metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­{[N,N′-di­cyclo­hexyl-N′′,N′′-bis­­(tri­methyl­sil­yl)guanidinato-κ2N,N′](tetra­hydro­furan-κO)magnesium(II)}

aSchool of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, People's Republic of China
*Correspondence e-mail: chengjie@nit.zju.edu.cn

(Received 23 May 2011; accepted 17 June 2011; online 25 June 2011)

The dinuclear title complex, [Mg2(C19H40N3Si2)2Cl2(C4H8O)2], lies on a center of inversion. The Mg2+ ions are bonded to a chelating N,N′-bonded guanidinate anion, a tetra­hydro­furan mol­ecule and two bridging chloride anions. The geometry of the resulting five-coordinated Mg2+ ion is a very distorted square-based pyramid with the O atom in the apical position.

Related literature

For the synthesis of analogous metal-ligated complexes, see: Sánchez-Barba et al. (2006[Sánchez-Barba, L. F., Hughes, D. L., Humphrey, S. M. & Bochmann, M. (2006). Organometallics, 25, 1012-1020.]); Doring & Kempe (2009[Doring, C. & Kempe, R. (2009). Eur. J. Inorg. Chem. pp. 412-418.]); Lyubov et al. (2007[Lyubov, D. M., Fukin, G. K. & Trifonov, A. A. (2007). Inorg Chem. 46, 11450-11456.]). For a review of the crystal structures of guanidinato-ligated metal complexes, see: Bailey & Pace (2001[Bailey, P. J. & Pace, S. (2001). Coord. Chem. Rev. 214, 91-141.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg2(C19H40N3Si2)2Cl2(C4H8O)2]

  • Mr = 997.17

  • Triclinic, [P \overline 1]

  • a = 8.7249 (3) Å

  • b = 11.0016 (5) Å

  • c = 16.8893 (8) Å

  • α = 79.487 (6)°

  • β = 75.211 (6)°

  • γ = 72.201 (5)°

  • V = 1482.80 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 223 K

  • 0.60 × 0.30 × 0.22 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.340, Tmax = 0.462

  • 12201 measured reflections

  • 5485 independent reflections

  • 4175 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.141

  • S = 1.08

  • 5485 reflections

  • 287 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Mg1—O1 2.0334 (19)
Mg1—N2 2.0734 (18)
Mg1—N1 2.1247 (17)
Mg1—Cl1i 2.4946 (9)
Mg1—Cl1 2.4171 (9)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2000[Rigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound exists as a centrosymmetric dinuclear molecule in which each Mg2+ is five-coordinated by one bidentate guanidinato anion in h2-fashion, two chlorido anions, and one THF molecule to adopt a distorted pyramidal geometry (Fig. 1). The two {Mg(guanidinato)(THF)}+ moieties are connected by two chlorido anions in m2-mode.

Related literature top

For the synthesis of analogous metal-ligated complexes, see: Sánchez-Barba et al. (2006); Doring & Kempe (2009); Lyubov et al. (2007). For a review of the crystal structures of guanidinato-ligated metal complexes, see: Bailey & Pace (2001).

Experimental top

The mono(guanidinato) yttrium dichloride complex was synthesized by the reaction of guanidinato lithium with one equivalent of YCl3 in THF according to a literature procedure. Treatment of the mono(guanidinato) yttrium dichloride complex with Mg(C3H5)Cl in 1:2 molar ratio in THF at room temperature, after recrystallization, afforded the title complex as colorless crystals. Colourless prisms were obtained from a saturated hexane solution at 243 K.

Refinement top

H-atoms were placed in calculated positions and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalStructure (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement elliposids drawn at the 30% probability level. Atoms with suffix A are generated by the symmetry operation (1–x, 1–y, 1–z).
Di-µ-chlorido-bis{[N,N'-dicyclohexyl-N'',N''- bis(trimethylsilyl)guanidinato-κ2N,N'](tetrahydrofuran- κO)magnesium(II)} top
Crystal data top
[Mg2(C19H40N3Si2)2Cl2(C4H8O)2]Z = 1
Mr = 997.17F(000) = 544
Triclinic, P1Dx = 1.117 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 8.7249 (3) ÅCell parameters from 6219 reflections
b = 11.0016 (5) Åθ = 3.0–27.5°
c = 16.8893 (8) ŵ = 0.25 mm1
α = 79.487 (6)°T = 223 K
β = 75.211 (6)°Prism, colourless
γ = 72.201 (5)°0.60 × 0.30 × 0.22 mm
V = 1482.80 (11) Å3
Data collection top
Rigaku Saturn
diffractometer
5485 independent reflections
Radiation source: fine-focus sealed tube4175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 14.63 pixels mm-1θmax = 25.5°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1311
Tmin = 0.340, Tmax = 0.462l = 2018
12201 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0855P)2]
where P = (Fo2 + 2Fc2)/3
5485 reflections(Δ/σ)max = 0.001
287 parametersΔρmax = 0.40 e Å3
2 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Mg2(C19H40N3Si2)2Cl2(C4H8O)2]γ = 72.201 (5)°
Mr = 997.17V = 1482.80 (11) Å3
Triclinic, P1Z = 1
a = 8.7249 (3) ÅMo Kα radiation
b = 11.0016 (5) ŵ = 0.25 mm1
c = 16.8893 (8) ÅT = 223 K
α = 79.487 (6)°0.60 × 0.30 × 0.22 mm
β = 75.211 (6)°
Data collection top
Rigaku Saturn
diffractometer
5485 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
4175 reflections with I > 2σ(I)
Tmin = 0.340, Tmax = 0.462Rint = 0.028
12201 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0502 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.08Δρmax = 0.40 e Å3
5485 reflectionsΔρmin = 0.42 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57869 (8)0.59193 (6)0.53865 (3)0.0538 (2)
Si10.19612 (8)0.27490 (6)0.89356 (3)0.04007 (19)
Si20.57738 (8)0.19428 (7)0.83044 (4)0.0486 (2)
Mg10.37458 (9)0.47603 (7)0.60061 (4)0.0372 (2)
O10.1567 (2)0.6051 (2)0.58704 (11)0.0670 (6)
N10.3601 (2)0.47652 (18)0.72806 (10)0.0400 (4)
N20.3613 (2)0.30543 (17)0.67452 (10)0.0350 (4)
N30.3771 (2)0.27627 (17)0.81889 (9)0.0319 (4)
C10.3639 (2)0.3536 (2)0.74099 (11)0.0308 (4)
C20.3718 (3)0.5451 (2)0.79118 (13)0.0489 (6)
H20.37300.48630.84310.059*
C30.2249 (4)0.6613 (3)0.80647 (19)0.0698 (8)
H3A0.12350.63360.82240.084*
H3B0.22070.71980.75530.084*
C40.2330 (5)0.7332 (4)0.8742 (2)0.0911 (12)
H4A0.13950.81020.88000.109*
H4B0.22500.67800.92680.109*
C50.3926 (5)0.7717 (3)0.85416 (16)0.0771 (10)
H5A0.39210.83770.80650.093*
H5B0.40000.80900.90110.093*
C60.5393 (5)0.6602 (4)0.8355 (2)0.0837 (10)
H6A0.54980.60080.88590.100*
H6B0.63850.69070.81740.100*
C70.5280 (4)0.5886 (3)0.76892 (18)0.0670 (8)
H7A0.53040.64490.71670.080*
H7B0.62380.51350.76110.080*
C80.3507 (2)0.1751 (2)0.67767 (12)0.0345 (5)
H80.35830.13050.73360.041*
C90.4891 (3)0.0989 (2)0.61505 (13)0.0410 (5)
H9A0.48380.14290.55950.049*
H9B0.59560.09530.62580.049*
C100.4761 (3)0.0373 (2)0.61940 (14)0.0461 (6)
H10A0.56380.08210.57690.055*
H10B0.49260.08380.67320.055*
C110.3108 (3)0.0390 (2)0.60709 (15)0.0490 (6)
H11A0.30200.00580.55000.059*
H11B0.30310.12770.61670.059*
C120.1706 (3)0.0416 (3)0.66506 (18)0.0599 (7)
H12A0.16830.00040.72160.072*
H12B0.06620.04690.65120.072*
C130.1866 (3)0.1767 (3)0.66063 (18)0.0534 (6)
H13A0.09630.22390.70110.064*
H13B0.17700.22200.60570.064*
C140.0156 (3)0.3832 (3)0.85500 (17)0.0582 (7)
H14A0.03090.46870.83900.087*
H14B0.08290.38670.89810.087*
H14C0.00400.35100.80770.087*
C150.1996 (4)0.3282 (4)0.99136 (16)0.0809 (10)
H15A0.28000.26361.01810.121*
H15B0.09150.34011.02760.121*
H15C0.22930.40880.97940.121*
C160.1665 (4)0.1109 (3)0.9186 (2)0.0867 (11)
H16A0.16860.07880.86840.130*
H16B0.06120.11410.95630.130*
H16C0.25430.05430.94420.130*
C170.7269 (3)0.2293 (3)0.73586 (18)0.0684 (8)
H17A0.71270.19400.69050.103*
H17B0.83810.19070.74460.103*
H17C0.70850.32150.72290.103*
C180.6256 (4)0.2438 (5)0.9186 (2)0.1038 (14)
H18A0.60500.33640.91200.156*
H18B0.74050.20350.92030.156*
H18C0.55640.21720.96960.156*
C190.6096 (5)0.0173 (4)0.8484 (4)0.129 (2)
H19A0.54370.00520.90160.193*
H19B0.72510.02490.84770.193*
H19C0.57700.01030.80540.193*
C200.0019 (4)0.6055 (4)0.6432 (2)0.0992 (13)
H20A0.01580.58610.70040.119*
H20B0.04490.54180.63170.119*
C210.1037 (6)0.7348 (6)0.6292 (4)0.172 (3)
H21A0.21090.73090.62340.206*
H21B0.12170.78180.67630.206*
C220.0259 (5)0.8007 (4)0.5551 (3)0.1056 (13)
H22A0.00220.87550.56800.127*
H22B0.09810.82990.51550.127*
C230.1279 (4)0.7076 (4)0.5207 (2)0.0896 (11)
H23A0.11600.67480.47310.108*
H23B0.21920.74750.50350.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0806 (4)0.0615 (4)0.0290 (3)0.0396 (4)0.0038 (3)0.0054 (2)
Si10.0467 (4)0.0415 (4)0.0285 (3)0.0158 (3)0.0035 (2)0.0051 (2)
Si20.0422 (4)0.0536 (5)0.0536 (4)0.0178 (3)0.0203 (3)0.0075 (3)
Mg10.0451 (4)0.0361 (4)0.0264 (3)0.0095 (3)0.0043 (3)0.0013 (3)
O10.0567 (11)0.0719 (14)0.0464 (10)0.0067 (10)0.0073 (8)0.0108 (9)
N10.0589 (11)0.0359 (11)0.0257 (8)0.0166 (9)0.0045 (8)0.0043 (7)
N20.0435 (9)0.0367 (11)0.0259 (8)0.0128 (8)0.0048 (7)0.0068 (7)
N30.0367 (9)0.0354 (10)0.0248 (8)0.0143 (8)0.0046 (7)0.0015 (7)
C10.0288 (9)0.0373 (13)0.0249 (9)0.0097 (9)0.0020 (7)0.0041 (8)
C20.0848 (17)0.0400 (14)0.0270 (10)0.0288 (13)0.0077 (11)0.0023 (9)
C30.0805 (19)0.060 (2)0.0731 (18)0.0304 (16)0.0093 (15)0.0344 (15)
C40.138 (3)0.071 (2)0.0680 (19)0.051 (2)0.019 (2)0.0372 (17)
C50.149 (3)0.059 (2)0.0388 (13)0.057 (2)0.0124 (17)0.0067 (13)
C60.122 (3)0.088 (3)0.0692 (19)0.054 (2)0.0325 (19)0.0161 (18)
C70.0733 (18)0.076 (2)0.0661 (17)0.0309 (16)0.0113 (14)0.0298 (15)
C80.0399 (11)0.0360 (13)0.0280 (10)0.0122 (10)0.0033 (8)0.0067 (8)
C90.0394 (11)0.0417 (14)0.0380 (11)0.0068 (10)0.0025 (9)0.0104 (10)
C100.0527 (13)0.0371 (14)0.0386 (12)0.0003 (11)0.0034 (10)0.0091 (10)
C110.0583 (14)0.0389 (14)0.0511 (13)0.0129 (12)0.0058 (11)0.0177 (11)
C120.0471 (13)0.0624 (19)0.0775 (18)0.0236 (13)0.0025 (13)0.0336 (14)
C130.0388 (12)0.0507 (16)0.0746 (17)0.0090 (11)0.0037 (12)0.0340 (13)
C140.0399 (12)0.071 (2)0.0605 (15)0.0193 (13)0.0009 (11)0.0078 (13)
C150.0731 (19)0.133 (3)0.0381 (14)0.033 (2)0.0053 (13)0.0294 (17)
C160.095 (2)0.054 (2)0.086 (2)0.0323 (17)0.0359 (19)0.0026 (16)
C170.0346 (12)0.091 (2)0.0725 (18)0.0094 (14)0.0023 (12)0.0195 (16)
C180.0684 (19)0.196 (5)0.0614 (19)0.042 (2)0.0300 (16)0.017 (2)
C190.080 (2)0.058 (2)0.253 (6)0.0194 (19)0.087 (3)0.045 (3)
C200.0543 (18)0.118 (3)0.092 (2)0.0068 (19)0.0064 (17)0.028 (2)
C210.092 (3)0.161 (5)0.151 (5)0.055 (3)0.015 (3)0.044 (4)
C220.095 (3)0.083 (3)0.117 (3)0.011 (2)0.042 (2)0.010 (2)
C230.090 (2)0.087 (3)0.067 (2)0.001 (2)0.0260 (17)0.0263 (18)
Geometric parameters (Å, º) top
Si1—N31.7532 (16)C9—H9A0.9800
Si1—C141.849 (3)C9—H9B0.9800
Si1—C161.857 (3)C10—C111.515 (3)
Si1—C151.861 (3)C10—H10A0.9800
Si2—N31.7472 (18)C10—H10B0.9800
Si2—C171.850 (3)C11—C121.511 (3)
Si2—C181.857 (3)C11—H11A0.9800
Si2—C191.858 (4)C11—H11B0.9800
Mg1—O12.0334 (19)C12—C131.523 (4)
Mg1—N22.0734 (18)C12—H12A0.9800
Mg1—N12.1247 (17)C12—H12B0.9800
Mg1—Cl1i2.4946 (9)C13—H13A0.9800
Mg1—Cl12.4171 (9)C13—H13B0.9800
Mg1—Mg1i3.5878 (13)C14—H14A0.9700
O1—C201.439 (4)C14—H14B0.9700
O1—C231.449 (3)C14—H14C0.9700
N1—C11.321 (3)C15—H15A0.9700
N1—C21.453 (3)C15—H15B0.9700
N2—C11.334 (3)C15—H15C0.9700
N2—C81.455 (3)C16—H16A0.9700
N3—C11.441 (2)C16—H16B0.9700
C2—C31.515 (4)C16—H16C0.9700
C2—C71.516 (4)C17—H17A0.9700
C2—H20.9900C17—H17B0.9700
C3—C41.531 (4)C17—H17C0.9700
C3—H3A0.9800C18—H18A0.9700
C3—H3B0.9800C18—H18B0.9700
C4—C51.517 (5)C18—H18C0.9700
C4—H4A0.9800C19—H19A0.9700
C4—H4B0.9800C19—H19B0.9700
C5—C61.489 (5)C19—H19C0.9700
C5—H5A0.9800C20—C211.455 (6)
C5—H5B0.9800C20—H20A0.9800
C6—C71.524 (4)C20—H20B0.9800
C6—H6A0.9800C21—C221.445 (6)
C6—H6B0.9800C21—H21A0.9800
C7—H7A0.9800C21—H21B0.9800
C7—H7B0.9800C22—C231.471 (5)
C8—C131.525 (3)C22—H22A0.9800
C8—C91.527 (3)C22—H22B0.9800
C8—H80.9900C23—H23A0.9800
C9—C101.525 (3)C23—H23B0.9800
Mg1—Cl1—Mg1i93.84 (3)C13—C8—H8108.6
N3—Si1—C14110.04 (10)C9—C8—H8108.6
N3—Si1—C16111.06 (12)C10—C9—C8111.38 (17)
C14—Si1—C16108.07 (16)C10—C9—H9A109.4
N3—Si1—C15111.90 (11)C8—C9—H9A109.4
C14—Si1—C15108.22 (15)C10—C9—H9B109.4
C16—Si1—C15107.41 (18)C8—C9—H9B109.4
N3—Si2—C17109.83 (11)H9A—C9—H9B108.0
N3—Si2—C18111.12 (14)C11—C10—C9112.2 (2)
C17—Si2—C18108.39 (16)C11—C10—H10A109.2
N3—Si2—C19112.06 (12)C9—C10—H10A109.2
C17—Si2—C19107.5 (2)C11—C10—H10B109.2
C18—Si2—C19107.8 (2)C9—C10—H10B109.2
O1—Mg1—N2116.59 (8)H10A—C10—H10B107.9
O1—Mg1—N1100.44 (8)C12—C11—C10111.19 (19)
N2—Mg1—N164.10 (7)C12—C11—H11A109.4
O1—Mg1—Cl1104.41 (7)C10—C11—H11A109.4
N2—Mg1—Cl1138.03 (6)C12—C11—H11B109.4
N1—Mg1—Cl1101.29 (6)C10—C11—H11B109.4
O1—Mg1—Cl1i91.66 (6)H11A—C11—H11B108.0
N2—Mg1—Cl1i100.61 (5)C11—C12—C13112.2 (2)
N1—Mg1—Cl1i163.61 (6)C11—C12—H12A109.2
Cl1—Mg1—Cl1i86.16 (3)C13—C12—H12A109.2
O1—Mg1—C1113.31 (7)C11—C12—H12B109.2
N2—Mg1—C132.25 (7)C13—C12—H12B109.2
N1—Mg1—C131.92 (7)H12A—C12—H12B107.9
Cl1—Mg1—C1122.25 (5)C12—C13—C8111.8 (2)
Cl1i—Mg1—C1132.33 (6)C12—C13—H13A109.3
O1—Mg1—Mg1i100.82 (6)C8—C13—H13A109.3
N2—Mg1—Mg1i128.97 (6)C12—C13—H13B109.3
N1—Mg1—Mg1i143.03 (6)C8—C13—H13B109.3
Cl1—Mg1—Mg1i43.93 (2)H13A—C13—H13B107.9
Cl1i—Mg1—Mg1i42.236 (19)Si1—C14—H14A109.5
C1—Mg1—Mg1i145.86 (6)Si1—C14—H14B109.5
C20—O1—C23108.6 (2)H14A—C14—H14B109.5
C20—O1—Mg1123.90 (18)Si1—C14—H14C109.5
C23—O1—Mg1127.48 (18)H14A—C14—H14C109.5
C1—N1—C2122.68 (17)H14B—C14—H14C109.5
C1—N1—Mg189.82 (12)Si1—C15—H15A109.5
C2—N1—Mg1146.53 (14)Si1—C15—H15B109.5
C1—N2—C8122.48 (17)H15A—C15—H15B109.5
C1—N2—Mg191.70 (13)Si1—C15—H15C109.5
C8—N2—Mg1145.82 (13)H15A—C15—H15C109.5
C1—N3—Si2115.52 (12)H15B—C15—H15C109.5
C1—N3—Si1118.56 (13)Si1—C16—H16A109.5
Si2—N3—Si1125.91 (10)Si1—C16—H16B109.5
N1—C1—N2114.12 (17)H16A—C16—H16B109.5
N1—C1—N3123.27 (17)Si1—C16—H16C109.5
N2—C1—N3122.56 (18)H16A—C16—H16C109.5
N1—C1—Mg158.25 (10)H16B—C16—H16C109.5
N2—C1—Mg156.05 (10)Si2—C17—H17A109.5
N3—C1—Mg1173.59 (14)Si2—C17—H17B109.5
N1—C2—C3111.2 (2)H17A—C17—H17B109.5
N1—C2—C7112.17 (19)Si2—C17—H17C109.5
C3—C2—C7108.8 (2)H17A—C17—H17C109.5
N1—C2—H2108.2H17B—C17—H17C109.5
C3—C2—H2108.2Si2—C18—H18A109.5
C7—C2—H2108.2Si2—C18—H18B109.5
C2—C3—C4112.0 (3)H18A—C18—H18B109.5
C2—C3—H3A109.2Si2—C18—H18C109.5
C4—C3—H3A109.2H18A—C18—H18C109.5
C2—C3—H3B109.2H18B—C18—H18C109.5
C4—C3—H3B109.2Si2—C19—H19A109.5
H3A—C3—H3B107.9Si2—C19—H19B109.5
C5—C4—C3111.0 (2)H19A—C19—H19B109.5
C5—C4—H4A109.4Si2—C19—H19C109.5
C3—C4—H4A109.4H19A—C19—H19C109.5
C5—C4—H4B109.4H19B—C19—H19C109.5
C3—C4—H4B109.4O1—C20—C21105.0 (3)
H4A—C4—H4B108.0O1—C20—H20A110.7
C6—C5—C4111.9 (3)C21—C20—H20A110.7
C6—C5—H5A109.2O1—C20—H20B110.7
C4—C5—H5A109.2C21—C20—H20B110.7
C6—C5—H5B109.2H20A—C20—H20B108.8
C4—C5—H5B109.2C22—C21—C20109.2 (3)
H5A—C5—H5B107.9C22—C21—H21A109.8
C5—C6—C7112.3 (3)C20—C21—H21A109.8
C5—C6—H6A109.1C22—C21—H21B109.8
C7—C6—H6A109.1C20—C21—H21B109.8
C5—C6—H6B109.1H21A—C21—H21B108.3
C7—C6—H6B109.1C21—C22—C23106.6 (3)
H6A—C6—H6B107.9C21—C22—H22A110.4
C2—C7—C6111.8 (2)C23—C22—H22A110.4
C2—C7—H7A109.3C21—C22—H22B110.4
C6—C7—H7A109.3C23—C22—H22B110.4
C2—C7—H7B109.3H22A—C22—H22B108.6
C6—C7—H7B109.3O1—C23—C22105.1 (3)
H7A—C7—H7B107.9O1—C23—H23A110.7
N2—C8—C13110.59 (19)C22—C23—H23A110.7
N2—C8—C9112.16 (16)O1—C23—H23B110.7
C13—C8—C9108.22 (17)C22—C23—H23B110.7
N2—C8—H8108.6H23A—C23—H23B108.8
Mg1i—Cl1—Mg1—O190.73 (7)Mg1—N2—C1—N14.89 (18)
Mg1i—Cl1—Mg1—N2101.63 (9)C8—N2—C1—N37.9 (3)
Mg1i—Cl1—Mg1—N1165.26 (7)Mg1—N2—C1—N3172.51 (15)
Mg1i—Cl1—Mg1—Cl1i0.0C8—N2—C1—Mg1179.6 (2)
Mg1i—Cl1—Mg1—C1139.09 (7)Si2—N3—C1—N191.9 (2)
N2—Mg1—O1—C2020.7 (3)Si1—N3—C1—N186.6 (2)
N1—Mg1—O1—C2045.5 (3)Si2—N3—C1—N285.2 (2)
Cl1—Mg1—O1—C20150.1 (3)Si1—N3—C1—N296.2 (2)
Cl1i—Mg1—O1—C20123.4 (3)Si2—N3—C1—Mg19.8 (13)
C1—Mg1—O1—C2014.8 (3)Si1—N3—C1—Mg1171.7 (12)
Mg1i—Mg1—O1—C20165.0 (3)O1—Mg1—C1—N171.43 (15)
N2—Mg1—O1—C23157.5 (3)N2—Mg1—C1—N1174.75 (19)
N1—Mg1—O1—C23136.3 (3)Cl1—Mg1—C1—N154.89 (14)
Cl1—Mg1—O1—C2331.7 (3)Cl1i—Mg1—C1—N1172.78 (11)
Cl1i—Mg1—O1—C2354.8 (3)Mg1i—Mg1—C1—N1108.96 (15)
C1—Mg1—O1—C23167.0 (3)O1—Mg1—C1—N2103.33 (14)
Mg1i—Mg1—O1—C2313.3 (3)N1—Mg1—C1—N2174.75 (19)
O1—Mg1—N1—C1117.72 (13)Cl1—Mg1—C1—N2130.35 (11)
N2—Mg1—N1—C13.11 (11)Cl1i—Mg1—C1—N212.46 (14)
Cl1—Mg1—N1—C1135.13 (12)Mg1i—Mg1—C1—N276.29 (15)
Cl1i—Mg1—N1—C119.2 (3)O1—Mg1—C1—N3177.1 (12)
Mg1i—Mg1—N1—C1118.06 (13)N2—Mg1—C1—N379.5 (13)
O1—Mg1—N1—C275.3 (3)N1—Mg1—C1—N3105.7 (13)
N2—Mg1—N1—C2170.1 (3)Cl1—Mg1—C1—N350.8 (13)
Cl1—Mg1—N1—C231.8 (3)Cl1i—Mg1—C1—N367.1 (13)
Cl1i—Mg1—N1—C2147.7 (3)Mg1i—Mg1—C1—N33.3 (13)
C1—Mg1—N1—C2167.0 (4)C1—N1—C2—C3123.4 (2)
Mg1i—Mg1—N1—C248.9 (3)Mg1—N1—C2—C372.2 (3)
O1—Mg1—N2—C192.06 (13)C1—N1—C2—C7114.6 (2)
N1—Mg1—N2—C13.08 (11)Mg1—N1—C2—C749.9 (4)
Cl1—Mg1—N2—C174.54 (14)N1—C2—C3—C4178.7 (2)
Cl1i—Mg1—N2—C1170.66 (11)C7—C2—C3—C457.3 (3)
Mg1i—Mg1—N2—C1135.47 (11)C2—C3—C4—C555.8 (4)
O1—Mg1—N2—C887.3 (3)C3—C4—C5—C652.8 (4)
N1—Mg1—N2—C8176.3 (3)C4—C5—C6—C753.0 (4)
Cl1—Mg1—N2—C8106.1 (2)N1—C2—C7—C6179.9 (3)
Cl1i—Mg1—N2—C810.0 (3)C3—C2—C7—C656.7 (3)
C1—Mg1—N2—C8179.4 (3)C5—C6—C7—C255.7 (4)
Mg1i—Mg1—N2—C845.1 (3)C1—N2—C8—C13113.1 (2)
C17—Si2—N3—C10.02 (19)Mg1—N2—C8—C1366.2 (3)
C18—Si2—N3—C1119.9 (2)C1—N2—C8—C9126.0 (2)
C19—Si2—N3—C1119.5 (2)Mg1—N2—C8—C954.7 (3)
C17—Si2—N3—Si1178.41 (14)N2—C8—C9—C10179.88 (18)
C18—Si2—N3—Si158.5 (2)C13—C8—C9—C1057.9 (2)
C19—Si2—N3—Si162.1 (2)C8—C9—C10—C1156.5 (2)
C14—Si1—N3—C11.54 (18)C9—C10—C11—C1252.5 (3)
C16—Si1—N3—C1118.1 (2)C10—C11—C12—C1352.2 (3)
C15—Si1—N3—C1121.89 (19)C11—C12—C13—C856.2 (3)
C14—Si1—N3—Si2176.82 (13)N2—C8—C13—C12178.95 (19)
C16—Si1—N3—Si263.56 (19)C9—C8—C13—C1257.8 (3)
C15—Si1—N3—Si256.46 (19)C23—O1—C20—C2122.1 (5)
C2—N1—C1—N2176.27 (19)Mg1—O1—C20—C21159.4 (4)
Mg1—N1—C1—N24.77 (17)O1—C20—C21—C2211.9 (7)
C2—N1—C1—N31.1 (3)C20—C21—C22—C232.5 (7)
Mg1—N1—C1—N3172.61 (16)C20—O1—C23—C2223.7 (4)
C2—N1—C1—Mg1171.5 (2)Mg1—O1—C23—C22157.8 (3)
C8—N2—C1—N1174.70 (18)C21—C22—C23—O115.7 (6)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mg2(C19H40N3Si2)2Cl2(C4H8O)2]
Mr997.17
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)8.7249 (3), 11.0016 (5), 16.8893 (8)
α, β, γ (°)79.487 (6), 75.211 (6), 72.201 (5)
V3)1482.80 (11)
Z1
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.60 × 0.30 × 0.22
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.340, 0.462
No. of measured, independent and
observed [I > 2σ(I)] reflections
12201, 5485, 4175
Rint0.028
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.141, 1.08
No. of reflections5485
No. of parameters287
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.42

Computer programs: CrystalClear (Rigaku, 2000), CrystalStructure (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mg1—O12.0334 (19)Mg1—Cl1i2.4946 (9)
Mg1—N22.0734 (18)Mg1—Cl12.4171 (9)
Mg1—N12.1247 (17)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The author thanks Yong Zhang of Suzhou University for the data collection.

References

First citationBailey, P. J. & Pace, S. (2001). Coord. Chem. Rev. 214, 91–141.  Web of Science CrossRef CAS Google Scholar
First citationDoring, C. & Kempe, R. (2009). Eur. J. Inorg. Chem. pp. 412–418.  Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLyubov, D. M., Fukin, G. K. & Trifonov, A. A. (2007). Inorg Chem. 46, 11450–11456.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSánchez-Barba, L. F., Hughes, D. L., Humphrey, S. M. & Bochmann, M. (2006). Organometallics, 25, 1012–1020.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds