metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N-Methyl-N′-[1-(pyridin-2-yl)ethyl­­idene]ethane-1,2-di­amine-κ3N,N′,N′′}­bis­(thio­cyanato-κN)zinc(II)

aDepartment of Chemistry and Chemical Engineering, Minjiang University, Fuzhou 350108, People's Republic of China
*Correspondence e-mail: xianwen_li@126.com

(Received 24 May 2011; accepted 25 May 2011; online 4 June 2011)

In the title compound, [Zn(NCS)2(C10H15N3)], the Zn atom is five-coordinated by the three N-donor atoms of the Schiff base ligand and by two N atoms from two thio­cyanate anions, forming a distorted ZnN5 trigonal–bipyramidal coordination geometry for the metal ion. The side chain of the ligand is disordered over two sets of sites in a 0.655 (12):0.345 (12) ratio. In the crystal, mol­ecules are linked by N—H⋯S hydrogen bonds, generating [100] chains.

Related literature

For the biological activity of Schiff base compounds, see: Panneerselvam et al. (2005[Panneerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Krishnan, S. (2005). Eur. J. Med. Chem. 40, 225-229.]); Shi et al. (2007[Shi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558-564.]); Singh et al. (2006[Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147-153.], 2007[Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394-402.]); Zhong et al. (2006[Zhong, X., Yi, J., Sun, J., Wei, H.-L., Liu, W.-S. & Yu, K.-B. (2006). Eur. J. Med. Chem. 41, 1090-1092.]). For the Schiff base complexes we reported previously, see: Li & Qiu (2008a[Li, X.-W. & Qiu, Y. (2008a). Acta Cryst. E64, m113.],b[Li, X.-W. & Qiu, Y. (2008b). Acta Cryst. E64, m218.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCS)2(C10H15N3)]

  • Mr = 358.78

  • Monoclinic, P 21 /n

  • a = 7.6674 (3) Å

  • b = 14.8062 (5) Å

  • c = 14.3766 (6) Å

  • β = 101.853 (2)°

  • V = 1597.30 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.715, Tmax = 0.738

  • 9004 measured reflections

  • 3352 independent reflections

  • 2095 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.02

  • 3352 reflections

  • 201 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N5 1.974 (4)
Zn1—N4 1.986 (4)
Zn1—N2 2.088 (3)
Zn1—N3 2.163 (4)
Zn1—N1 2.195 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯S1i 0.91 2.66 3.551 (5) 165
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have been reported to have excellent biological activity (Shi et al., 2007; Panneerselvam et al., 2005). The metal complexes derived from the Schiff bases also have excellent biological activity (Singh et al., 2006, 2007; Zhong et al., 2006). As a continuation of our work on Schiff base complexes (Li & Qiu, 2008a,b), we report herein the crystal structure of the title zinc complex, (I).

In the title mononuclear zinc(II) complex, the Zn atom is five-coordinated by the three donor atoms (N1, N2, and N3) of the Schiff baes ligand, and two N atoms from two thiocyanate ligands, forming a slightly distorted trigonal-bipyramidal geometry (Fig. 1). The coordinate bond values (Table 1) are within normal ranges.

Related literature top

For the biological activity of Schiff base compounds, see: Panneerselvam et al. (2005); Shi et al. (2007); Singh et al. (2006, 2007); Zhong et al. (2006). For the Schiff base complexes we reported previously, see: Li & Qiu (2008a,b).

Experimental top

The title compound was obtained by the reaction of equimolar quantities (0.1 mmol each) of 2-acetylpyridine, N-methylethane-1,2-diamine, sodium thiocyanate, and zinc acetate in ethanol. Colorless blocks of (I) were obtained by the slow evaporation of the filtrate in air.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

The amino H atoms were located in a difference map and refined with N—H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically (C—H = 0.93–0.97 Å, N—H = 0.91 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). The C9—N3—C10 moiety is disordered over two sites, with occupancies of 0.655 (3) and 0.345 (3).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Only the major component of the disordered group is shown.
{N-Methyl-N'-[1-(pyridin-2-yl)ethylidene]ethane-1,2-diamine- κ3N,N',N''}bis(thiocyanato-κN)zinc(II) top
Crystal data top
[Zn(NCS)2(C10H15N3)]F(000) = 736
Mr = 358.78Dx = 1.492 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2372 reflections
a = 7.6674 (3) Åθ = 2.6–25.1°
b = 14.8062 (5) ŵ = 1.80 mm1
c = 14.3766 (6) ÅT = 298 K
β = 101.853 (2)°Block, colorless
V = 1597.30 (11) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3352 independent reflections
Radiation source: fine-focus sealed tube2095 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 26.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.715, Tmax = 0.738k = 1718
9004 measured reflectionsl = 1811
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0323P)2 + 1.952P]
where P = (Fo2 + 2Fc2)/3
3352 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.46 e Å3
12 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Zn(NCS)2(C10H15N3)]V = 1597.30 (11) Å3
Mr = 358.78Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6674 (3) ŵ = 1.80 mm1
b = 14.8062 (5) ÅT = 298 K
c = 14.3766 (6) Å0.20 × 0.20 × 0.18 mm
β = 101.853 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3352 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2095 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.738Rint = 0.029
9004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04012 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.02Δρmax = 0.46 e Å3
3352 reflectionsΔρmin = 0.46 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.72087 (6)0.07353 (3)0.71636 (3)0.05504 (17)
S11.28221 (17)0.15205 (10)0.89256 (10)0.0835 (4)
S20.3366 (2)0.32564 (11)0.66375 (10)0.1063 (6)
N10.7424 (4)0.0555 (2)0.5676 (2)0.0524 (8)
N20.6777 (4)0.0641 (2)0.6890 (2)0.0559 (8)
N40.9697 (5)0.1140 (3)0.7651 (3)0.0760 (11)
N50.5583 (5)0.1782 (2)0.6923 (2)0.0684 (10)
C10.7390 (5)0.0309 (3)0.5392 (3)0.0515 (9)
C20.7683 (5)0.0539 (3)0.4504 (3)0.0628 (11)
H20.76700.11420.43190.075*
C30.7993 (6)0.0131 (4)0.3901 (3)0.0708 (13)
H30.81930.00150.33030.085*
C40.8009 (6)0.1007 (4)0.4174 (3)0.0706 (13)
H40.82070.14690.37700.085*
C50.7719 (6)0.1192 (3)0.5074 (3)0.0629 (11)
H50.77310.17920.52680.075*
C60.7014 (5)0.0970 (3)0.6107 (3)0.0577 (10)
C70.6971 (7)0.1958 (3)0.5876 (4)0.0877 (15)
H7A0.64420.22840.63250.132*
H7B0.62790.20520.52470.132*
H7C0.81640.21720.59070.132*
C111.1008 (6)0.1300 (3)0.8180 (3)0.0573 (10)
C120.4653 (6)0.2395 (3)0.6815 (3)0.0586 (10)
C80.6362 (7)0.1164 (3)0.7662 (3)0.0810 (14)0.655 (12)
H8A0.55020.16310.74170.097*0.655 (12)
H8B0.74310.14510.80160.097*0.655 (12)
C90.5577 (12)0.0508 (5)0.8318 (5)0.074 (3)0.655 (12)
H9A0.55820.08030.89210.089*0.655 (12)
H9B0.43490.03710.80260.089*0.655 (12)
C100.7978 (14)0.0366 (8)0.9293 (6)0.089 (3)0.655 (12)
H10A0.75860.01600.98490.133*0.655 (12)
H10B0.89640.00040.91960.133*0.655 (12)
H10C0.83460.09860.93770.133*0.655 (12)
N30.6540 (6)0.0290 (3)0.8480 (2)0.0814 (12)0.655 (12)
H3A0.57290.07030.85910.098*0.655 (12)
C8'0.6362 (7)0.1164 (3)0.7662 (3)0.0810 (14)0.345 (12)
H8'A0.50820.12330.75820.097*0.345 (12)
H8'B0.68930.17600.76730.097*0.345 (12)
C9'0.709 (2)0.0678 (7)0.8562 (7)0.097 (7)0.345 (12)
H9'A0.66580.09590.90810.116*0.345 (12)
H9'B0.83820.07190.87020.116*0.345 (12)
C10'0.723 (2)0.0647 (13)0.9393 (8)0.066 (5)0.345 (12)
H10D0.66990.03380.98540.099*0.345 (12)
H10E0.84970.05650.95460.099*0.345 (12)
H10F0.69550.12790.94000.099*0.345 (12)
N3'0.6540 (6)0.0290 (3)0.8480 (2)0.0814 (12)0.345 (12)
H3'A0.53310.03020.83940.098*0.345 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0644 (3)0.0492 (3)0.0518 (3)0.0000 (2)0.0128 (2)0.0037 (2)
S10.0678 (8)0.0948 (10)0.0845 (9)0.0061 (7)0.0077 (6)0.0070 (7)
S20.1434 (14)0.0975 (11)0.0869 (9)0.0621 (10)0.0447 (9)0.0190 (8)
N10.062 (2)0.0456 (19)0.0502 (18)0.0062 (15)0.0126 (15)0.0006 (15)
N20.061 (2)0.0461 (18)0.061 (2)0.0029 (16)0.0128 (16)0.0033 (16)
N40.074 (3)0.082 (3)0.073 (3)0.008 (2)0.018 (2)0.021 (2)
N50.082 (3)0.055 (2)0.069 (2)0.007 (2)0.017 (2)0.0074 (18)
C10.042 (2)0.057 (2)0.053 (2)0.0039 (18)0.0023 (17)0.0080 (19)
C20.055 (3)0.071 (3)0.059 (3)0.008 (2)0.003 (2)0.020 (2)
C30.064 (3)0.100 (4)0.048 (2)0.015 (3)0.010 (2)0.009 (3)
C40.068 (3)0.092 (4)0.054 (3)0.010 (3)0.018 (2)0.012 (2)
C50.072 (3)0.056 (3)0.064 (3)0.005 (2)0.022 (2)0.002 (2)
C60.054 (2)0.044 (2)0.070 (3)0.0030 (18)0.002 (2)0.004 (2)
C70.114 (4)0.048 (3)0.099 (4)0.001 (3)0.015 (3)0.008 (3)
C110.065 (3)0.051 (2)0.060 (3)0.005 (2)0.024 (2)0.003 (2)
C120.075 (3)0.059 (3)0.045 (2)0.002 (2)0.022 (2)0.007 (2)
C80.097 (4)0.060 (3)0.089 (4)0.004 (3)0.025 (3)0.019 (3)
C90.081 (6)0.080 (6)0.062 (4)0.033 (4)0.018 (4)0.005 (4)
C100.111 (7)0.092 (7)0.059 (5)0.030 (5)0.010 (5)0.003 (4)
N30.092 (3)0.097 (3)0.057 (2)0.012 (3)0.020 (2)0.009 (2)
C8'0.097 (4)0.060 (3)0.089 (4)0.004 (3)0.025 (3)0.019 (3)
C9'0.096 (14)0.151 (18)0.044 (8)0.025 (12)0.015 (8)0.013 (9)
C10'0.090 (12)0.066 (10)0.046 (7)0.005 (9)0.025 (8)0.016 (7)
N3'0.092 (3)0.097 (3)0.057 (2)0.012 (3)0.020 (2)0.009 (2)
Geometric parameters (Å, º) top
Zn1—N51.974 (4)C5—H50.9300
Zn1—N41.986 (4)C6—C71.499 (6)
Zn1—N22.088 (3)C7—H7A0.9600
Zn1—N32.163 (4)C7—H7B0.9600
Zn1—N12.195 (3)C7—H7C0.9600
S1—C111.605 (5)C8—C91.559 (7)
S2—C121.601 (5)C8—H8A0.9700
N1—C51.330 (5)C8—H8B0.9700
N1—C11.342 (5)C9—N31.388 (6)
N2—C61.273 (5)C9—H9A0.9700
N2—C81.441 (5)C9—H9B0.9700
N4—C111.154 (5)C10—N31.437 (7)
N5—C121.145 (5)C10—H10A0.9600
C1—C21.383 (5)C10—H10B0.9600
C1—C61.490 (6)C10—H10C0.9600
C2—C31.371 (6)N3—H3A0.9100
C2—H20.9300C9'—H9'A0.9700
C3—C41.354 (6)C9'—H9'B0.9700
C3—H30.9300C10'—H10D0.9600
C4—C51.385 (6)C10'—H10E0.9600
C4—H40.9300C10'—H10F0.9600
N5—Zn1—N4110.56 (16)C6—C7—H7A109.5
N5—Zn1—N2131.51 (14)C6—C7—H7B109.5
N4—Zn1—N2117.70 (15)H7A—C7—H7B109.5
N5—Zn1—N397.92 (16)C6—C7—H7C109.5
N4—Zn1—N399.59 (16)H7A—C7—H7C109.5
N2—Zn1—N379.09 (15)H7B—C7—H7C109.5
N5—Zn1—N195.51 (13)N4—C11—S1179.4 (4)
N4—Zn1—N196.97 (14)N5—C12—S2178.5 (4)
N2—Zn1—N174.85 (12)N2—C8—C9107.8 (4)
N3—Zn1—N1153.44 (15)N2—C8—H8A110.2
C5—N1—C1118.3 (3)C9—C8—H8A110.2
C5—N1—Zn1127.2 (3)N2—C8—H8B110.2
C1—N1—Zn1114.3 (3)C9—C8—H8B110.2
C6—N2—C8124.6 (4)H8A—C8—H8B108.5
C6—N2—Zn1119.6 (3)N3—C9—C8111.9 (5)
C8—N2—Zn1115.5 (3)N3—C9—H9A109.2
C11—N4—Zn1159.8 (4)C8—C9—H9A109.2
C12—N5—Zn1177.7 (4)N3—C9—H9B109.2
N1—C1—C2121.3 (4)C8—C9—H9B109.2
N1—C1—C6114.3 (3)H9A—C9—H9B107.9
C2—C1—C6124.4 (4)N3—C10—H10A109.5
C3—C2—C1119.2 (4)N3—C10—H10B109.5
C3—C2—H2120.4H10A—C10—H10B109.5
C1—C2—H2120.4N3—C10—H10C109.5
C4—C3—C2120.2 (4)H10A—C10—H10C109.5
C4—C3—H3119.9H10B—C10—H10C109.5
C2—C3—H3119.9C9—N3—C10119.7 (7)
C3—C4—C5117.8 (4)C9—N3—Zn1109.1 (3)
C3—C4—H4121.1C10—N3—Zn1114.1 (5)
C5—C4—H4121.1C9—N3—H3A104.0
N1—C5—C4123.3 (4)C10—N3—H3A104.0
N1—C5—H5118.4Zn1—N3—H3A104.0
C4—C5—H5118.4H9'A—C9'—H9'B108.1
N2—C6—C1116.2 (3)H10D—C10'—H10E109.5
N2—C6—C7124.7 (4)H10D—C10'—H10F109.5
C1—C6—C7119.1 (4)H10E—C10'—H10F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S1i0.912.663.551 (5)165
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(NCS)2(C10H15N3)]
Mr358.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.6674 (3), 14.8062 (5), 14.3766 (6)
β (°) 101.853 (2)
V3)1597.30 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.715, 0.738
No. of measured, independent and
observed [I > 2σ(I)] reflections
9004, 3352, 2095
Rint0.029
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.02
No. of reflections3352
No. of parameters201
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.46

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N51.974 (4)Zn1—N32.163 (4)
Zn1—N41.986 (4)Zn1—N12.195 (3)
Zn1—N22.088 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S1i0.912.663.551 (5)165
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank Minjiang University for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X.-W. & Qiu, Y. (2008a). Acta Cryst. E64, m113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X.-W. & Qiu, Y. (2008b). Acta Cryst. E64, m218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPanneerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Krishnan, S. (2005). Eur. J. Med. Chem. 40, 225–229.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558–564.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147–153.  Web of Science CrossRef PubMed Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394–402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhong, X., Yi, J., Sun, J., Wei, H.-L., Liu, W.-S. & Yu, K.-B. (2006). Eur. J. Med. Chem. 41, 1090–1092.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds