organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hydrazinyl-4-methyl-1,3-benzo­thia­zole

aDepartment of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, People's Republic of China, and bCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: naka80@yahoo.cn

(Received 24 May 2011; accepted 26 May 2011; online 11 June 2011)

The title compound, C8H9N3S, is almost planar (r.m.s. deviation = 0.019 Å) apart from the terminal –NH2 grouping [deviation of the N atom = 0.286 (2) Å]. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, generating (001) sheets.

Related literature

For related structures and their biactivity, see Sun & Cui (2008[Sun, Y.-F. & Cui, Y.-P. (2008). Acta Cryst. E64, o690.]); Liu & Liu (2011[Liu, X.-F. & Liu, X.-H. (2011). Acta Cryst. E67, o202.]); Liuet al. (2011a[Liu, X. H., Tan, C. X. & Weng, J. Q. (2011a). Phosphorus Sulfur Silicon Relat. Elem. 186, 552-557.],b[Liu, X. H., Tan, C. X. & Weng, J. Q. (2011b). Phosphorus Sulfur Silicon Relat. Elem. 186, 558-564.]). For the synthesis, see: Patel et al. (2010[Patel, N. B., Khan, I. H. & Rajani, A. D. (2010). Eur. J. Med. Chem. 45, 4293-4299.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N3S

  • Mr = 179.24

  • Monoclinic, P 21

  • a = 3.893 (2) Å

  • b = 7.312 (4) Å

  • c = 14.137 (8) Å

  • β = 93.416 (13)°

  • V = 401.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 113 K

  • 0.28 × 0.18 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.]) Tmin = 0.910, Tmax = 0.967

  • 4186 measured reflections

  • 1864 independent reflections

  • 1614 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.057

  • S = 1.02

  • 1864 reflections

  • 122 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 836 Friedel pairs

  • Flack parameter: −0.09 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3i 0.89 (1) 2.30 (2) 2.996 (3) 135 (2)
N3—H3A⋯N1ii 0.92 (1) 2.21 (1) 3.077 (3) 156 (2)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Sulfur and nitrogen heterocyclic compounds have received considerable attention in recent years because of their medicinal and pesticidal importance, such as 1,3,4-thiadiazoles, pyrimidines, and 1,2,4-triazoles (Liu & Liu, 2011; Liu et al., 2011a,b). For a related structure, see Sun & Cui (2008).

Single-crystal X-ray diffraction analysis reveals that the title compound crystallizes in the monoclinic space group P2(1). As shown in Fig. 1, the benzene and thiazole rings are almost in the same plane. As shown in Fig. 2, there are intermolecular N—H···N hydrogen bonds in the crystal.

Related literature top

For related structures and their biactivity, see Sun & Cui (2008); Liu & Liu (2011); Liu et al. (2011a,b). For the synthesis, see: Patel et al. (2010).

Experimental top

The title compound was prepared according to the literature procedures (Patel et al., (2010). Colourless prisms of (I) were grown by the slow evaporation of an ethanol solution at room temperature.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing for (I).
2-Hydrazinyl-4-methyl-1,3-benzothiazole top
Crystal data top
C8H9N3SF(000) = 188
Mr = 179.24Dx = 1.482 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 3.893 (2) ÅCell parameters from 1356 reflections
b = 7.312 (4) Åθ = 2.9–27.9°
c = 14.137 (8) ŵ = 0.34 mm1
β = 93.416 (13)°T = 113 K
V = 401.7 (4) Å3Prism, colorless
Z = 20.28 × 0.18 × 0.10 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1864 independent reflections
Radiation source: rotating anode1614 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.043
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 1.4°
ω and ϕ scansh = 55
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 99
Tmin = 0.910, Tmax = 0.967l = 1818
4186 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.006P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1864 reflectionsΔρmax = 0.28 e Å3
122 parametersΔρmin = 0.20 e Å3
5 restraintsAbsolute structure: Flack (1983), 836 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (6)
Crystal data top
C8H9N3SV = 401.7 (4) Å3
Mr = 179.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 3.893 (2) ŵ = 0.34 mm1
b = 7.312 (4) ÅT = 113 K
c = 14.137 (8) Å0.28 × 0.18 × 0.10 mm
β = 93.416 (13)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1864 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1614 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.967Rint = 0.043
4186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057Δρmax = 0.28 e Å3
S = 1.02Δρmin = 0.20 e Å3
1864 reflectionsAbsolute structure: Flack (1983), 836 Friedel pairs
122 parametersAbsolute structure parameter: 0.09 (6)
5 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74281 (13)0.41481 (6)0.33097 (3)0.01462 (12)
C50.2809 (5)0.8047 (3)0.18122 (14)0.0144 (5)
N30.9465 (5)0.4807 (2)0.52579 (12)0.0163 (4)
C20.5274 (5)0.4513 (3)0.13713 (13)0.0163 (5)
H2A0.61070.33330.12210.020*
N10.4899 (4)0.7443 (2)0.34709 (11)0.0136 (4)
C40.2524 (5)0.7352 (3)0.08962 (14)0.0158 (5)
H40.14800.80830.04030.019*
C60.4388 (5)0.6942 (3)0.25178 (13)0.0127 (4)
C70.6412 (5)0.6127 (3)0.39382 (13)0.0130 (4)
N20.7110 (4)0.6159 (2)0.49033 (12)0.0150 (4)
C30.3711 (5)0.5633 (3)0.06809 (13)0.0185 (5)
H30.34510.52080.00460.022*
C10.5572 (5)0.5186 (3)0.22906 (13)0.0124 (4)
C80.1482 (5)0.9932 (3)0.20484 (14)0.0182 (5)
H8A0.32961.06180.24040.027*
H8B0.05180.98120.24330.027*
H8C0.08101.05850.14610.027*
H20.761 (6)0.7236 (19)0.5172 (16)0.060 (10)*
H3A0.861 (4)0.423 (3)0.5774 (10)0.043 (7)*
H3B1.153 (3)0.531 (3)0.5428 (12)0.038 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0167 (3)0.0120 (2)0.0151 (2)0.0012 (3)0.00115 (18)0.0003 (2)
C50.0078 (11)0.0166 (11)0.0191 (11)0.0007 (10)0.0026 (9)0.0030 (9)
N30.0141 (11)0.0180 (10)0.0163 (9)0.0006 (8)0.0015 (7)0.0049 (8)
C20.0142 (11)0.0169 (14)0.0180 (10)0.0005 (9)0.0029 (8)0.0029 (9)
N10.0139 (10)0.0126 (9)0.0142 (9)0.0000 (7)0.0007 (7)0.0017 (7)
C40.0124 (12)0.0188 (11)0.0163 (11)0.0008 (9)0.0004 (8)0.0044 (9)
C60.0091 (10)0.0132 (10)0.0160 (10)0.0037 (9)0.0032 (8)0.0004 (9)
C70.0125 (11)0.0137 (10)0.0133 (10)0.0043 (9)0.0033 (9)0.0010 (9)
N20.0186 (11)0.0117 (9)0.0145 (9)0.0011 (8)0.0009 (7)0.0004 (8)
C30.0189 (13)0.0231 (12)0.0133 (10)0.0065 (9)0.0009 (9)0.0015 (10)
C10.0113 (11)0.0129 (11)0.0129 (10)0.0004 (9)0.0005 (8)0.0027 (8)
C80.0167 (13)0.0162 (10)0.0215 (11)0.0010 (10)0.0008 (9)0.0034 (9)
Geometric parameters (Å, º) top
S1—C11.746 (2)N1—C71.289 (2)
S1—C71.756 (2)N1—C61.399 (2)
C5—C41.389 (3)C4—C31.379 (3)
C5—C61.397 (3)C4—H40.9500
C5—C81.516 (3)C6—C11.407 (2)
N3—N21.420 (2)C7—N21.375 (3)
N3—H3A0.923 (9)N2—H20.891 (9)
N3—H3B0.903 (9)C3—H30.9500
C2—C31.387 (3)C8—H8A0.9800
C2—C11.388 (2)C8—H8B0.9800
C2—H2A0.9500C8—H8C0.9800
C1—S1—C787.97 (10)N1—C7—S1117.74 (15)
C4—C5—C6117.47 (18)N2—C7—S1118.61 (15)
C4—C5—C8121.90 (18)C7—N2—N3115.08 (15)
C6—C5—C8120.64 (17)C7—N2—H2117.6 (16)
N2—N3—H3A110.0 (13)N3—N2—H2110.2 (17)
N2—N3—H3B110.7 (14)C4—C3—C2121.44 (19)
H3A—N3—H3B109.6 (12)C4—C3—H3119.3
C3—C2—C1117.26 (17)C2—C3—H3119.3
C3—C2—H2A121.4C2—C1—C6121.80 (18)
C1—C2—H2A121.4C2—C1—S1128.72 (15)
C7—N1—C6109.43 (16)C6—C1—S1109.47 (14)
C3—C4—C5121.98 (19)C5—C8—H8A109.5
C3—C4—H4119.0C5—C8—H8B109.5
C5—C4—H4119.0H8A—C8—H8B109.5
C5—C6—N1124.57 (18)C5—C8—H8C109.5
C5—C6—C1120.04 (17)H8A—C8—H8C109.5
N1—C6—C1115.39 (17)H8B—C8—H8C109.5
N1—C7—N2123.57 (18)
C6—C5—C4—C30.6 (3)N1—C7—N2—N3165.94 (18)
C8—C5—C4—C3179.61 (17)S1—C7—N2—N317.4 (2)
C4—C5—C6—N1179.46 (18)C5—C4—C3—C20.4 (3)
C8—C5—C6—N10.3 (3)C1—C2—C3—C40.5 (3)
C4—C5—C6—C10.9 (3)C3—C2—C1—C60.9 (3)
C8—C5—C6—C1179.27 (16)C3—C2—C1—S1179.19 (14)
C7—N1—C6—C5179.87 (19)C5—C6—C1—C21.1 (3)
C7—N1—C6—C10.3 (2)N1—C6—C1—C2179.26 (17)
C6—N1—C7—N2176.41 (18)C5—C6—C1—S1179.73 (15)
C6—N1—C7—S10.3 (2)N1—C6—C1—S10.6 (2)
C1—S1—C7—N10.54 (17)C7—S1—C1—C2179.11 (18)
C1—S1—C7—N2176.31 (16)C7—S1—C1—C60.61 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.89 (1)2.30 (2)2.996 (3)135 (2)
N3—H3A···N1ii0.92 (1)2.21 (1)3.077 (3)156 (2)
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H9N3S
Mr179.24
Crystal system, space groupMonoclinic, P21
Temperature (K)113
a, b, c (Å)3.893 (2), 7.312 (4), 14.137 (8)
β (°) 93.416 (13)
V3)401.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.28 × 0.18 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.910, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
4186, 1864, 1614
Rint0.043
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.057, 1.02
No. of reflections1864
No. of parameters122
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.20
Absolute structureFlack (1983), 836 Friedel pairs
Absolute structure parameter0.09 (6)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.891 (9)2.298 (18)2.996 (3)135 (2)
N3—H3A···N1ii0.923 (9)2.209 (10)3.077 (3)156.3 (16)
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x+1, y1/2, z+1.
 

Acknowledgements

We thank the Social Practice of the Excellent Engineer Programs of Ningbo University of Technology.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, X.-F. & Liu, X.-H. (2011). Acta Cryst. E67, o202.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, X. H., Tan, C. X. & Weng, J. Q. (2011a). Phosphorus Sulfur Silicon Relat. Elem. 186, 552–557.  CrossRef CAS Google Scholar
First citationLiu, X. H., Tan, C. X. & Weng, J. Q. (2011b). Phosphorus Sulfur Silicon Relat. Elem. 186, 558–564.  CrossRef CAS Google Scholar
First citationPatel, N. B., Khan, I. H. & Rajani, A. D. (2010). Eur. J. Med. Chem. 45, 4293–4299.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-F. & Cui, Y.-P. (2008). Acta Cryst. E64, o690.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds