organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(E)-(2,3-Di­chloro­benzyl­­idene)amino]­phenol

aCollege of Materials Science & Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: nanocrystal11@163.com

(Received 25 May 2011; accepted 25 May 2011; online 4 June 2011)

In the title compound, C13H9Cl2NO, the dihedral angle between the benzene rings is 54.22 (10)°. In the crystal, mol­ecules are linked by O—H⋯N inter­molecular hydrogen bonds, forming a zigzag C(7) chain along the a axis.

Related literature

For the biological properties of Schiff base ligands, see: Bedia et al. (2006[Bedia, K. K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]); Alhadi et al. (2008[Alhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584.]); Nie (2008[Nie, Y. (2008). Acta Cryst. E64, o471.]). For reference bond-length values, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2NO

  • Mr = 266.11

  • Orthorhombic, P 21 21 21

  • a = 6.049 (4) Å

  • b = 10.038 (6) Å

  • c = 19.645 (12) Å

  • V = 1192.8 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.880, Tmax = 0.898

  • 4853 measured reflections

  • 2184 independent reflections

  • 1998 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.072

  • S = 1.17

  • 2184 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 869 Friedel pairs

  • Flack parameter: 0.04 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.99 2.811 (3) 174
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base ligands have received considerable attention during the last decades, mainly because of their structures or for their biological properties (Bedia et al., 2006). We report here the crystal structure of the title new Schiff base compound, (I). In (I) (Fig. 1), the bond lengths and angles are normal and comparable to the values observed in similar compounds (Nie et al., 2008; Fun et al., 2008; Alhadi et al., 2008). The dihedral angle between the two aromatic rings in the Schiff base molecule is 54.22 (10) °, indicating that two these rings are not coplanar. Intermolecular O—H···N hydrogen bonds (Table 1) link the molecules along a axis (Fig. 2).

Related literature top

For the biological properties of Schiff base ligands, see: Bedia et al. (2006). For related structures, see: Fun et al. (2008); Alhadi et al. (2008); Nie (2008). For reference bond-length values, see: Allen et al. (1987).

Experimental top

A mixture of 2,3-dichlorobenzaldehyde (5 mmol), 4-aminophenol (5 mmol) and methanol (40 ml) was refluxed for 2 h. It was then allowed to cool and filtered. Recrystallization of the crude product from methanol yielded yellow blocks of (I).

Refinement top

H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compounds with 50% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
4-[(E)-(2,3-Dichlorobenzylidene)amino]phenol top
Crystal data top
C13H9Cl2NOF(000) = 544
Mr = 266.11Dx = 1.482 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2869 reflections
a = 6.049 (4) Åθ = 2.3–27.2°
b = 10.038 (6) ŵ = 0.52 mm1
c = 19.645 (12) ÅT = 296 K
V = 1192.8 (13) Å3Block, yellow
Z = 40.25 × 0.23 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
2184 independent reflections
Radiation source: fine-focus sealed tube1998 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 77
Tmin = 0.880, Tmax = 0.898k = 812
4853 measured reflectionsl = 2321
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0269P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max < 0.001
S = 1.17Δρmax = 0.15 e Å3
2184 reflectionsΔρmin = 0.14 e Å3
156 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.073 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 869 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (6)
Crystal data top
C13H9Cl2NOV = 1192.8 (13) Å3
Mr = 266.11Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.049 (4) ŵ = 0.52 mm1
b = 10.038 (6) ÅT = 296 K
c = 19.645 (12) Å0.25 × 0.23 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
2184 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1998 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.898Rint = 0.037
4853 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.072Δρmax = 0.15 e Å3
S = 1.17Δρmin = 0.14 e Å3
2184 reflectionsAbsolute structure: Flack (1983), 869 Friedel pairs
156 parametersAbsolute structure parameter: 0.04 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6782 (4)0.13161 (18)0.30064 (9)0.0315 (5)
C20.8717 (4)0.2032 (2)0.29247 (10)0.0380 (5)
H20.98830.19030.32260.046*
C30.8932 (4)0.2937 (2)0.23991 (10)0.0353 (5)
H31.02410.34130.23470.042*
C40.7192 (3)0.31355 (18)0.19496 (10)0.0305 (5)
C50.5261 (4)0.2441 (2)0.20450 (11)0.0389 (5)
H50.40740.25930.17540.047*
C60.5046 (4)0.1522 (2)0.25642 (11)0.0380 (5)
H60.37390.10450.26150.046*
C70.9040 (4)0.3995 (2)0.10174 (10)0.0305 (5)
H71.01600.34060.11380.037*
C80.9356 (3)0.48183 (19)0.04113 (10)0.0302 (5)
C90.7862 (4)0.5815 (2)0.02412 (11)0.0404 (5)
H90.66850.59970.05310.049*
C100.8097 (4)0.6539 (2)0.03507 (13)0.0528 (6)
H100.70810.72030.04570.063*
C110.9837 (5)0.6281 (2)0.07860 (12)0.0502 (6)
H110.99870.67610.11880.060*
C121.1338 (4)0.5315 (2)0.06226 (10)0.0392 (5)
C131.1149 (4)0.45927 (17)0.00259 (10)0.0317 (5)
Cl11.35264 (12)0.50375 (7)0.11774 (3)0.0628 (2)
Cl21.31056 (9)0.33967 (5)0.01639 (3)0.04412 (18)
N10.7322 (3)0.40395 (17)0.13882 (8)0.0321 (4)
O10.6681 (3)0.04560 (15)0.35434 (8)0.0447 (4)
H10.55100.00450.35310.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0295 (12)0.0359 (10)0.0290 (10)0.0003 (9)0.0016 (9)0.0003 (8)
C20.0288 (12)0.0525 (12)0.0326 (11)0.0050 (10)0.0052 (9)0.0053 (9)
C30.0249 (12)0.0454 (12)0.0355 (11)0.0058 (10)0.0016 (9)0.0011 (9)
C40.0271 (12)0.0343 (10)0.0302 (10)0.0027 (9)0.0046 (8)0.0020 (8)
C50.0230 (12)0.0556 (14)0.0382 (12)0.0002 (10)0.0027 (10)0.0068 (10)
C60.0241 (11)0.0480 (12)0.0419 (12)0.0102 (11)0.0010 (9)0.0070 (10)
C70.0270 (11)0.0325 (10)0.0319 (11)0.0014 (9)0.0015 (9)0.0009 (8)
C80.0271 (11)0.0311 (10)0.0323 (10)0.0043 (9)0.0019 (8)0.0004 (8)
C90.0368 (13)0.0421 (11)0.0424 (12)0.0024 (10)0.0006 (11)0.0075 (10)
C100.0516 (16)0.0468 (13)0.0601 (15)0.0043 (13)0.0085 (13)0.0184 (12)
C110.0582 (17)0.0521 (14)0.0403 (13)0.0114 (13)0.0060 (12)0.0166 (11)
C120.0396 (14)0.0467 (12)0.0312 (11)0.0145 (11)0.0007 (10)0.0038 (9)
C130.0323 (12)0.0321 (10)0.0309 (11)0.0072 (8)0.0015 (9)0.0021 (8)
Cl10.0631 (5)0.0830 (5)0.0424 (4)0.0188 (4)0.0200 (3)0.0021 (3)
Cl20.0381 (3)0.0505 (3)0.0437 (3)0.0092 (3)0.0070 (3)0.0034 (2)
N10.0269 (10)0.0360 (9)0.0334 (9)0.0021 (7)0.0006 (8)0.0007 (7)
O10.0372 (10)0.0563 (9)0.0407 (8)0.0109 (8)0.0033 (7)0.0166 (7)
Geometric parameters (Å, º) top
C1—O11.365 (2)C7—H70.9300
C1—C61.379 (3)C8—C91.390 (3)
C1—C21.382 (3)C8—C131.402 (3)
C2—C31.382 (3)C9—C101.378 (3)
C2—H20.9300C9—H90.9300
C3—C41.388 (3)C10—C111.381 (4)
C3—H30.9300C10—H100.9300
C4—C51.373 (3)C11—C121.366 (3)
C4—N11.430 (2)C11—H110.9300
C5—C61.381 (3)C12—C131.383 (3)
C5—H50.9300C12—Cl11.737 (2)
C6—H60.9300C13—Cl21.727 (2)
C7—N11.270 (3)O1—H10.8200
C7—C81.462 (3)
O1—C1—C6123.22 (19)C9—C8—C13118.18 (19)
O1—C1—C2117.18 (18)C9—C8—C7121.20 (19)
C6—C1—C2119.58 (18)C13—C8—C7120.60 (18)
C3—C2—C1120.57 (19)C10—C9—C8121.0 (2)
C3—C2—H2119.7C10—C9—H9119.5
C1—C2—H2119.7C8—C9—H9119.5
C2—C3—C4119.86 (19)C9—C10—C11120.1 (2)
C2—C3—H3120.1C9—C10—H10119.9
C4—C3—H3120.1C11—C10—H10119.9
C5—C4—C3119.06 (18)C12—C11—C10119.6 (2)
C5—C4—N1118.29 (18)C12—C11—H11120.2
C3—C4—N1122.66 (17)C10—C11—H11120.2
C4—C5—C6121.3 (2)C11—C12—C13121.1 (2)
C4—C5—H5119.3C11—C12—Cl1118.21 (17)
C6—C5—H5119.3C13—C12—Cl1120.71 (18)
C1—C6—C5119.6 (2)C12—C13—C8119.9 (2)
C1—C6—H6120.2C12—C13—Cl2119.40 (17)
C5—C6—H6120.2C8—C13—Cl2120.68 (15)
N1—C7—C8123.66 (19)C7—N1—C4117.70 (17)
N1—C7—H7118.2C1—O1—H1109.5
C8—C7—H7118.2
O1—C1—C2—C3179.00 (19)C9—C10—C11—C120.8 (4)
C6—C1—C2—C30.8 (3)C10—C11—C12—C130.2 (3)
C1—C2—C3—C40.2 (3)C10—C11—C12—Cl1179.07 (19)
C2—C3—C4—C51.3 (3)C11—C12—C13—C82.0 (3)
C2—C3—C4—N1178.85 (18)Cl1—C12—C13—C8179.16 (15)
C3—C4—C5—C62.1 (3)C11—C12—C13—Cl2179.20 (17)
N1—C4—C5—C6177.97 (19)Cl1—C12—C13—Cl20.4 (2)
O1—C1—C6—C5178.0 (2)C9—C8—C13—C122.8 (3)
C2—C1—C6—C50.0 (3)C7—C8—C13—C12175.34 (18)
C4—C5—C6—C11.5 (3)C9—C8—C13—Cl2178.46 (15)
N1—C7—C8—C96.8 (3)C7—C8—C13—Cl23.4 (3)
N1—C7—C8—C13171.26 (19)C8—C7—N1—C4177.33 (18)
C13—C8—C9—C101.8 (3)C5—C4—N1—C7133.5 (2)
C7—C8—C9—C10176.3 (2)C3—C4—N1—C746.7 (3)
C8—C9—C10—C110.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.992.811 (3)174
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO
Mr266.11
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.049 (4), 10.038 (6), 19.645 (12)
V3)1192.8 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.25 × 0.23 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.880, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
4853, 2184, 1998
Rint0.037
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 1.17
No. of reflections2184
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14
Absolute structureFlack (1983), 869 Friedel pairs
Absolute structure parameter0.04 (6)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.992.811 (3)174
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

This project was supported by the Zhejiang Provincial Natural Science Foundation of China (grant No. Y4110290).

References

First citationAlhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBedia, K. K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNie, Y. (2008). Acta Cryst. E64, o471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds