metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m938-m939

catena-Poly[bis­­(μ3-2-methyl-3,5-di­nitro­benzoato)disilver(I)]

aDepartment of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 28 May 2011; accepted 10 June 2011; online 18 June 2011)

In the title coordination polymer, [Ag2(C8H5N2O6)2]n, the silver ion is coordinated to three O atoms from three different anions in an approximate T-shape with one bond much longer than the other two. The polyhedral connectivity leads to [100] chains containing alternating centrosymmetric four-rings and eight-rings, with a short d10d10 Ag⋯Ag interaction [2.8846 (4) Å] across the latter. The nitro groups are oriented at dihedral angles of 21.2 (5) and 64.3 (3)° with respect to the aromatic ring of the ligand. A C—H⋯O inter­action occurs in the crystal.

Related literature

For background and related structures, see: Danish, Ghafoor, Ahmad et al. (2011[Danish, M., Ghafoor, S., Ahmad, N., Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m519.]); Danish, Ghafoor, Tahir et al. (2011[Danish, M., Ghafoor, S., Tahir, M. N., Ahmad, N. & Nisa, M. (2011). Acta Cryst. E67, m168-m169.]); Danish, Tahir et al. (2011[Danish, M., Tahir, M. N., Ghafoor, S., Ahmad, N. & Nisa, M. (2011). Acta Cryst. E67, m734-m735.]); Tahir et al. (1996[Tahir, M. N., Ülkü, D. & Muvsumov, E. M. (1996). Acta Cryst. C52, 593-595.], 2009[Tahir, M. N., Atakol, O. & Tariq, M. I. (2009). Acta Cryst. E65, m580.]); Ülkü et al. (1996[Ülkü, D., Tahir, M. N. & Movsumov, E. M. (1996). Acta Cryst. C52, 2678-2680.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C8H5N2O6)2]

  • Mr = 333.01

  • Monoclinic, P 21 /n

  • a = 5.7073 (3) Å

  • b = 11.9204 (6) Å

  • c = 14.5117 (7) Å

  • β = 90.493 (2)°

  • V = 987.24 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.560, Tmax = 0.630

  • 9039 measured reflections

  • 2406 independent reflections

  • 1786 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.071

  • S = 1.02

  • 2406 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—O2i 2.190 (2)
Ag1—O1 2.227 (2)
Ag1—O1ii 2.502 (2)
O2i—Ag1—O1 162.11 (8)
O2i—Ag1—O1ii 117.90 (8)
O1—Ag1—O1ii 76.52 (8)
Symmetry codes: (i) -x-1, -y, -z; (ii) -x, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O5iii 0.93 2.34 3.227 (4) 159
Symmetry code: (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) is in continuation of the synthesis of metal complexes of 3,5-dinitro-o-toluic acid. We have reported the crystal structures of (II) i.e., (methanol-κO)(2-methyl-3,5-dinitrobenzoato-κO)triphenyltin(IV) (Danish, Ghafoor, Ahmad et al., 2011) and (III) i.e., tetrakis(µ2-2-methyl-3,5-dinitrobenzoato-κ2O1:O1')bis[aquacopper(II)] (Danish, Ghafoor, Tahir et al., 2011).

We also reported the crystal structures of silver complexes such as (IV) i.e., Poly[bis(p-nitrosalicylato-O:O')disilver(I)—O3:Ag';Ag:O3'] (Tahir et al., 1996), (V) i.e., Poly[bis(3,5-dinitrobenzoato-O1:O2)disilver(I)—O2:Ag;Ag':O2'] (Ülkü et al., 1996), (VI) i.e., Poly[(µ-benzene-1,2,4,5-tetracarboxylato)tetrasilver(I)] (Tahir et al., 2009) and (VII) catena-Poly[bis(µ3-2-methylbenzoato) disilver(I)] (Danish, Tahir et al., 2011).

In the title compound, toluene group A (C2—C8) is planar with r.m.s. deviation of 0.0139 Å. The silver-carboxylato group B (Ag1/O1/C1/O2) is also planar with r.m.s deviation of 0.0003 Å. The dihedral angle between A/B is 45.92 (11)°. The nitro groups C (O3/N1/O4) and D (O5/N2/O6) are of course planar. The dihedral angle between A/C, A/D and C/D is 64.26 (27), 21.22 (45) and 55.02 (37)°, respectively. The title compound consists of conventional centrosymmetric dimers with central core E (Ag1/O1/C1/O2/Ag1i/O2i/C1i/O1i: symmetry code i=-x - 1, -y, -z). There exist intermolecular H-bondings of C—H···O type (Table 2, Fig. 2) to form the R22(10) ring motifs (Bernstein et al., 1995). These chains are interlinked to form essentially three-dimensional polymeric chains. In the central core the range of Ag—O bond distances is [2.190 (2)–2.227 (2) Å] whereas the same for adjacent molecules is 2.502 (2) Å. The Ag···Ag distance for central core is 2.8846 (4) Å, whereas it is 3.7173 (4) Å for the symmetry related adjacent molecules forming four membered ring F (Ag2O2). The important bond distances and bond angles are given in Table 1.

Related literature top

For background and related structures, see: Danish, Ghafoor, Ahmad et al. (2011); Danish, Ghafoor, Tahir et al. (2011); Danish, Tahir et al. (2011)); Tahir et al. (1996, 2009); Ülkü et al. (1996). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Aqueous solutions of silver nitrate (0.17 g, 1.0 mmol) and the sodium salt of 2-methyl-3,5-dinitrobenzoic acid (0.248 g, 1.0 mmol) were prepared separately in 5.0 ml and 10.0 ml of water, respectively. The aqueous silver nitrate was dropwise added to the solution of sodium 2-methyl-3,5-dinitrobenzoate with continuous stirring till white precipitates were appeared. The reaction mixture was filtered after treatment with liquid ammonia. It was concentrated and kept for crystallization in dark. Colourless prisms of (I) appeared within two months.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing of (I) showing the polymeric chains.
catena-Poly[bis(µ3-2-methyl-3,5-dinitrobenzoato)disilver(I)] top
Crystal data top
[Ag2(C8H5N2O6)2]F(000) = 648
Mr = 333.01Dx = 2.240 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1786 reflections
a = 5.7073 (3) Åθ = 2.2–28.3°
b = 11.9204 (6) ŵ = 2.06 mm1
c = 14.5117 (7) ÅT = 296 K
β = 90.493 (2)°Prism, colorless
V = 987.24 (9) Å30.32 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2406 independent reflections
Radiation source: fine-focus sealed tube1786 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 7.50 pixels mm-1θmax = 28.3°, θmin = 2.2°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1515
Tmin = 0.560, Tmax = 0.630l = 1918
9039 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0305P)2 + 0.132P]
where P = (Fo2 + 2Fc2)/3
2406 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ag2(C8H5N2O6)2]V = 987.24 (9) Å3
Mr = 333.01Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.7073 (3) ŵ = 2.06 mm1
b = 11.9204 (6) ÅT = 296 K
c = 14.5117 (7) Å0.32 × 0.24 × 0.22 mm
β = 90.493 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2406 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1786 reflections with I > 2σ(I)
Tmin = 0.560, Tmax = 0.630Rint = 0.037
9039 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.02Δρmax = 0.37 e Å3
2406 reflectionsΔρmin = 0.47 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.29331 (4)0.02958 (3)0.051068 (17)0.04430 (11)
O10.1299 (4)0.0013 (2)0.08689 (15)0.0381 (6)
O20.4558 (4)0.0300 (2)0.16610 (16)0.0459 (6)
O30.1538 (7)0.2338 (3)0.4925 (2)0.0946 (12)
O40.1858 (6)0.2829 (3)0.4489 (2)0.0870 (11)
O50.5695 (4)0.0999 (3)0.40124 (18)0.0609 (8)
O60.3756 (5)0.2134 (2)0.31332 (19)0.0623 (8)
N10.0174 (6)0.2210 (2)0.4468 (2)0.0477 (8)
N20.4018 (4)0.1237 (3)0.35194 (18)0.0400 (7)
C10.2392 (5)0.0204 (2)0.1589 (2)0.0276 (6)
C20.0938 (5)0.0338 (2)0.24522 (19)0.0252 (6)
C30.1291 (5)0.1216 (2)0.3078 (2)0.0282 (6)
C40.0286 (5)0.1253 (3)0.3821 (2)0.0319 (7)
C50.2037 (5)0.0491 (3)0.3986 (2)0.0341 (7)
H50.30500.05620.44880.041*
C60.2220 (5)0.0381 (3)0.3373 (2)0.0289 (6)
C70.0803 (5)0.0451 (2)0.26043 (19)0.0271 (6)
H70.10160.10310.21840.032*
C80.3140 (6)0.2095 (3)0.2935 (3)0.0455 (9)
H8A0.34690.21710.22880.068*
H8B0.25920.27990.31750.068*
H8C0.45410.18770.32490.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02496 (14)0.0754 (2)0.03242 (15)0.00299 (13)0.00920 (10)0.00362 (13)
O10.0238 (10)0.0648 (16)0.0257 (12)0.0004 (10)0.0030 (9)0.0048 (10)
O20.0195 (10)0.0871 (19)0.0311 (12)0.0002 (11)0.0038 (9)0.0001 (12)
O30.122 (3)0.078 (2)0.085 (3)0.005 (2)0.052 (2)0.0341 (19)
O40.094 (2)0.053 (2)0.114 (3)0.0129 (17)0.012 (2)0.0364 (18)
O50.0420 (14)0.088 (2)0.0518 (16)0.0154 (14)0.0241 (12)0.0037 (14)
O60.0634 (17)0.0575 (18)0.0657 (19)0.0282 (14)0.0176 (14)0.0220 (14)
N10.067 (2)0.0365 (17)0.0391 (17)0.0022 (17)0.0016 (16)0.0086 (13)
N20.0325 (14)0.0564 (19)0.0311 (15)0.0101 (14)0.0058 (11)0.0007 (13)
C10.0239 (14)0.0316 (16)0.0271 (15)0.0053 (13)0.0045 (12)0.0057 (12)
C20.0201 (13)0.0339 (17)0.0215 (14)0.0055 (13)0.0004 (11)0.0034 (12)
C30.0272 (14)0.0289 (16)0.0285 (16)0.0013 (13)0.0051 (12)0.0043 (12)
C40.0389 (17)0.0283 (16)0.0286 (16)0.0047 (14)0.0031 (13)0.0035 (12)
C50.0374 (17)0.0390 (19)0.0257 (16)0.0034 (14)0.0075 (13)0.0031 (12)
C60.0230 (14)0.0376 (18)0.0260 (15)0.0014 (13)0.0012 (12)0.0004 (13)
C70.0252 (14)0.0330 (18)0.0230 (14)0.0047 (12)0.0009 (12)0.0034 (11)
C80.0414 (18)0.039 (2)0.056 (2)0.0103 (16)0.0047 (17)0.0006 (16)
Geometric parameters (Å, º) top
Ag1—O2i2.190 (2)C1—C21.505 (4)
Ag1—O12.227 (2)C2—C71.384 (4)
Ag1—O1ii2.502 (2)C2—C31.402 (4)
Ag1—Ag1i2.8845 (5)C3—C41.399 (4)
O1—C11.249 (4)C3—C81.500 (4)
O1—Ag1ii2.502 (2)C4—C51.370 (4)
O2—C11.247 (3)C5—C61.373 (4)
O2—Ag1i2.190 (2)C5—H50.9300
O3—N11.195 (4)C6—C71.375 (4)
O4—N11.212 (4)C7—H70.9300
O5—N21.223 (3)C8—H8A0.9600
O6—N21.216 (4)C8—H8B0.9600
N1—C41.479 (4)C8—H8C0.9600
N2—C61.462 (4)
O2i—Ag1—O1162.11 (8)C4—C3—C2115.3 (3)
O2i—Ag1—O1ii117.90 (8)C4—C3—C8122.1 (3)
O1—Ag1—O1ii76.52 (8)C2—C3—C8122.5 (3)
O2i—Ag1—Ag1i81.95 (6)C5—C4—C3125.3 (3)
O1—Ag1—Ag1i80.74 (6)C5—C4—N1115.8 (3)
O1ii—Ag1—Ag1i150.00 (5)C3—C4—N1118.8 (3)
C1—O1—Ag1125.13 (18)C4—C5—C6116.6 (3)
C1—O1—Ag1ii129.30 (18)C4—C5—H5121.7
Ag1—O1—Ag1ii103.48 (8)C6—C5—H5121.7
C1—O2—Ag1i125.3 (2)C5—C6—C7121.6 (3)
O3—N1—O4124.0 (3)C5—C6—N2119.5 (3)
O3—N1—C4119.4 (3)C7—C6—N2118.9 (3)
O4—N1—C4116.6 (3)C6—C7—C2120.3 (3)
O6—N2—O5124.5 (3)C6—C7—H7119.8
O6—N2—C6117.6 (3)C2—C7—H7119.8
O5—N2—C6117.9 (3)C3—C8—H8A109.5
O2—C1—O1126.3 (3)C3—C8—H8B109.5
O2—C1—C2117.4 (3)H8A—C8—H8B109.5
O1—C1—C2116.3 (2)C3—C8—H8C109.5
C7—C2—C3120.7 (3)H8A—C8—H8C109.5
C7—C2—C1116.8 (3)H8B—C8—H8C109.5
C3—C2—C1122.5 (3)
O2i—Ag1—O1—C119.3 (5)C2—C3—C4—C52.3 (4)
O1ii—Ag1—O1—C1164.8 (3)C8—C3—C4—C5178.9 (3)
Ag1i—Ag1—O1—C14.5 (2)C2—C3—C4—N1174.6 (3)
O2i—Ag1—O1—Ag1ii145.5 (3)C8—C3—C4—N12.0 (4)
O1ii—Ag1—O1—Ag1ii0.0O3—N1—C4—C5118.4 (4)
Ag1i—Ag1—O1—Ag1ii160.29 (8)O4—N1—C4—C562.5 (4)
Ag1i—O2—C1—O17.0 (5)O3—N1—C4—C364.4 (4)
Ag1i—O2—C1—C2174.26 (19)O4—N1—C4—C3114.7 (4)
Ag1—O1—C1—O20.1 (5)C3—C4—C5—C60.8 (5)
Ag1ii—O1—C1—O2160.7 (2)N1—C4—C5—C6177.8 (3)
Ag1—O1—C1—C2178.61 (18)C4—C5—C6—C73.6 (5)
Ag1ii—O1—C1—C220.6 (4)C4—C5—C6—N2178.7 (3)
O2—C1—C2—C7134.2 (3)O6—N2—C6—C5160.4 (3)
O1—C1—C2—C744.6 (4)O5—N2—C6—C520.4 (4)
O2—C1—C2—C346.2 (4)O6—N2—C6—C721.8 (4)
O1—C1—C2—C3135.0 (3)O5—N2—C6—C7157.4 (3)
C7—C2—C3—C42.7 (4)C5—C6—C7—C23.2 (5)
C1—C2—C3—C4176.9 (3)N2—C6—C7—C2179.1 (3)
C7—C2—C3—C8179.3 (3)C3—C2—C7—C60.2 (4)
C1—C2—C3—C80.2 (4)C1—C2—C7—C6179.4 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O5iii0.932.343.227 (4)159
Symmetry code: (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag2(C8H5N2O6)2]
Mr333.01
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.7073 (3), 11.9204 (6), 14.5117 (7)
β (°) 90.493 (2)
V3)987.24 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.32 × 0.24 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.560, 0.630
No. of measured, independent and
observed [I > 2σ(I)] reflections
9039, 2406, 1786
Rint0.037
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.071, 1.02
No. of reflections2406
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.47

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Ag1—O2i2.190 (2)Ag1—O1ii2.502 (2)
Ag1—O12.227 (2)
O2i—Ag1—O1162.11 (8)O1—Ag1—O1ii76.52 (8)
O2i—Ag1—O1ii117.90 (8)
Symmetry codes: (i) x1, y, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O5iii0.932.343.227 (4)159
Symmetry code: (iii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Ex-Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDanish, M., Ghafoor, S., Ahmad, N., Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDanish, M., Ghafoor, S., Tahir, M. N., Ahmad, N. & Nisa, M. (2011). Acta Cryst. E67, m168–m169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDanish, M., Tahir, M. N., Ghafoor, S., Ahmad, N. & Nisa, M. (2011). Acta Cryst. E67, m734–m735.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Atakol, O. & Tariq, M. I. (2009). Acta Cryst. E65, m580.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTahir, M. N., Ülkü, D. & Muvsumov, E. M. (1996). Acta Cryst. C52, 593–595.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationÜlkü, D., Tahir, M. N. & Movsumov, E. M. (1996). Acta Cryst. C52, 2678–2680.  CSD CrossRef Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m938-m939
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds