organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1734-o1735

Ortho­rhom­bic polymorph of (6,7-dimeth­­oxy-1,2,3,4-tetra­hydro­isoquinolin-1-yl)methanol

aLaboratory of Engineering of Organometallic and Molecular Materials, "LIMOM" URAC 19, Department of Chemistry, Faculty of Sciences, PO Box 1796, 30000 Fès, Morocco, bLaboratory of Mineral Solid and Analytical Chemistry "LCSMA", Department of Chemistry, Faculty of Sciences, University Mohamed I, PO Box 717, 60000 Oujda, Morocco, and cInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: b.elbali@fso.ump.ma

(Received 18 May 2011; accepted 25 May 2011; online 18 June 2011)

The asymmetric unit of the title compound, C12H17NO3, contains two mol­ecules with different conformations. It is a polymorph of the monoclinic form [El Antri et al. (2004[El Antri, A., Messouri, I., Bouktaib, M., El Alami, R., Bolte, M., El Bali, B. & Lachkar, M. (2004). Molecules, 9, 650-657.]). Mol­ecules, 9, 650–657]; the samples were crystallized at different temperatures from the same solvent. In both structures, mol­ecules are linked by O—H⋯N hydrogen bonds, forming chains. The conformations of the chains and their packing differ markedly in the two polymorphs.

Related literature

For background to polymorphism in drugs, see: Brittan (1999[Brittan, H. G. (1999). Polymorphism in Pharmaceutical Solids, Drugs and The Pharmaceutical Sciences, Vol. 95. New York: Marcel Dekker.]); Bernstein (2002[Bernstein, J. (2002). Polymorphism in Molecular Crystals. Oxford University Press.]). For background to alkaloids and their pharmaceutical properties, see: Bently (1998[Bently, K. W. (1998). The Isoquinoline Alkaloids. Amsterdam: Harwood Academic Publishers.]); Herbert (1985[Herbert, R. B. (1985). The Chemistry and Biology of Isoquinoline Alkaloids, edited by J. D. Philipson, M. F. Roberts & M. H. Zenk. Berlin, Heidelberg, New York, Tokyo: Springer Verlag.]). Kitamura et al. (1994[Kitamura, M., Hsiao, Y., Ohta, M., Tsukamota, M., Ohta, T., Takaya, H. & Noyori, R. (1994). J. Org. Chem. 59, 297-310.]); He et al. (2000[He, Y., Nikulin, V. I., Vansal, S. S., Feller, D. R. & Miller, D. D. (2000). J. Med. Chem. 43, 591-598.]); Gray et al. (1989[Gray, N. M., Cheng, B. K., Mick, S. J., Lair, C. M. & Contreras, P. C. (1989). J. Med. Chem. 32, 1242-1248.]). For natural-product isolation techniques, see: Dalton (1979[Dalton, D. R. (1979). The Alkaloids - The Fundamental Chemistry, a Biogenetic Approach. New York: Marcel Dekker.]). For the monoclinic polymorph, see: El Antri et al. (2004[El Antri, A., Messouri, I., Bouktaib, M., El Alami, R., Bolte, M., El Bali, B. & Lachkar, M. (2004). Molecules, 9, 650-657.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17NO3

  • Mr = 223.27

  • Orthorhombic, P 21 21 21

  • a = 8.9917 (11) Å

  • b = 13.4769 (12) Å

  • c = 18.576 (4) Å

  • V = 2251.0 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.51 × 0.35 × 0.32 mm

Data collection
  • Oxford Diffraction Xcalibur 2 diffractometer with a Sapphire 2 CCD detector

  • 30187 measured reflections

  • 2679 independent reflections

  • 1515 reflections with I > 3σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.091

  • S = 1.15

  • 2679 reflections

  • 301 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N2i 0.83 (3) 1.92 (3) 2.740 (4) 169 (3)
O4—H4o⋯N1ii 0.79 (3) 2.03 (3) 2.810 (4) 172 (4)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact Bonn, Germany.]) and COOT (Emsley et al., 2010[Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta Cryst. D66, 486-501.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Temperature-induced polymorphism is important in pharmaceutical industry and especially, in the study of drug action with respect to their chirality (Brittan, 1999 and Bernstein, 2002). Isoquinoline alkaloids form a large group of compounds which could be extracted from many plants (Bently, 1998). Most of these natural alkaloids are optically active and allow interesting clinical uses such as analgesics, antihypertensives, smooth or skeletal muscle relaxants, antispasmodics, antitussives, antimalarials, narcotics and antipyretics (Kitamura et al., 1994). Worthy also to report that 1-substituted tetrahydroisoquinolines display interesting biological and pharmacological properties (He et al., 2000). Especially 1-methyl- and 1-phenyltetrahydroisoquinoline are involved in the treatment of Parkinson and other nervous system diseases (Gray et al., 1989).

In a previous study (El Antri et al., 2004), a single-crystal of 1-hydroxymethyl-7–8-dimethoxy-1,2,3,4-tetrahydroisoquinoline was measured at 173 K. A monoclinic symmetry (S. G.: P21) has been found in the structure. Re-measurement, at 150 K, of another crystal from the same plant extract but crystallised at a different temperature, revealed the same composition C12H17NO3 (Fig. 1) but with an orthorhombic symmetry (S. G.: P212121). Testing measurements between 120 K and room temperature revealed however no phase transition. Moreover, no simple transformation between the monoclinic and orthorhombic unit cells could be found. Thus, 1-hydroxymethyl-7–8-dimethoxy-1,2,3,4-tetrahydroisoquinoline exists in two crystallographic forms. We report in the present study on the crystal determination of the new orthorhombic 1-hydroxymethyl-7–8-dimethoxy-1,2,3,4-tetrahydroisoquinoline. As in the monoclinic form, the molecules C12H17NO3 are connected by strong hydrogen bond O—H···N (Fig. 2). In the monoclinic previously published structure the chain runs along a and the molecules have alternating orientation with respect to the projection of hydrogen bonds into the a axis (Fig. 3a). On the other hand, in the orthorhombic structure reported here the chain direction is along b and the molecules are oriented in one side with respect to the projection of hydrogen bonds into the b axis (Fig. 3 b). The packing of the chains is quite different in both structures. H-bonds interactions are shown in Figs 3a&b as dashed lines and, for the new structure, they are summarized in Tab.3.

The asymmetric unit of the title compound contains two independent molecules, which differ in conformation of the tetrahydroisoquinoline ring (Fig. 4). The nitrogen atoms in each of the molecules are oriented on opposite sides of the ring. The conformation of the molecules may be influenced by intermolecular O—H···N hydrogen bonding involving both N1 and N2 atoms.

Distances and angles are of the same magnitude in the two crystals. The heterocyclic ring of tetrahydroisoquinoline adopts a half chair conformation. The conformation of the asymmetric carbon atoms are the same in both asymmetric molecules.

Related literature top

For background to polymorphism in drugs, see: Brittan (1999); Bernstein (2002). For background to alkaloids and their pharmaceutical properties, see: Bently (1998); Herbert (1985). Kitamura et al. (1994); He et al. (2000); Gray et al. (1989). For natural-product isolation techniques, see: Dalton (1979). For the monoclinic polymorph, see: El Antri et al. (2004).

Experimental top

Alkaloids under investigations were extracted from the seeds of Calycotome villosa (Poiret) Link Subsp as in (El Antri et al., 2004). The same procedure was used for extractions and crystals synthesis. However, the experiments took place at different room temperatures.

Refinement top

Positions of hydrogen atoms bounded to nitrogen and oxygen were refined using a distance restraint. The other H atoms were fixed in the ideal geometry. The methyl H atoms were allowed to rotate freely about the adjacent C—O bonds. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2×Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and COOT (Emsley et al., 2010); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. :. Ellipsoid plot of the title compound. Anisotropic displacement parameters drawn at the 50% probability level.
[Figure 2] Fig. 2. : Projection onto (001) of the structure of (I), H-bonds as dashed lines.
[Figure 3] Fig. 3. a&b: Orientation of the molecular chains in the monoclinic and orthorhombic forms. H-bonds as dashed lines.
[Figure 4] Fig. 4. Overlay of two molecules present in assymetric unit. Yellow: C1–C12, blue: C13–C24. Hydrogen atoms are omitted for clarity.
(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol top
Crystal data top
C12H17NO3F(000) = 960
Mr = 223.27Dx = 1.317 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 9027 reflections
a = 8.9917 (11) Åθ = 2.5–26.5°
b = 13.4769 (12) ŵ = 0.09 mm1
c = 18.576 (4) ÅT = 150 K
V = 2251.0 (6) Å3Irregular, colorless
Z = 80.51 × 0.35 × 0.32 mm
Data collection top
Oxford Diffraction Xcalibur 2
diffractometer with a Sapphire 2 CCD detector
1515 reflections with I > 3σ(I)
Radiation source: X-ray tubeRint = 0.054
Graphite monochromatorθmax = 26.6°, θmin = 2.5°
Detector resolution: 8.3438 pixels mm-1h = 1111
Rotation method data acquisition using ω scansk = 1616
30187 measured reflectionsl = 2323
2679 independent reflections
Refinement top
Refinement on F2124 constraints
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.15(Δ/σ)max = 0.004
2679 reflectionsΔρmax = 0.24 e Å3
301 parametersΔρmin = 0.15 e Å3
0 restraints
Crystal data top
C12H17NO3V = 2251.0 (6) Å3
Mr = 223.27Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 8.9917 (11) ŵ = 0.09 mm1
b = 13.4769 (12) ÅT = 150 K
c = 18.576 (4) Å0.51 × 0.35 × 0.32 mm
Data collection top
Oxford Diffraction Xcalibur 2
diffractometer with a Sapphire 2 CCD detector
1515 reflections with I > 3σ(I)
30187 measured reflectionsRint = 0.054
2679 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.24 e Å3
2679 reflectionsΔρmin = 0.15 e Å3
301 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2415 (2)0.53891 (18)0.36542 (11)0.0430 (7)
O20.4410 (2)0.45708 (14)0.02813 (11)0.0351 (7)
O30.6069 (2)0.30148 (13)0.02562 (11)0.0333 (7)
O40.2946 (2)0.04072 (18)0.15204 (13)0.0501 (8)
O50.0403 (2)0.05130 (14)0.48188 (10)0.0355 (7)
O60.0888 (2)0.22154 (13)0.47614 (11)0.0369 (7)
N10.4198 (3)0.37470 (18)0.34959 (13)0.0347 (9)
N20.0505 (3)0.09105 (18)0.15335 (14)0.0377 (10)
C10.3258 (4)0.4076 (2)0.28954 (16)0.0375 (11)
C20.4044 (3)0.3779 (2)0.21914 (17)0.0319 (10)
C30.3811 (3)0.4319 (2)0.15544 (16)0.0335 (10)
C40.4524 (3)0.4070 (2)0.09213 (16)0.0298 (10)
C50.5455 (3)0.3232 (2)0.09070 (15)0.0281 (10)
C60.5657 (3)0.2694 (2)0.15306 (16)0.0291 (10)
C70.4979 (3)0.2972 (2)0.21772 (17)0.0301 (10)
C80.5328 (3)0.2388 (2)0.28580 (16)0.0344 (11)
C90.4336 (3)0.2665 (2)0.34811 (16)0.0349 (11)
C100.3029 (4)0.5168 (2)0.29733 (16)0.0437 (12)
C110.3469 (3)0.5421 (2)0.02716 (16)0.0416 (11)
C120.7128 (4)0.2228 (2)0.02437 (17)0.0428 (12)
C130.1076 (3)0.0400 (2)0.21832 (16)0.0370 (10)
C140.0628 (3)0.09610 (19)0.28544 (16)0.0300 (10)
C150.0789 (3)0.0489 (2)0.35197 (16)0.0335 (10)
C160.0308 (3)0.0923 (2)0.41458 (15)0.0272 (10)
C170.0383 (3)0.1861 (2)0.41197 (16)0.0300 (10)
C180.0500 (3)0.2338 (2)0.34686 (16)0.0310 (11)
C190.0006 (3)0.1904 (2)0.28279 (16)0.0288 (10)
C200.0159 (3)0.2449 (2)0.21245 (16)0.0355 (11)
C210.0785 (3)0.1987 (2)0.15450 (16)0.0390 (12)
C220.2709 (3)0.0187 (2)0.21388 (17)0.0437 (11)
C230.1144 (4)0.0419 (2)0.48738 (16)0.0497 (12)
C240.1827 (4)0.3079 (2)0.47324 (17)0.0472 (12)
H10.2292840.3771240.2891740.045*
H30.3141060.4873790.1559360.0402*
H60.6278740.2114780.152060.0349*
H8a0.5235190.1691030.2761830.0413*
H8b0.6348490.2492680.2989960.0413*
H9a0.3371090.2373860.3413660.0419*
H9b0.4776120.2440050.3922660.0419*
H10a0.3964960.5502780.2921310.0524*
H10b0.2370130.5397160.260240.0524*
H11a0.3432520.5687240.0207290.0499*
H11b0.2486010.5234340.0420670.0499*
H11c0.385540.5913090.0594870.0499*
H12a0.7526350.2162240.0233330.0513*
H12b0.7918820.2373080.0574580.0513*
H12c0.6651960.1619520.0381520.0513*
H130.0619230.0242140.2210650.0444*
H150.1247530.0154230.3539110.0402*
H180.0939880.2986190.3451990.0372*
H20a0.0126090.313020.2188230.0425*
H20b0.1183210.2440510.1978350.0425*
H21a0.0524860.2267070.108690.0468*
H21b0.1815880.2106290.1647280.0468*
H22a0.3246530.079890.2089950.0524*
H22b0.3016030.0171430.2560050.0524*
H23a0.1201470.0612260.5370460.0597*
H23b0.0599560.0910760.460860.0597*
H23c0.2129380.0361440.4679550.0597*
H24a0.2147120.3248310.5209830.0566*
H24b0.1279920.362430.4530420.0566*
H24c0.2678760.2941930.4437450.0566*
H1n0.374 (3)0.391 (2)0.3865 (16)0.0416*
H2n0.100 (3)0.065 (2)0.1185 (16)0.0452*
H1o0.150 (3)0.547 (3)0.3609 (18)0.0516*
H4o0.378 (4)0.059 (3)0.153 (2)0.0601*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0483 (13)0.0424 (12)0.0382 (13)0.0103 (13)0.0071 (12)0.0063 (11)
O20.0428 (12)0.0309 (11)0.0314 (12)0.0109 (11)0.0027 (11)0.0004 (10)
O30.0382 (12)0.0343 (11)0.0275 (12)0.0090 (10)0.0026 (11)0.0006 (10)
O40.0534 (16)0.0548 (14)0.0420 (13)0.0117 (14)0.0041 (13)0.0150 (13)
O50.0462 (13)0.0283 (11)0.0320 (12)0.0061 (10)0.0031 (11)0.0022 (10)
O60.0453 (13)0.0380 (12)0.0275 (12)0.0155 (11)0.0011 (12)0.0016 (10)
N10.0477 (18)0.0299 (14)0.0266 (16)0.0080 (14)0.0035 (15)0.0023 (12)
N20.0456 (18)0.0375 (16)0.0300 (17)0.0004 (14)0.0011 (14)0.0043 (13)
C10.046 (2)0.0340 (18)0.0328 (18)0.0017 (16)0.0025 (18)0.0002 (15)
C20.0337 (18)0.0305 (16)0.0316 (18)0.0013 (15)0.0035 (17)0.0027 (14)
C30.0390 (18)0.0272 (17)0.0345 (19)0.0111 (14)0.0050 (16)0.0048 (15)
C40.0337 (17)0.0296 (17)0.0261 (18)0.0010 (15)0.0089 (16)0.0028 (14)
C50.0261 (17)0.0301 (17)0.0281 (19)0.0014 (15)0.0033 (16)0.0054 (14)
C60.0291 (18)0.0274 (15)0.0307 (19)0.0043 (15)0.0019 (17)0.0025 (15)
C70.0340 (17)0.0262 (16)0.0301 (18)0.0008 (14)0.0000 (18)0.0002 (15)
C80.045 (2)0.0289 (17)0.0292 (18)0.0029 (15)0.0014 (18)0.0017 (14)
C90.041 (2)0.0311 (17)0.032 (2)0.0008 (16)0.0043 (18)0.0029 (14)
C100.049 (2)0.044 (2)0.039 (2)0.0104 (17)0.0029 (17)0.0029 (16)
C110.055 (2)0.0323 (17)0.0374 (19)0.0135 (17)0.0089 (17)0.0043 (17)
C120.050 (2)0.049 (2)0.0290 (17)0.0168 (18)0.0033 (18)0.0008 (16)
C130.0417 (19)0.0336 (17)0.0356 (19)0.0008 (16)0.0005 (17)0.0030 (17)
C140.0317 (17)0.0310 (16)0.0272 (18)0.0030 (15)0.0000 (16)0.0032 (14)
C150.0362 (18)0.0256 (16)0.0387 (19)0.0008 (16)0.0033 (16)0.0024 (15)
C160.0289 (17)0.0273 (16)0.0253 (18)0.0026 (14)0.0006 (15)0.0013 (13)
C170.0336 (18)0.0280 (17)0.0283 (19)0.0001 (15)0.0018 (16)0.0026 (14)
C180.0345 (19)0.0255 (16)0.033 (2)0.0016 (15)0.0054 (17)0.0031 (15)
C190.0284 (17)0.0314 (17)0.0266 (17)0.0034 (14)0.0029 (17)0.0013 (15)
C200.038 (2)0.0336 (17)0.034 (2)0.0040 (15)0.0028 (18)0.0034 (15)
C210.039 (2)0.046 (2)0.032 (2)0.0051 (18)0.0013 (18)0.0079 (15)
C220.046 (2)0.047 (2)0.0387 (18)0.0051 (17)0.0048 (18)0.0078 (18)
C230.076 (3)0.0306 (17)0.042 (2)0.0087 (19)0.005 (2)0.0031 (16)
C240.054 (2)0.050 (2)0.0378 (19)0.0244 (19)0.001 (2)0.0094 (17)
Geometric parameters (Å, º) top
O1—C101.412 (4)C9—H9b0.96
O1—H1o0.83 (3)C10—H10a0.96
O2—C41.371 (4)C10—H10b0.96
O2—C111.424 (4)C11—H11a0.96
O3—C51.361 (4)C11—H11b0.96
O3—C121.425 (4)C11—H11c0.96
O4—C221.416 (4)C12—H12a0.96
O4—H4o0.79 (3)C12—H12b0.96
O5—C161.369 (3)C12—H12c0.96
O5—C231.425 (4)C13—C141.513 (4)
O6—C171.362 (4)C13—C221.498 (4)
O6—C241.439 (4)C13—H130.96
N1—C11.468 (4)C14—C151.398 (4)
N1—C91.464 (4)C14—C191.389 (4)
N1—H1n0.83 (3)C15—C161.372 (4)
N2—C131.481 (4)C15—H150.96
N2—C211.472 (4)C16—C171.408 (4)
N2—H2n0.86 (3)C17—C181.374 (4)
C1—C21.539 (4)C18—C191.402 (4)
C1—C101.493 (4)C18—H180.96
C1—H10.96C19—C201.507 (4)
C2—C31.405 (4)C20—C211.506 (4)
C2—C71.375 (4)C20—H20a0.96
C3—C41.381 (4)C20—H20b0.96
C3—H30.96C21—H21a0.96
C4—C51.406 (4)C21—H21b0.96
C5—C61.379 (4)C22—H22a0.96
C6—C71.398 (4)C22—H22b0.96
C6—H60.96C23—H23a0.96
C7—C81.522 (4)C23—H23b0.96
C8—C91.508 (4)C23—H23c0.96
C8—H8a0.96C24—H24a0.96
C8—H8b0.96C24—H24b0.96
C9—H9a0.96C24—H24c0.96
C10—O1—H1o109 (2)O3—C12—H12a109.4718
C4—O2—C11116.8 (2)O3—C12—H12b109.4712
C5—O3—C12116.5 (2)O3—C12—H12c109.4707
C22—O4—H4o108 (3)H12a—C12—H12b109.4716
C16—O5—C23116.8 (2)H12a—C12—H12c109.4715
C17—O6—C24116.5 (2)H12b—C12—H12c109.4704
C1—N1—C9109.6 (2)N2—C13—C14110.3 (2)
C1—N1—H1n105 (2)N2—C13—C22112.6 (2)
C9—N1—H1n108.6 (19)N2—C13—H13108.2749
C13—N2—C21112.7 (2)C14—C13—C22113.7 (2)
C13—N2—H2n104 (2)C14—C13—H13107.0055
C21—N2—H2n109 (2)C22—C13—H13104.4393
N1—C1—C2107.6 (2)C13—C14—C15118.3 (2)
N1—C1—C10107.7 (2)C13—C14—C19122.3 (3)
N1—C1—H1113.3918C15—C14—C19119.3 (3)
C2—C1—C10113.7 (2)C14—C15—C16121.5 (3)
C2—C1—H1107.3416C14—C15—H15119.2572
C10—C1—H1107.3033C16—C15—H15119.2563
C1—C2—C3120.8 (2)O5—C16—C15125.6 (2)
C1—C2—C7120.2 (3)O5—C16—C17114.9 (2)
C3—C2—C7119.0 (3)C15—C16—C17119.5 (3)
C2—C3—C4121.5 (3)O6—C17—C16115.6 (2)
C2—C3—H3119.2635O6—C17—C18125.5 (3)
C4—C3—H3119.2645C16—C17—C18118.9 (3)
O2—C4—C3125.8 (3)C17—C18—C19121.8 (3)
O2—C4—C5115.0 (2)C17—C18—H18119.0863
C3—C4—C5119.2 (3)C19—C18—H18119.0868
O3—C5—C4115.5 (2)C14—C19—C18118.8 (3)
O3—C5—C6125.4 (2)C14—C19—C20121.1 (3)
C4—C5—C6119.0 (3)C18—C19—C20120.0 (2)
C5—C6—C7121.5 (3)C19—C20—C21111.2 (2)
C5—C6—H6119.2431C19—C20—H20a109.4705
C7—C6—H6119.242C19—C20—H20b109.4713
C2—C7—C6119.7 (3)C21—C20—H20a109.4716
C2—C7—C8121.3 (3)C21—C20—H20b109.4716
C6—C7—C8119.0 (2)H20a—C20—H20b107.6461
C7—C8—C9112.8 (2)N2—C21—C20108.8 (2)
C7—C8—H8a109.4715N2—C21—H21a109.4714
C7—C8—H8b109.4718N2—C21—H21b109.471
C9—C8—H8a109.4708C20—C21—H21a109.4707
C9—C8—H8b109.4709C20—C21—H21b109.4716
H8a—C8—H8b105.924H21a—C21—H21b110.1482
N1—C9—C8108.1 (2)O4—C22—C13107.5 (2)
N1—C9—H9a109.4715O4—C22—H22a109.4708
N1—C9—H9b109.4715O4—C22—H22b109.4708
C8—C9—H9a109.4708C13—C22—H22a109.4715
C8—C9—H9b109.4708C13—C22—H22b109.4715
H9a—C9—H9b110.8097H22a—C22—H22b111.3954
O1—C10—C1110.4 (2)O5—C23—H23a109.471
O1—C10—H10a109.4717O5—C23—H23b109.4715
O1—C10—H10b109.4714O5—C23—H23c109.4711
C1—C10—H10a109.4713H23a—C23—H23b109.4715
C1—C10—H10b109.4709H23a—C23—H23c109.4704
H10a—C10—H10b108.4859H23b—C23—H23c109.4719
O2—C11—H11a109.471O6—C24—H24a109.4707
O2—C11—H11b109.4716O6—C24—H24b109.4717
O2—C11—H11c109.4709O6—C24—H24c109.4719
H11a—C11—H11b109.4714H24a—C24—H24b109.4711
H11a—C11—H11c109.4708H24a—C24—H24c109.4706
H11b—C11—H11c109.4716H24b—C24—H24c109.4714
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N2i0.83 (3)1.92 (3)2.740 (4)169 (3)
O4—H4o···N1ii0.79 (3)2.03 (3)2.810 (4)172 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H17NO3
Mr223.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)8.9917 (11), 13.4769 (12), 18.576 (4)
V3)2251.0 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.51 × 0.35 × 0.32
Data collection
DiffractometerOxford Diffraction Xcalibur 2
diffractometer with a Sapphire 2 CCD detector
Absorption correction
No. of measured, independent and
observed [I > 3σ(I)] reflections
30187, 2679, 1515
Rint0.054
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.091, 1.15
No. of reflections2679
No. of parameters301
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005) and COOT (Emsley et al., 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N2i0.83 (3)1.92 (3)2.740 (4)169 (3)
O4—H4o···N1ii0.79 (3)2.03 (3)2.810 (4)172 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

We acknowledge support by the CNRST (grant No URAC19) and the Praemium Academiae project of Academy of Sciences of the Czech Republic.

References

First citationBently, K. W. (1998). The Isoquinoline Alkaloids. Amsterdam: Harwood Academic Publishers.  Google Scholar
First citationBernstein, J. (2002). Polymorphism in Molecular Crystals. Oxford University Press.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact Bonn, Germany.  Google Scholar
First citationBrittan, H. G. (1999). Polymorphism in Pharmaceutical Solids, Drugs and The Pharmaceutical Sciences, Vol. 95. New York: Marcel Dekker.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationDalton, D. R. (1979). The Alkaloids – The Fundamental Chemistry, a Biogenetic Approach. New York: Marcel Dekker.  Google Scholar
First citationEl Antri, A., Messouri, I., Bouktaib, M., El Alami, R., Bolte, M., El Bali, B. & Lachkar, M. (2004). Molecules, 9, 650–657.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEmsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta Cryst. D66, 486–501.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGray, N. M., Cheng, B. K., Mick, S. J., Lair, C. M. & Contreras, P. C. (1989). J. Med. Chem. 32, 1242–1248.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHe, Y., Nikulin, V. I., Vansal, S. S., Feller, D. R. & Miller, D. D. (2000). J. Med. Chem. 43, 591–598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHerbert, R. B. (1985). The Chemistry and Biology of Isoquinoline Alkaloids, edited by J. D. Philipson, M. F. Roberts & M. H. Zenk. Berlin, Heidelberg, New York, Tokyo: Springer Verlag.  Google Scholar
First citationKitamura, M., Hsiao, Y., Ohta, M., Tsukamota, M., Ohta, T., Takaya, H. & Noyori, R. (1994). J. Org. Chem. 59, 297–310.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1734-o1735
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds