organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1721-o1722

4-(5,6-Di­hydro­benzimidazo[1,2-c]quinazolin-6-yl)benzene-1,3-diol di­methyl sulfoxide monosolvate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Pure and Applied Sciences, International University of Africa, Sudan, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 20 May 2011; accepted 14 June 2011; online 18 June 2011)

In the title solvated benzimidazole compound, C20H15N3O2·C2H6OS, both the benzimidazole fused-ring system and the complete dimethyl sulfoxide solvent mol­ecule are disordered over two sets of sites, in 0.750 (5):0.250 (5) and 0.882 (4):0.118 (4) ratios, respectively. The conformation of the pyrimidine ring is close to a half-chair for the major disorder component, whereas for the minor component it is close to a boat. The dihy­droxy­phenyl ring is almost perpendicular to the mean plane of the benzimidazole ring [dihedral angle = 87.3 (2)° for the major disorder component and 88.3 (5)° for the minor disorder component]. In the crystal, mol­ecules are linked into layers parallel to (110) by O—H⋯N and C—H⋯O hydrogen bonds. A bifurcated O—H⋯(O,S) bond links the benzimidazole and solvent mol­ecules.

Related literature

For related structures and background to benzimidazoles, see: Eltayeb et al. (2007a[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007a). Acta Cryst. E63, o4141-o4142.],b[Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o300-o302.],c[Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007c). Acta Cryst. E63, o465-o467.], 2009[Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613-o1614.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N3O2·C2H6OS

  • Mr = 407.48

  • Orthorhombic, P b c a

  • a = 9.9310 (18) Å

  • b = 16.342 (3) Å

  • c = 23.516 (5) Å

  • V = 3816.5 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.33 × 0.28 × 0.27 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.949

  • 22793 measured reflections

  • 3345 independent reflections

  • 3118 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.096

  • wR(F2) = 0.208

  • S = 1.28

  • 3345 reflections

  • 348 parameters

  • 514 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯S1A 0.94 2.82 3.732 (3) 163
O1—H1O1⋯O3A 0.94 1.71 2.619 (9) 163
O2—H1O2⋯N2Ai 0.88 1.95 2.739 (6) 150
C11A—H11A⋯O2ii 0.93 2.40 3.329 (9) 174
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing structural studies of benzimidazoles (Eltayeb et al., 2007a,b,c, 2009) we now describe in this paper the single-crystal X-ray diffraction study of title compound, (I), (Fig. 1). Furthermore, this paper describes for the first time a simple method for synthesis of benzimidazo[1,2-c]quinazoline derivatives using zinc chloride as a homogenous catalyst, herein, and thereafter to be called the "Taha-Teoh's method".

The benzimidazole fused ring system in (I) is disordered over two sets of sites with refined site occupancies of 0.750 (5) and 0.250 (5). The solvent molecule is also disordered over two orientations with refined site occupancies of 0.882 (4) and 0.118 (4). The conformation for pyrimidine ring is close to a half-chair conformation for major component whereas for minor component it is close to a boat conformation (Cremer & Pople, 1975). The dihydroxyphenyl ring is almost perpendicular to the mean plane of benzimidazole ring (N1A/C1A–C6A/N2A/C7A) with the dihedral angle of 87.3 (2)° whereas this angle is 88.3 (5)° for minor component. In the crystal structure, the molecules are linked into infinite one-dimensional chains along a axis by intermolecular O2—H1O2···N2A hydrogen bonds and the intermolecular C11A—H11A···O2 hydrogen bonds (Table 1) further linked these chains into planes parallel to ab plane (Fig. 3). The benzimidazole molecule and the solvent molecule is stabilized by the O1—H1O1···S1A and O1—H1O1···O3A interactions (Table 1).

Related literature top

For related structures and background to benzimidazoles, see: Eltayeb et al. (2007a,b,c, 2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For ring conformations, see: Cremer & Pople (1975).

Experimental top

To a solution of 2-(2-aminophenyl)-1H-benzimidazole (0.209 g, 1.0 mmol) in ethanol (30 ml) was added 2,4-dihydroxybenzaldehyde (0.138 g, 1.0 mmol). The color of the resulting solution is pale-pink. Then on adding zinc chloride (0.136 g, 1.0 mmol), the color of solution changed to yellowish-pink. The mixture was refluxed with stirring for 3 hours. The product (yellow precipitate) was obtained by evaporation of the solvent under reduced pressure using a rotary evaporator. Yellow blocks of (I) were formed after several days of slow evaporation of an acetone solution layered with a small amount of dimethylsulfoxide at room temperature.

Refinement top

All disordered components were subjected to rigid bond and similarity restraints. All minor disordered components were refined isotropically. The O-bound hydrogen atoms were located from difference Fourier map and refined as riding on their parent atom, with Uiso(H) = 1.5 Ueq(O). The rest of the hydrogen atoms were positioned geomatrically [C–H = 0.93–0.98 Å; N–H = 0.86 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C,N or Cmethyl). A rotating-group model were applied for methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability ellipsoids for non-H atoms. Only major disordered component is shown.
[Figure 2] Fig. 2. The molecular structure of (I), showing all disordered components.
[Figure 3] Fig. 3. The packing of (I), viewed down b axis, showing molecules are linked into plane parallel to ab plane. Only major disordered component is shown. Solvent molecules are omitted for clarity and hydrogen bonds are shown as dashed lines.
4-(5,6-Dihydrobenzimidazo[1,2-c]quinazolin-6-yl)benzene-1,3-diol dimethyl sulfoxide monosolvate top
Crystal data top
C20H15N3O2·C2H6OSF(000) = 1712
Mr = 407.48Dx = 1.418 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9998 reflections
a = 9.9310 (18) Åθ = 2.5–29.9°
b = 16.342 (3) ŵ = 0.20 mm1
c = 23.516 (5) ÅT = 100 K
V = 3816.5 (13) Å3Block, yellow
Z = 80.33 × 0.28 × 0.27 mm
Data collection top
Bruker APEXII DUO CCD
diffractometer
3345 independent reflections
Radiation source: fine-focus sealed tube3118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.937, Tmax = 0.949k = 1919
22793 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.096Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + (0.P)2 + 23.9034P]
where P = (Fo2 + 2Fc2)/3
3345 reflections(Δ/σ)max < 0.001
348 parametersΔρmax = 0.33 e Å3
514 restraintsΔρmin = 0.37 e Å3
Crystal data top
C20H15N3O2·C2H6OSV = 3816.5 (13) Å3
Mr = 407.48Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.9310 (18) ŵ = 0.20 mm1
b = 16.342 (3) ÅT = 100 K
c = 23.516 (5) Å0.33 × 0.28 × 0.27 mm
Data collection top
Bruker APEXII DUO CCD
diffractometer
3345 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3118 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.949Rint = 0.031
22793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.096514 restraints
wR(F2) = 0.208H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + (0.P)2 + 23.9034P]
where P = (Fo2 + 2Fc2)/3
3345 reflectionsΔρmax = 0.33 e Å3
348 parametersΔρmin = 0.37 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4247 (3)0.5246 (2)0.06384 (15)0.0314 (8)
H1O10.33490.50810.05880.047*
O20.2150 (3)0.6868 (2)0.20967 (16)0.0310 (8)
H1O20.15100.65720.19440.047*
N1A0.7956 (5)0.6144 (3)0.1050 (2)0.0221 (12)0.750 (5)
N2A0.9792 (5)0.6498 (3)0.1550 (2)0.0242 (12)0.750 (5)
N3A0.7010 (5)0.4845 (3)0.1064 (2)0.0234 (12)0.750 (5)
H3AB0.67610.44640.08340.028*0.750 (5)
C1A0.8411 (7)0.6865 (4)0.0810 (4)0.0241 (15)0.750 (5)
C2A0.7922 (7)0.7319 (5)0.0355 (3)0.0279 (15)0.750 (5)
H2AA0.71580.71640.01530.033*0.750 (5)
C3A0.8652 (8)0.8019 (5)0.0221 (3)0.0327 (17)0.750 (5)
H3AA0.83550.83530.00740.039*0.750 (5)
C4A0.9809 (9)0.8230 (4)0.0515 (4)0.0324 (17)0.750 (5)
H4AA1.02810.86960.04060.039*0.750 (5)
C5A1.0286 (7)0.7770 (4)0.0966 (4)0.0288 (16)0.750 (5)
H5AA1.10640.79180.11600.035*0.750 (5)
C6A0.9545 (8)0.7069 (4)0.1120 (3)0.0226 (14)0.750 (5)
C7A0.8802 (6)0.5969 (4)0.1489 (3)0.0190 (13)0.750 (5)
C8A0.8574 (8)0.5213 (4)0.1808 (3)0.0203 (15)0.750 (5)
C9A0.9260 (7)0.5022 (4)0.2303 (3)0.0269 (14)0.750 (5)
H9AA0.98500.54030.24580.032*0.750 (5)
C10A0.9087 (10)0.4281 (5)0.2569 (4)0.030 (2)0.750 (5)
H10A0.95620.41560.28980.036*0.750 (5)
C11A0.8185 (8)0.3722 (5)0.2334 (4)0.0282 (19)0.750 (5)
H11A0.80520.32200.25120.034*0.750 (5)
C12A0.7486 (6)0.3901 (4)0.1842 (3)0.0269 (15)0.750 (5)
H12A0.69030.35150.16880.032*0.750 (5)
C13A0.7646 (6)0.4660 (4)0.1571 (3)0.0209 (13)0.750 (5)
N1B0.7996 (14)0.5740 (8)0.1323 (6)0.019 (3)*0.250 (5)
N2B0.9819 (14)0.6061 (8)0.1829 (6)0.021 (3)*0.250 (5)
N3B0.7269 (15)0.6445 (9)0.0489 (7)0.027 (4)*0.250 (5)
H3BB0.69600.64260.01480.032*0.250 (5)
C1B0.818 (2)0.5089 (12)0.1694 (9)0.019 (5)*0.250 (5)
C2B0.747 (2)0.4368 (13)0.1770 (9)0.025 (5)*0.250 (5)
H2BA0.67160.42470.15510.030*0.250 (5)
C3B0.794 (3)0.3833 (15)0.2191 (12)0.026 (7)*0.250 (5)
H3BA0.75160.33320.22510.031*0.250 (5)
C4B0.903 (3)0.4067 (14)0.2515 (13)0.022 (7)*0.250 (5)
H4BA0.93050.37170.28050.027*0.250 (5)
C5B0.976 (2)0.4780 (11)0.2440 (8)0.023 (5)*0.250 (5)
H5BA1.04940.49110.26670.028*0.250 (5)
C6B0.932 (2)0.5296 (10)0.1998 (8)0.029 (5)*0.250 (5)
C7B0.902 (2)0.6279 (10)0.1412 (8)0.024 (5)*0.250 (5)
C8B0.904 (2)0.7028 (12)0.1076 (9)0.022 (6)*0.250 (5)
C9B1.001 (2)0.7629 (13)0.1161 (9)0.027 (6)*0.250 (5)
H9BA1.05980.75840.14680.032*0.250 (5)
C10B1.012 (2)0.8281 (13)0.0804 (9)0.030 (5)*0.250 (5)
H10B1.07610.86860.08660.036*0.250 (5)
C11B0.925 (2)0.8325 (13)0.0348 (9)0.025 (5)*0.250 (5)
H11B0.92640.87880.01180.029*0.250 (5)
C12B0.835 (2)0.7708 (13)0.0221 (8)0.017 (5)*0.250 (5)
H12B0.78860.77100.01230.020*0.250 (5)
C13B0.8146 (19)0.7077 (11)0.0616 (8)0.011 (4)*0.250 (5)
C140.6765 (5)0.5734 (3)0.0925 (2)0.0274 (11)
H14A0.66000.57800.05160.033*0.750 (5)
H14B0.65880.52200.07430.033*0.250 (5)
C150.5554 (5)0.6069 (3)0.1234 (2)0.0215 (10)
C160.4288 (5)0.5788 (3)0.1079 (2)0.0230 (10)
C170.3134 (4)0.6063 (3)0.1349 (2)0.0208 (10)
H17A0.22910.58870.12280.025*
C180.3246 (4)0.6602 (3)0.1801 (2)0.0220 (10)
C190.4505 (4)0.6897 (3)0.1959 (2)0.0239 (10)
H19A0.45830.72740.22530.029*
C200.5633 (5)0.6628 (3)0.1677 (2)0.0223 (10)
H20A0.64720.68260.17860.027*
S1A0.07237 (15)0.44769 (9)0.07749 (7)0.0329 (5)0.882 (4)
O3A0.1950 (8)0.4548 (5)0.0386 (4)0.045 (2)0.882 (4)
C21A0.0447 (6)0.3857 (5)0.0400 (4)0.0478 (19)0.882 (4)
H21A0.08170.41630.00880.072*0.882 (4)
H21B0.11600.36950.06520.072*0.882 (4)
H21C0.00020.33790.02570.072*0.882 (4)
C22A0.1182 (9)0.3767 (6)0.1298 (4)0.056 (2)0.882 (4)
H22A0.19780.39540.14900.083*0.882 (4)
H22B0.13570.32470.11240.083*0.882 (4)
H22C0.04620.37110.15680.083*0.882 (4)
S1B0.1514 (13)0.3778 (8)0.0710 (6)0.045 (4)*0.118 (4)
O3B0.168 (5)0.461 (2)0.042 (2)0.015 (10)*0.118 (4)
C21B0.020 (3)0.352 (3)0.060 (2)0.049 (16)*0.118 (4)
H21D0.07230.40100.05530.074*0.118 (4)
H21E0.05330.32150.09160.074*0.118 (4)
H21F0.02800.31930.02590.074*0.118 (4)
C22B0.140 (8)0.400 (5)0.1440 (10)0.07 (3)*0.118 (4)
H22D0.22660.41790.15760.104*0.118 (4)
H22E0.11250.35230.16430.104*0.118 (4)
H22F0.07550.44320.14970.104*0.118 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0202 (17)0.039 (2)0.035 (2)0.0028 (15)0.0027 (15)0.0165 (16)
O20.0164 (16)0.0299 (18)0.047 (2)0.0039 (14)0.0039 (15)0.0156 (16)
N1A0.016 (2)0.021 (3)0.030 (3)0.000 (2)0.003 (2)0.004 (2)
N2A0.017 (3)0.018 (3)0.037 (3)0.005 (2)0.002 (2)0.000 (2)
N3A0.019 (3)0.016 (2)0.036 (3)0.001 (2)0.001 (2)0.007 (2)
C1A0.015 (3)0.020 (3)0.037 (4)0.004 (3)0.009 (3)0.003 (3)
C2A0.024 (3)0.024 (4)0.035 (4)0.003 (3)0.007 (3)0.007 (3)
C3A0.036 (4)0.018 (4)0.044 (4)0.002 (4)0.011 (3)0.002 (3)
C4A0.032 (4)0.017 (3)0.048 (5)0.002 (3)0.013 (4)0.003 (3)
C5A0.021 (3)0.021 (4)0.045 (4)0.003 (3)0.012 (3)0.000 (3)
C6A0.019 (4)0.017 (3)0.032 (4)0.006 (3)0.009 (3)0.003 (2)
C7A0.010 (3)0.018 (3)0.030 (3)0.001 (2)0.004 (2)0.004 (3)
C8A0.013 (4)0.015 (3)0.033 (4)0.004 (2)0.002 (3)0.002 (3)
C9A0.021 (3)0.018 (3)0.042 (4)0.002 (3)0.000 (3)0.001 (3)
C10A0.032 (4)0.022 (4)0.036 (4)0.003 (4)0.003 (3)0.004 (4)
C11A0.022 (4)0.017 (3)0.046 (5)0.006 (3)0.004 (4)0.008 (3)
C12A0.021 (3)0.014 (3)0.045 (4)0.001 (2)0.005 (3)0.001 (3)
C13A0.013 (3)0.014 (3)0.036 (4)0.007 (2)0.006 (3)0.001 (3)
C140.018 (2)0.033 (3)0.031 (3)0.006 (2)0.001 (2)0.000 (2)
C150.022 (2)0.018 (2)0.025 (2)0.0022 (18)0.0027 (19)0.0044 (18)
C160.024 (2)0.018 (2)0.027 (2)0.0045 (19)0.004 (2)0.0021 (19)
C170.016 (2)0.017 (2)0.030 (3)0.0035 (17)0.0017 (19)0.0008 (19)
C180.014 (2)0.017 (2)0.035 (3)0.0005 (17)0.0036 (19)0.0002 (19)
C190.019 (2)0.021 (2)0.032 (3)0.0000 (18)0.001 (2)0.005 (2)
C200.019 (2)0.016 (2)0.033 (3)0.0041 (18)0.003 (2)0.0026 (19)
S1A0.0251 (8)0.0290 (8)0.0447 (9)0.0031 (6)0.0018 (7)0.0083 (7)
O3A0.029 (4)0.062 (4)0.045 (3)0.017 (3)0.007 (3)0.013 (3)
C21A0.025 (3)0.060 (5)0.059 (5)0.008 (3)0.004 (3)0.021 (4)
C22A0.039 (4)0.062 (6)0.066 (5)0.018 (4)0.008 (4)0.021 (5)
Geometric parameters (Å, º) top
O1—C161.363 (5)C3B—H3BA0.9300
O1—H1O10.9391C4B—C5B1.382 (19)
O2—C181.362 (5)C4B—H4BA0.9300
O2—H1O20.8748C5B—C6B1.408 (17)
N1A—C7A1.362 (8)C5B—H5BA0.9300
N1A—C1A1.381 (8)C7B—C8B1.457 (15)
N1A—C141.391 (7)C8B—C9B1.395 (18)
N2A—C7A1.317 (7)C8B—C13B1.399 (17)
N2A—C6A1.397 (8)C9B—C10B1.361 (18)
N3A—C13A1.382 (8)C9B—H9BA0.9300
N3A—C141.509 (7)C10B—C11B1.381 (18)
N3A—H3AB0.8600C10B—H10B0.9300
N3A—H14B1.0594C11B—C12B1.378 (18)
C1A—C6A1.383 (11)C11B—H11B0.9300
C1A—C2A1.390 (10)C12B—C13B1.403 (17)
C2A—C3A1.390 (10)C12B—H12B0.9300
C2A—H2AA0.9300C14—C151.508 (6)
C3A—C4A1.386 (12)C14—H14A0.9800
C3A—H3AA0.9300C14—H14B0.9601
C4A—C5A1.384 (12)C15—C161.387 (6)
C4A—H4AA0.9300C15—C201.388 (6)
C5A—C6A1.408 (10)C16—C171.386 (6)
C5A—H5AA0.9300C17—C181.384 (7)
C7A—C8A1.463 (9)C17—H17A0.9300
C8A—C9A1.383 (11)C18—C191.391 (6)
C8A—C13A1.406 (10)C19—C201.373 (6)
C9A—C10A1.373 (11)C19—H19A0.9300
C9A—H9AA0.9300C20—H20A0.9300
C10A—C11A1.393 (11)S1A—O3A1.528 (7)
C10A—H10A0.9300S1A—C22A1.752 (8)
C11A—C12A1.381 (11)S1A—C21A1.776 (6)
C11A—H11A0.9300C21A—H21A0.9600
C12A—C13A1.404 (9)C21A—H21B0.9600
C12A—H12A0.9300C21A—H21C0.9600
N1B—C7B1.359 (15)C22A—H22A0.9600
N1B—C1B1.388 (16)C22A—H22B0.9600
N1B—C141.540 (14)C22A—H22C0.9600
N2B—C7B1.313 (15)S1B—O3B1.534 (19)
N2B—C6B1.401 (15)S1B—C22B1.76 (2)
N3B—C13B1.384 (16)S1B—C21B1.776 (19)
N3B—C141.629 (15)C21B—H21D0.9600
N3B—H3BB0.8600C21B—H21E0.9600
C1B—C6B1.378 (17)C21B—H21F0.9600
C1B—C2B1.387 (17)C22B—H22D0.9600
C2B—C3B1.399 (18)C22B—H22E0.9600
C2B—H2BA0.9300C22B—H22F0.9600
C3B—C4B1.38 (2)
C16—O1—H1O1108.1N2B—C7B—C8B128.8 (15)
C18—O2—H1O2101.3N1B—C7B—C8B118.0 (13)
C7A—N1A—C1A106.7 (6)C9B—C8B—C13B120.6 (14)
C7A—N1A—C14125.6 (5)C9B—C8B—C7B121.5 (16)
C1A—N1A—C14127.1 (6)C13B—C8B—C7B117.4 (16)
C7A—N2A—C6A103.3 (6)C10B—C9B—C8B121.2 (16)
C13A—N3A—C14118.1 (5)C10B—C9B—H9BA119.4
C13A—N3A—H3AB121.0C8B—C9B—H9BA119.4
C14—N3A—H3AB121.0C9B—C10B—C11B118.1 (17)
C13A—N3A—H14B157.2C9B—C10B—H10B120.9
H3AB—N3A—H14B81.8C11B—C10B—H10B120.9
N1A—C1A—C6A104.9 (7)C12B—C11B—C10B122.4 (17)
N1A—C1A—C2A131.0 (7)C12B—C11B—H11B118.8
C6A—C1A—C2A124.2 (6)C10B—C11B—H11B118.8
C3A—C2A—C1A115.6 (6)C11B—C12B—C13B119.2 (15)
C3A—C2A—H2AA122.2C11B—C12B—H12B120.4
C1A—C2A—H2AA122.2C13B—C12B—H12B120.4
C4A—C3A—C2A121.7 (7)N3B—C13B—C8B121.4 (17)
C4A—C3A—H3AA119.2N3B—C13B—C12B119.8 (16)
C2A—C3A—H3AA119.2C8B—C13B—C12B117.6 (13)
C5A—C4A—C3A122.0 (7)N1A—C14—C15113.7 (4)
C5A—C4A—H4AA119.0N1A—C14—N3A106.4 (4)
C3A—C4A—H4AA119.0C15—C14—N3A111.9 (4)
C4A—C5A—C6A117.4 (7)C15—C14—N1B109.8 (6)
C4A—C5A—H5AA121.3N3A—C14—N1B75.3 (6)
C6A—C5A—H5AA121.3N1A—C14—N3B61.8 (6)
C1A—C6A—N2A111.3 (7)C15—C14—N3B106.8 (6)
C1A—C6A—C5A119.1 (7)N3A—C14—N3B140.7 (7)
N2A—C6A—C5A129.6 (8)N1B—C14—N3B97.7 (7)
N2A—C7A—N1A113.9 (6)N1A—C14—H14A108.2
N2A—C7A—C8A127.9 (6)C15—C14—H14A108.2
N1A—C7A—C8A118.1 (6)N3A—C14—H14A108.2
C9A—C8A—C13A120.7 (6)N1B—C14—H14A136.9
C9A—C8A—C7A123.1 (7)N3B—C14—H14A51.5
C13A—C8A—C7A116.1 (7)N1A—C14—H14B132.2
C10A—C9A—C8A121.4 (7)C15—C14—H14B112.7
C10A—C9A—H9AA119.3N1B—C14—H14B115.0
C8A—C9A—H9AA119.3N3B—C14—H14B113.5
C9A—C10A—C11A118.5 (8)H14A—C14—H14B66.2
C9A—C10A—H10A120.7C16—C15—C20117.8 (4)
C11A—C10A—H10A120.7C16—C15—C14118.4 (4)
C12A—C11A—C10A121.1 (7)C20—C15—C14123.8 (4)
C12A—C11A—H11A119.5O1—C16—C17122.3 (4)
C10A—C11A—H11A119.5O1—C16—C15116.3 (4)
C11A—C12A—C13A120.7 (6)C17—C16—C15121.4 (4)
C11A—C12A—H12A119.6C18—C17—C16119.5 (4)
C13A—C12A—H12A119.6C18—C17—H17A120.2
N3A—C13A—C12A122.2 (6)C16—C17—H17A120.2
N3A—C13A—C8A120.1 (7)O2—C18—C17122.0 (4)
C12A—C13A—C8A117.5 (6)O2—C18—C19118.2 (4)
C7B—N1B—C1B107.4 (13)C17—C18—C19119.8 (4)
C7B—N1B—C14133.6 (11)C20—C19—C18119.6 (4)
C1B—N1B—C14118.9 (12)C20—C19—H19A120.2
C7B—N2B—C6B103.8 (12)C18—C19—H19A120.2
C13B—N3B—C14126.2 (13)C19—C20—C15121.8 (4)
C13B—N3B—H3BB116.9C19—C20—H20A119.1
C14—N3B—H3BB116.9C15—C20—H20A119.1
C6B—C1B—C2B124.2 (14)O3A—S1A—C22A105.3 (4)
C6B—C1B—N1B104.3 (14)O3A—S1A—C21A105.5 (4)
C2B—C1B—N1B131.5 (17)C22A—S1A—C21A98.1 (5)
C1B—C2B—C3B116.9 (16)O3B—S1B—C22B105 (2)
C1B—C2B—H2BA121.5O3B—S1B—C21B104.4 (19)
C3B—C2B—H2BA121.5C22B—S1B—C21B97.8 (19)
C4B—C3B—C2B118.5 (18)S1B—C21B—H21D109.5
C4B—C3B—H3BA120.7S1B—C21B—H21E109.5
C2B—C3B—H3BA120.7H21D—C21B—H21E109.5
C5B—C4B—C3B125.0 (19)S1B—C21B—H21F109.5
C5B—C4B—H4BA117.5H21D—C21B—H21F109.5
C3B—C4B—H4BA117.5H21E—C21B—H21F109.5
C4B—C5B—C6B116.0 (16)S1B—C22B—H22D109.5
C4B—C5B—H5BA122.0S1B—C22B—H22E109.5
C6B—C5B—H5BA122.0H22D—C22B—H22E109.5
C1B—C6B—N2B111.2 (14)S1B—C22B—H22F109.5
C1B—C6B—C5B119.3 (14)H22D—C22B—H22F109.5
N2B—C6B—C5B129.3 (16)H22E—C22B—H22F109.5
N2B—C7B—N1B113.0 (12)
C7A—N1A—C1A—C6A1.5 (7)N2B—C7B—C8B—C9B2 (4)
C14—N1A—C1A—C6A173.1 (5)N1B—C7B—C8B—C9B177 (2)
C7A—N1A—C1A—C2A179.6 (7)N2B—C7B—C8B—C13B174 (2)
C14—N1A—C1A—C2A8.0 (11)N1B—C7B—C8B—C13B11 (4)
N1A—C1A—C2A—C3A179.0 (7)C13B—C8B—C9B—C10B0 (4)
C6A—C1A—C2A—C3A0.4 (10)C7B—C8B—C9B—C10B172 (2)
C1A—C2A—C3A—C4A1.8 (10)C8B—C9B—C10B—C11B1 (4)
C2A—C3A—C4A—C5A1.6 (11)C9B—C10B—C11B—C12B5 (4)
C3A—C4A—C5A—C6A0.0 (10)C10B—C11B—C12B—C13B11 (4)
N1A—C1A—C6A—N2A0.8 (7)C14—N3B—C13B—C8B21 (3)
C2A—C1A—C6A—N2A179.8 (6)C14—N3B—C13B—C12B171.4 (16)
N1A—C1A—C6A—C5A177.7 (6)C9B—C8B—C13B—N3B173 (2)
C2A—C1A—C6A—C5A1.2 (10)C7B—C8B—C13B—N3B1 (4)
C7A—N2A—C6A—C1A0.2 (7)C9B—C8B—C13B—C12B6 (4)
C7A—N2A—C6A—C5A178.6 (7)C7B—C8B—C13B—C12B167 (2)
C4A—C5A—C6A—C1A1.4 (10)C11B—C12B—C13B—N3B179 (2)
C4A—C5A—C6A—N2A179.6 (7)C11B—C12B—C13B—C8B11 (3)
C6A—N2A—C7A—N1A1.2 (7)C7A—N1A—C14—C1587.5 (7)
C6A—N2A—C7A—C8A176.9 (6)C1A—N1A—C14—C1582.6 (7)
C1A—N1A—C7A—N2A1.8 (7)C7A—N1A—C14—N3A36.1 (7)
C14—N1A—C7A—N2A173.6 (5)C1A—N1A—C14—N3A153.8 (6)
C1A—N1A—C7A—C8A177.9 (6)C7A—N1A—C14—N1B4.0 (10)
C14—N1A—C7A—C8A10.3 (9)C1A—N1A—C14—N1B174.1 (12)
N2A—C7A—C8A—C9A12.6 (11)C7A—N1A—C14—N3B175.4 (9)
N1A—C7A—C8A—C9A171.9 (6)C1A—N1A—C14—N3B14.5 (8)
N2A—C7A—C8A—C13A164.7 (6)C13A—N3A—C14—N1A45.1 (6)
N1A—C7A—C8A—C13A10.8 (9)C13A—N3A—C14—C1579.6 (6)
C13A—C8A—C9A—C10A1.8 (11)C13A—N3A—C14—N1B26.1 (7)
C7A—C8A—C9A—C10A175.4 (8)C13A—N3A—C14—N3B110.4 (11)
C8A—C9A—C10A—C11A0.9 (14)C7B—N1B—C14—N1A9.0 (16)
C9A—C10A—C11A—C12A0.6 (14)C1B—N1B—C14—N1A172 (2)
C10A—C11A—C12A—C13A1.3 (12)C7B—N1B—C14—C1594 (2)
C14—N3A—C13A—C12A155.6 (5)C1B—N1B—C14—C1584.4 (17)
C14—N3A—C13A—C8A29.7 (8)C7B—N1B—C14—N3A157 (2)
C11A—C12A—C13A—N3A177.0 (6)C1B—N1B—C14—N3A24.1 (15)
C11A—C12A—C13A—C8A2.2 (9)C7B—N1B—C14—N3B17 (2)
C9A—C8A—C13A—N3A177.3 (6)C1B—N1B—C14—N3B164.6 (17)
C7A—C8A—C13A—N3A0.1 (9)C13B—N3B—C14—N1A21.5 (15)
C9A—C8A—C13A—C12A2.4 (9)C13B—N3B—C14—C1586.8 (17)
C7A—C8A—C13A—C12A175.0 (6)C13B—N3B—C14—N3A102.9 (18)
C7B—N1B—C1B—C6B1 (3)C13B—N3B—C14—N1B26.6 (18)
C14—N1B—C1B—C6B177.7 (16)N1A—C14—C15—C16170.5 (4)
C7B—N1B—C1B—C2B178 (3)N3A—C14—C15—C1668.9 (6)
C14—N1B—C1B—C2B3 (4)N1B—C14—C15—C16150.5 (6)
C6B—C1B—C2B—C3B1 (4)N3B—C14—C15—C16104.5 (7)
N1B—C1B—C2B—C3B180 (3)N1A—C14—C15—C2011.2 (7)
C1B—C2B—C3B—C4B2 (4)N3A—C14—C15—C20109.3 (5)
C2B—C3B—C4B—C5B3 (5)N1B—C14—C15—C2027.7 (8)
C3B—C4B—C5B—C6B0 (5)N3B—C14—C15—C2077.3 (7)
C2B—C1B—C6B—N2B180 (2)C20—C15—C16—O1179.3 (4)
N1B—C1B—C6B—N2B1 (3)C14—C15—C16—O12.4 (6)
C2B—C1B—C6B—C5B4 (4)C20—C15—C16—C171.0 (7)
N1B—C1B—C6B—C5B176.6 (18)C14—C15—C16—C17179.3 (4)
C7B—N2B—C6B—C1B3 (3)O1—C16—C17—C18178.8 (4)
C7B—N2B—C6B—C5B178 (2)C15—C16—C17—C183.0 (7)
C4B—C5B—C6B—C1B3 (4)C16—C17—C18—O2177.4 (4)
C4B—C5B—C6B—N2B178 (2)C16—C17—C18—C193.6 (7)
C6B—N2B—C7B—N1B4 (2)O2—C18—C19—C20178.7 (4)
C6B—N2B—C7B—C8B179 (3)C17—C18—C19—C202.3 (7)
C1B—N1B—C7B—N2B3 (3)C18—C19—C20—C150.3 (7)
C14—N1B—C7B—N2B175.5 (14)C16—C15—C20—C190.4 (7)
C1B—N1B—C7B—C8B179 (2)C14—C15—C20—C19177.9 (4)
C14—N1B—C7B—C8B0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···S1A0.942.823.732 (3)163
O1—H1O1···O3A0.941.712.619 (9)163
O2—H1O2···N2Ai0.881.952.739 (6)150
C11A—H11A···O2ii0.932.403.329 (9)174
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H15N3O2·C2H6OS
Mr407.48
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)9.9310 (18), 16.342 (3), 23.516 (5)
V3)3816.5 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.33 × 0.28 × 0.27
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.937, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
22793, 3345, 3118
Rint0.031
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.096, 0.208, 1.28
No. of reflections3345
No. of parameters348
No. of restraints514
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.P)2 + 23.9034P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.33, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···S1A0.942.823.732 (3)163
O1—H1O1···O3A0.941.712.619 (9)163
O2—H1O2···N2Ai0.881.952.739 (6)150
C11A—H11A···O2ii0.932.403.329 (9)174
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NEE and SGT thank the Malaysian Government and Universiti Sains Malaysia (USM) for the RU research grant 1001/PKIMIA/815067. NEE also thanks USM for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing study leave. HKF and CSY thank USM for the Research University Grant 1001/PFIZIK/811160.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007a). Acta Cryst. E63, o4141–o4142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613–o1614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o300–o302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007c). Acta Cryst. E63, o465–o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1721-o1722
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds