 | 0.0413* | |
H8b | 0.634849 | 0.249268 | 0.298996 | 0.0413* | |
H9a | 0.337109 | 0.237386 | 0.341366 | 0.0419* | |
H9b | 0.477612 | 0.244005 | 0.392266 | 0.0419* | |
H10a | 0.396496 | 0.550278 | 0.292131 | 0.0524* | |
H10b | 0.237013 | 0.539716 | 0.26024 | 0.0524* | |
H11a | 0.343252 | 0.568724 | −0.020729 | 0.0499* | |
H11b | 0.248601 | 0.523434 | 0.042067 | 0.0499* | |
H11c | 0.38554 | 0.591309 | 0.059487 | 0.0499* | |
H12a | 0.752635 | 0.216224 | −0.023333 | 0.0513* | |
H12b | 0.791882 | 0.237308 | 0.057458 | 0.0513* | |
H12c | 0.665196 | 0.161952 | 0.038152 | 0.0513* | |
H13 | 0.061923 | −0.024214 | 0.221065 | 0.0444* | |
H15 | 0.124753 | −0.015423 | 0.353911 | 0.0402* | |
H18 | −0.093988 | 0.298619 | 0.345199 | 0.0372* | |
H20a | 0.012609 | 0.31302 | 0.218823 | 0.0425* | |
H20b | −0.118321 | 0.244051 | 0.197835 | 0.0425* | |
H21a | 0.052486 | 0.226707 | 0.10869 | 0.0468* | |
H21b | 0.181588 | 0.210629 | 0.164728 | 0.0468* | |
H22a | 0.324653 | 0.07989 | 0.208995 | 0.0524* | |
H22b | 0.301603 | −0.017143 | 0.256005 | 0.0524* | |
H23a | 0.120147 | −0.061226 | 0.537046 | 0.0597* | |
H23b | 0.059956 | −0.091076 | 0.46086 | 0.0597* | |
H23c | 0.212938 | −0.036144 | 0.467955 | 0.0597* | |
H24a | −0.214712 | 0.324831 | 0.520983 | 0.0566* | |
H24b | −0.127992 | 0.36243 | 0.453042 | 0.0566* | |
H24c | −0.267876 | 0.294193 | 0.443745 | 0.0566* | |
H1n | 0.374 (3) | 0.391 (2) | 0.3865 (16) | 0.0416* | |
H2n | 0.100 (3) | 0.065 (2) | 0.1185 (16) | 0.0452* | |
H1o | 0.150 (3) | 0.547 (3) | 0.3609 (18) | 0.0516* | |
H4o | 0.378 (4) | −0.059 (3) | 0.153 (2) | 0.0601* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0483 (13) | 0.0424 (12) | 0.0382 (13) | 0.0103 (13) | 0.0071 (12) | −0.0063 (11) |
O2 | 0.0428 (12) | 0.0309 (11) | 0.0314 (12) | 0.0109 (11) | −0.0027 (11) | 0.0004 (10) |
O3 | 0.0382 (12) | 0.0343 (11) | 0.0275 (12) | 0.0090 (10) | 0.0026 (11) | −0.0006 (10) |
O4 | 0.0534 (16) | 0.0548 (14) | 0.0420 (13) | 0.0117 (14) | 0.0041 (13) | −0.0150 (13) |
O5 | 0.0462 (13) | 0.0283 (11) | 0.0320 (12) | 0.0061 (10) | −0.0031 (11) | 0.0022 (10) |
O6 | 0.0453 (13) | 0.0380 (12) | 0.0275 (12) | 0.0155 (11) | −0.0011 (12) | −0.0016 (10) |
N1 | 0.0477 (18) | 0.0299 (14) | 0.0266 (16) | 0.0080 (14) | 0.0035 (15) | −0.0023 (12) |
N2 | 0.0456 (18) | 0.0375 (16) | 0.0300 (17) | −0.0004 (14) | 0.0011 (14) | −0.0043 (13) |
C1 | 0.046 (2) | 0.0340 (18) | 0.0328 (18) | 0.0017 (16) | 0.0025 (18) | 0.0002 (15) |
C2 | 0.0337 (18) | 0.0305 (16) | 0.0316 (18) | 0.0013 (15) | −0.0035 (17) | −0.0027 (14) |
C3 | 0.0390 (18) | 0.0272 (17) | 0.0345 (19) | 0.0111 (14) | −0.0050 (16) | −0.0048 (15) |
C4 | 0.0337 (17) | 0.0296 (17) | 0.0261 (18) | 0.0010 (15) | −0.0089 (16) | −0.0028 (14) |
C5 | 0.0261 (17) | 0.0301 (17) | 0.0281 (19) | 0.0014 (15) | −0.0033 (16) | −0.0054 (14) |
C6 | 0.0291 (18) | 0.0274 (15) | 0.0307 (19) | 0.0043 (15) | −0.0019 (17) | −0.0025 (15) |
C7 | 0.0340 (17) | 0.0262 (16) | 0.0301 (18) | 0.0008 (14) | 0.0000 (18) | −0.0002 (15) |
C8 | 0.045 (2) | 0.0289 (17) | 0.0292 (18) | 0.0029 (15) | −0.0014 (18) | −0.0017 (14) |
C9 | 0.041 (2) | 0.0311 (17) | 0.032 (2) | 0.0008 (16) | −0.0043 (18) | 0.0029 (14) |
C10 | 0.049 (2) | 0.044 (2) | 0.039 (2) | 0.0104 (17) | 0.0029 (17) | 0.0029 (16) |
C11 | 0.055 (2) | 0.0323 (17) | 0.0374 (19) | 0.0135 (17) | −0.0089 (17) | 0.0043 (17) |
C12 | 0.050 (2) | 0.049 (2) | 0.0290 (17) | 0.0168 (18) | 0.0033 (18) | −0.0008 (16) |
C13 | 0.0417 (19) | 0.0336 (17) | 0.0356 (19) | 0.0008 (16) | 0.0005 (17) | −0.0030 (17) |
C14 | 0.0317 (17) | 0.0310 (16) | 0.0272 (18) | 0.0030 (15) | 0.0000 (16) | −0.0032 (14) |
C15 | 0.0362 (18) | 0.0256 (16) | 0.0387 (19) | −0.0008 (16) | −0.0033 (16) | −0.0024 (15) |
C16 | 0.0289 (17) | 0.0273 (16) | 0.0253 (18) | −0.0026 (14) | −0.0006 (15) | 0.0013 (13) |
C17 | 0.0336 (18) | 0.0280 (17) | 0.0283 (19) | −0.0001 (15) | −0.0018 (16) | −0.0026 (14) |
C18 | 0.0345 (19) | 0.0255 (16) | 0.033 (2) | −0.0016 (15) | −0.0054 (17) | −0.0031 (15) |
C19 | 0.0284 (17) | 0.0314 (17) | 0.0266 (17) | −0.0034 (14) | −0.0029 (17) | 0.0013 (15) |
C20 | 0.038 (2) | 0.0336 (17) | 0.034 (2) | −0.0040 (15) | −0.0028 (18) | 0.0034 (15) |
C21 | 0.039 (2) | 0.046 (2) | 0.032 (2) | −0.0051 (18) | −0.0013 (18) | 0.0079 (15) |
C22 | 0.046 (2) | 0.047 (2) | 0.0387 (18) | 0.0051 (17) | 0.0048 (18) | −0.0078 (18) |
C23 | 0.076 (3) | 0.0306 (17) | 0.042 (2) | 0.0087 (19) | −0.005 (2) | 0.0031 (16) |
C24 | 0.054 (2) | 0.050 (2) | 0.0378 (19) | 0.0244 (19) | −0.001 (2) | −0.0094 (17) |
O1—C10 | 1.412 (4) | C9—H9b | 0.96 |
O1—H1o | 0.83 (3) | C10—H10a | 0.96 |
O2—C4 | 1.371 (4) | C10—H10b | 0.96 |
O2—C11 | 1.424 (4) | C11—H11a | 0.96 |
O3—C5 | 1.361 (4) | C11—H11b | 0.96 |
O3—C12 | 1.425 (4) | C11—H11c | 0.96 |
O4—C22 | 1.416 (4) | C12—H12a | 0.96 |
O4—H4o | 0.79 (3) | C12—H12b | 0.96 |
O5—C16 | 1.369 (3) | C12—H12c | 0.96 |
O5—C23 | 1.425 (4) | C13—C14 | 1.513 (4) |
O6—C17 | 1.362 (4) | C13—C22 | 1.498 (4) |
O6—C24 | 1.439 (4) | C13—H13 | 0.96 |
N1—C1 | 1.468 (4) | C14—C15 | 1.398 (4) |
N1—C9 | 1.464 (4) | C14—C19 | 1.389 (4) |
N1—H1n | 0.83 (3) | C15—C16 | 1.372 (4) |
N2—C13 | 1.481 (4) | C15—H15 | 0.96 |
N2—C21 | 1.472 (4) | C16—C17 | 1.408 (4) |
N2—H2n | 0.86 (3) | C17—C18 | 1.374 (4) |
C1—C2 | 1.539 (4) | C18—C19 | 1.402 (4) |
C1—C10 | 1.493 (4) | C18—H18 | 0.96 |
C1—H1 | 0.96 | C19—C20 | 1.507 (4) |
C2—C3 | 1.405 (4) | C20—C21 | 1.506 (4) |
C2—C7 | 1.375 (4) | C20—H20a | 0.96 |
C3—C4 | 1.381 (4) | C20—H20b | 0.96 |
C3—H3 | 0.96 | C21—H21a | 0.96 |
C4—C5 | 1.406 (4) | C21—H21b | 0.96 |
C5—C6 | 1.379 (4) | C22—H22a | 0.96 |
C6—C7 | 1.398 (4) | C22—H22b | 0.96 |
C6—H6 | 0.96 | C23—H23a | 0.96 |
C7—C8 | 1.522 (4) | C23—H23b | 0.96 |
C8—C9 | 1.508 (4) | C23—H23c | 0.96 |
C8—H8a | 0.96 | C24—H24a | 0.96 |
C8—H8b | 0.96 | C24—H24b | 0.96 |
C9—H9a | 0.96 | C24—H24c | 0.96 |
C10—O1—H1o | 109 (2) | O3—C12—H12a | 109.4718 |
C4—O2—C11 | 116.8 (2) | O3—C12—H12b | 109.4712 |
C5—O3—C12 | 116.5 (2) | O3—C12—H12c | 109.4707 |
C22—O4—H4o | 108 (3) | H12a—C12—H12b | 109.4716 |
C16—O5—C23 | 116.8 (2) | H12a—C12—H12c | 109.4715 |
C17—O6—C24 | 116.5 (2) | H12b—C12—H12c | 109.4704 |
C1—N1—C9 | 109.6 (2) | N2—C13—C14 | 110.3 (2) |
C1—N1—H1n | 105 (2) | N2—C13—C22 | 112.6 (2) |
C9—N1—H1n | 108.6 (19) | N2—C13—H13 | 108.2749 |
C13—N2—C21 | 112.7 (2) | C14—C13—C22 | 113.7 (2) |
C13—N2—H2n | 104 (2) | C14—C13—H13 | 107.0055 |
C21—N2—H2n | 109 (2) | C22—C13—H13 | 104.4393 |
N1—C1—C2 | 107.6 (2) | C13—C14—C15 | 118.3 (2) |
N1—C1—C10 | 107.7 (2) | C13—C14—C19 | 122.3 (3) |
N1—C1—H1 | 113.3918 | C15—C14—C19 | 119.3 (3) |
C2—C1—C10 | 113.7 (2) | C14—C15—C16 | 121.5 (3) |
C2—C1—H1 | 107.3416 | C14—C15—H15 | 119.2572 |
C10—C1—H1 | 107.3033 | C16—C15—H15 | 119.2563 |
C1—C2—C3 | 120.8 (2) | O5—C16—C15 | 125.6 (2) |
C1—C2—C7 | 120.2 (3) | O5—C16—C17 | 114.9 (2) |
C3—C2—C7 | 119.0 (3) | C15—C16—C17 | 119.5 (3) |
C2—C3—C4 | 121.5 (3) | O6—C17—C16 | 115.6 (2) |
C2—C3—H3 | 119.2635 | O6—C17—C18 | 125.5 (3) |
C4—C3—H3 | 119.2645 | C16—C17—C18 | 118.9 (3) |
O2—C4—C3 | 125.8 (3) | C17—C18—C19 | 121.8 (3) |
O2—C4—C5 | 115.0 (2) | C17—C18—H18 | 119.0863 |
C3—C4—C5 | 119.2 (3) | C19—C18—H18 | 119.0868 |
O3—C5—C4 | 115.5 (2) | C14—C19—C18 | 118.8 (3) |
O3—C5—C6 | 125.4 (2) | C14—C19—C20 | 121.1 (3) |
C4—C5—C6 | 119.0 (3) | C18—C19—C20 | 120.0 (2) |
C5—C6—C7 | 121.5 (3) | C19—C20—C21 | 111.2 (2) |
C5—C6—H6 | 119.2431 | C19—C20—H20a | 109.4705 |
C7—C6—H6 | 119.242 | C19—C20—H20b | 109.4713 |
C2—C7—C6 | 119.7 (3) | C21—C20—H20a | 109.4716 |
C2—C7—C8 | 121.3 (3) | C21—C20—H20b | 109.4716 |
C6—C7—C8 | 119.0 (2) | H20a—C20—H20b | 107.6461 |
C7—C8—C9 | 112.8 (2) | N2—C21—C20 | 108.8 (2) |
C7—C8—H8a | 109.4715 | N2—C21—H21a | 109.4714 |
C7—C8—H8b | 109.4718 | N2—C21—H21b | 109.471 |
C9—C8—H8a | 109.4708 | C20—C21—H21a | 109.4707 |
C9—C8—H8b | 109.4709 | C20—C21—H21b | 109.4716 |
H8a—C8—H8b | 105.924 | H21a—C21—H21b | 110.1482 |
N1—C9—C8 | 108.1 (2) | O4—C22—C13 | 107.5 (2) |
N1—C9—H9a | 109.4715 | O4—C22—H22a | 109.4708 |
N1—C9—H9b | 109.4715 | O4—C22—H22b | 109.4708 |
C8—C9—H9a | 109.4708 | C13—C22—H22a | 109.4715 |
C8—C9—H9b | 109.4708 | C13—C22—H22b | 109.4715 |
H9a—C9—H9b | 110.8097 | H22a—C22—H22b | 111.3954 |
O1—C10—C1 | 110.4 (2) | O5—C23—H23a | 109.471 |
O1—C10—H10a | 109.4717 | O5—C23—H23b | 109.4715 |
O1—C10—H10b | 109.4714 | O5—C23—H23c | 109.4711 |
C1—C10—H10a | 109.4713 | H23a—C23—H23b | 109.4715 |
C1—C10—H10b | 109.4709 | H23a—C23—H23c | 109.4704 |
H10a—C10—H10b | 108.4859 | H23b—C23—H23c | 109.4719 |
O2—C11—H11a | 109.471 | O6—C24—H24a | 109.4707 |
O2—C11—H11b | 109.4716 | O6—C24—H24b | 109.4717 |
O2—C11—H11c | 109.4709 | O6—C24—H24c | 109.4719 |
H11a—C11—H11b | 109.4714 | H24a—C24—H24b | 109.4711 |
H11a—C11—H11c | 109.4708 | H24a—C24—H24c | 109.4706 |
H11b—C11—H11c | 109.4716 | H24b—C24—H24c | 109.4714 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1o···N2i | 0.83 (3) | 1.92 (3) | 2.740 (4) | 169 (3) |
O4—H4o···N1ii | 0.79 (3) | 2.03 (3) | 2.810 (4) | 172 (4) |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H17NO3 |
Mr | 223.27 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 150 |
a, b, c (Å) | 8.9917 (11), 13.4769 (12), 18.576 (4) |
V (Å3) | 2251.0 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.51 × 0.35 × 0.32 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur 2 diffractometer with a Sapphire 2 CCD detector |
Absorption correction | – |
No. of measured, independent and observed [I > 3σ(I)] reflections | 30187, 2679, 1515 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.630 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.091, 1.15 |
No. of reflections | 2679 |
No. of parameters | 301 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.24, −0.15 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005) and COOT (Emsley et al., 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1o···N2i | 0.83 (3) | 1.92 (3) | 2.740 (4) | 169 (3) |
O4—H4o···N1ii | 0.79 (3) | 2.03 (3) | 2.810 (4) | 172 (4) |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
We acknowledge support by the CNRST (grant No URAC19) and the Praemium Academiae project of Academy of Sciences of the Czech Republic.
References
Bently, K. W. (1998). The Isoquinoline Alkaloids. Amsterdam: Harwood Academic Publishers. Google Scholar
Bernstein, J. (2002). Polymorphism in Molecular Crystals. Oxford University Press. Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact Bonn, Germany. Google Scholar
Brittan, H. G. (1999). Polymorphism in Pharmaceutical Solids, Drugs and The Pharmaceutical Sciences, Vol. 95. New York: Marcel Dekker. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Dalton, D. R. (1979). The Alkaloids – The Fundamental Chemistry, a Biogenetic Approach. New York: Marcel Dekker. Google Scholar
El Antri, A., Messouri, I., Bouktaib, M., El Alami, R., Bolte, M., El Bali, B. & Lachkar, M. (2004). Molecules, 9, 650–657. Web of Science CrossRef PubMed CAS Google Scholar
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta Cryst. D66, 486–501. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gray, N. M., Cheng, B. K., Mick, S. J., Lair, C. M. & Contreras, P. C. (1989). J. Med. Chem. 32, 1242–1248. CrossRef CAS PubMed Web of Science Google Scholar
He, Y., Nikulin, V. I., Vansal, S. S., Feller, D. R. & Miller, D. D. (2000). J. Med. Chem. 43, 591–598. Web of Science CrossRef PubMed CAS Google Scholar
Herbert, R. B. (1985). The Chemistry and Biology of Isoquinoline Alkaloids, edited by J. D. Philipson, M. F. Roberts & M. H. Zenk. Berlin, Heidelberg, New York, Tokyo: Springer Verlag. Google Scholar
Kitamura, M., Hsiao, Y., Ohta, M., Tsukamota, M., Ohta, T., Takaya, H. & Noyori, R. (1994). J. Org. Chem. 59, 297–310. CrossRef CAS Google Scholar
Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Temperature-induced polymorphism is important in pharmaceutical industry and especially, in the study of drug action with respect to their chirality (Brittan, 1999 and Bernstein, 2002). Isoquinoline alkaloids form a large group of compounds which could be extracted from many plants (Bently, 1998). Most of these natural alkaloids are optically active and allow interesting clinical uses such as analgesics, antihypertensives, smooth or skeletal muscle relaxants, antispasmodics, antitussives, antimalarials, narcotics and antipyretics (Kitamura et al., 1994). Worthy also to report that 1-substituted tetrahydroisoquinolines display interesting biological and pharmacological properties (He et al., 2000). Especially 1-methyl- and 1-phenyltetrahydroisoquinoline are involved in the treatment of Parkinson and other nervous system diseases (Gray et al., 1989).
In a previous study (El Antri et al., 2004), a single-crystal of 1-hydroxymethyl-7–8-dimethoxy-1,2,3,4-tetrahydroisoquinoline was measured at 173 K. A monoclinic symmetry (S. G.: P21) has been found in the structure. Re-measurement, at 150 K, of another crystal from the same plant extract but crystallised at a different temperature, revealed the same composition C12H17NO3 (Fig. 1) but with an orthorhombic symmetry (S. G.: P212121). Testing measurements between 120 K and room temperature revealed however no phase transition. Moreover, no simple transformation between the monoclinic and orthorhombic unit cells could be found. Thus, 1-hydroxymethyl-7–8-dimethoxy-1,2,3,4-tetrahydroisoquinoline exists in two crystallographic forms. We report in the present study on the crystal determination of the new orthorhombic 1-hydroxymethyl-7–8-dimethoxy-1,2,3,4-tetrahydroisoquinoline. As in the monoclinic form, the molecules C12H17NO3 are connected by strong hydrogen bond O—H···N (Fig. 2). In the monoclinic previously published structure the chain runs along a and the molecules have alternating orientation with respect to the projection of hydrogen bonds into the a axis (Fig. 3a). On the other hand, in the orthorhombic structure reported here the chain direction is along b and the molecules are oriented in one side with respect to the projection of hydrogen bonds into the b axis (Fig. 3 b). The packing of the chains is quite different in both structures. H-bonds interactions are shown in Figs 3a&b as dashed lines and, for the new structure, they are summarized in Tab.3.
The asymmetric unit of the title compound contains two independent molecules, which differ in conformation of the tetrahydroisoquinoline ring (Fig. 4). The nitrogen atoms in each of the molecules are oriented on opposite sides of the ring. The conformation of the molecules may be influenced by intermolecular O—H···N hydrogen bonding involving both N1 and N2 atoms.
Distances and angles are of the same magnitude in the two crystals. The heterocyclic ring of tetrahydroisoquinoline adopts a half chair conformation. The conformation of the asymmetric carbon atoms are the same in both asymmetric molecules.