metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m876-m877

{N,N′-Bis[1-(pyridin-2-yl)ethyl­­idene]­propane-1,3-di­amine}­(thio­cyanato-κN)copper(II) tetra­fluoridoborate

aExperimental Center, Linyi University, Linyi Shandong 276005, People's Republic of China
*Correspondence e-mail: xiaoerduoaa@hotmail.com

(Received 30 May 2011; accepted 31 May 2011; online 11 June 2011)

In the title compound, [Cu(NCS)(C17H20N4)]BF4, the CuII ion is five-coordinated by the four N atoms of the tetra­dentate Schiff base ligand and one N atom of a thio­cyanate ligand, thereby forming a square-pyramidal CuN5 ccoordination geometry. The dihedral angle between the pyridine rings of the Schiff base is 55.58 (14)°. The F atoms of the tetra­fluoridoborate anion are disordered over two sets of sites with occupancies of 0.614 (3) and 0.386 (3). In the crystal, the components are linked by C—H⋯F inter­actions.

Related literature

For background on the use of copper(II) complexes with Schiff bases in coordination chemistry and biological chemistry, see: Adhikary et al. (2009[Adhikary, C., Sen, R., Bocelli, G., Cantoni, A., Solzi, M., Chaudhuri, S. & Koner, S. (2009). J. Coord. Chem. 62, 3573-3582.]); Al-Karawi (2009[Al-Karawi, A. J. M. (2009). Transition Met. Chem. 34, 891-897.]); Xiao & Zhang (2009[Xiao, J.-M. & Zhang, W. (2009). Inorg. Chem. Commun. 12, 1175-1178.]); Rajasekar et al. (2010[Rajasekar, M., Sreedaran, S., Prabu, R., Narayanan, V., Jegadeesh, R., Raaman, N. & Rahiman, A. K. (2010). J. Coord. Chem. 63, 136-146.]); Sang & Lin (2010[Sang, Y.-L. & Lin, X.-S. (2010). J. Coord. Chem. 63, 316-322.]); Qin et al. (2010[Qin, D.-D., Yang, Z.-Y., Zhang, F.-H., Du, B., Wang, P. & Li, T.-R. (2010). Inorg. Chem. Commun. 13, 727-729.]). For a related copper(II) complex that we reported recently, see: Liu (2010[Liu, L.-J. (2010). Acta Cryst. E66, m939.]). For related copper complexes with square-pyramidal coordination, see: Liu et al. (1997[Liu, C.-M., Xiong, R.-G., You, X.-Z., Fun, H.-K. & Sivakumar, K. (1997). Polyhedron, 16, 119-123.]); Chattopadhyay et al. (2006[Chattopadhyay, S., Drew, M. G. B. & Ghosh, A. (2006). Inorg. Chim. Acta, 359, 4519-4525.]); Rahaman et al. (2005[Rahaman, S. H., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 3091-3097.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)(C17H20N4)]BF4

  • Mr = 488.80

  • Monoclinic, P 21 /c

  • a = 9.5057 (7) Å

  • b = 13.7527 (11) Å

  • c = 16.1902 (13) Å

  • β = 101.200 (1)°

  • V = 2076.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 298 K

  • 0.33 × 0.30 × 0.28 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.692, Tmax = 0.729

  • 17908 measured reflections

  • 5059 independent reflections

  • 3368 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 1.03

  • 5059 reflections

  • 310 parameters

  • 56 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N2 1.986 (2)
Cu1—N3 2.003 (2)
Cu1—N4 2.021 (2)
Cu1—N1 2.063 (2)
Cu1—N5 2.091 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F4i 0.93 2.49 3.416 (8) 176
C7—H7B⋯F4i 0.96 2.34 3.234 (6) 155
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Copper(II) complexes with Schiff bases have been widely investigated in coordination chemistry and biological chemistry (Adhikary et al., 2009; Al-Karawi, 2009; Xiao & Zhang, 2009; Rajasekar et al., 2010; Sang & Lin, 2010; Qin et al., 2010). As a continuation of our work on the Schiff base copper(II) complexes (Liu, 2010), in the present paper, the title new copper complex is reported.

The title compound contains a mononuclear copper(II) complex cation and a disordered fluoroborate anion, Fig. 1. The CuII atom in the complex is five-coordinated by the four N atoms of the Schiff base ligand, and by one N atom of a thiocyanate ligand, forming a square-pyramidal geometry. The bond lengths (Table 1) related to the Cu atom are comparable with those observed in similar copper complexes with square-pyramidal geometry (Liu et al., 1997; Chattopadhyay et al., 2006; Rahaman et al., 2005).

Related literature top

For background on the use of copper(II) complexes with Schiff bases in coordination chemistry and biological chemistry, see: Adhikary et al. (2009); Al-Karawi (2009); Xiao & Zhang (2009); Rajasekar et al. (2010); Sang & Lin (2010); Qin et al. (2010). For the related copper(II) complex that we reported recently, see: Liu (2010). For related copper complexes with square-pyramidal coordination, see: Liu et al. (1997); Chattopadhyay et al. (2006); Rahaman et al. (2005).

Experimental top

2-Acetylpyridine (0.2 mmol, 24.2 mg), propane-1,3-diamine (0.1 mmol, 7.4 mg), ammonium thiocyanate (0.1 mmol, 7.6 mg), copper acetate (0.1 mmol, 19.9 mg), and ammonium fluoroborate (0.1 mmol, 10.5 mg) were mixed and stirred in methanol (20 ml) at reflux for 2 h, to give a blue solution. The solution was cooled to room temperature, and blue block-shaped single crystals were formed by slow evaporation of the solution in air.

Refinement top

H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). The fluoroborate anion is disordered over two sites, with occupancies of 0.614 (3) and 0.386 (3).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with 30% probability displacement ellipsoids. Only the major component of the disordered fluoroborate group is shown.
{N,N'-Bis[1-(pyridin-2-yl)ethylidene]propane-1,3- diamine}thiocyanatocopper(II) tetrafluoridoborate top
Crystal data top
[Cu(NCS)(C17H20N4)]BF4F(000) = 996
Mr = 488.80Dx = 1.564 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5057 (7) ÅCell parameters from 4043 reflections
b = 13.7527 (11) Åθ = 2.5–25.1°
c = 16.1902 (13) ŵ = 1.20 mm1
β = 101.200 (1)°T = 298 K
V = 2076.2 (3) Å3Block, blue
Z = 40.33 × 0.30 × 0.28 mm
Data collection top
Bruker APEXII CCD
diffractometer
5059 independent reflections
Radiation source: fine-focus sealed tube3368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1012
Tmin = 0.692, Tmax = 0.729k = 1818
17908 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.3601P]
where P = (Fo2 + 2Fc2)/3
5059 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 0.35 e Å3
56 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cu(NCS)(C17H20N4)]BF4V = 2076.2 (3) Å3
Mr = 488.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5057 (7) ŵ = 1.20 mm1
b = 13.7527 (11) ÅT = 298 K
c = 16.1902 (13) Å0.33 × 0.30 × 0.28 mm
β = 101.200 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5059 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3368 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.729Rint = 0.034
17908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03956 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
5059 reflectionsΔρmin = 0.28 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.86559 (4)0.35520 (2)0.20844 (2)0.04286 (12)
S11.20466 (9)0.30423 (6)0.02388 (5)0.0610 (2)
N10.8455 (2)0.22227 (15)0.26403 (13)0.0417 (5)
N20.7105 (2)0.29716 (16)0.12272 (13)0.0443 (5)
N30.7727 (2)0.48651 (16)0.19522 (13)0.0445 (5)
N40.9890 (2)0.42656 (15)0.30527 (13)0.0431 (5)
N51.0234 (3)0.33564 (18)0.13614 (17)0.0594 (7)
C10.7394 (3)0.16805 (18)0.21868 (16)0.0409 (6)
C20.7017 (3)0.0789 (2)0.24686 (18)0.0506 (7)
H20.62810.04270.21490.061*
C30.7750 (4)0.0439 (2)0.3233 (2)0.0594 (8)
H30.75130.01600.34350.071*
C40.8819 (4)0.0983 (2)0.36833 (19)0.0593 (8)
H40.93330.07570.41950.071*
C50.9139 (3)0.1878 (2)0.33747 (18)0.0523 (7)
H50.98610.22530.36940.063*
C60.6669 (3)0.21236 (19)0.13808 (16)0.0424 (6)
C70.5498 (3)0.1593 (2)0.0812 (2)0.0595 (8)
H7A0.45920.18880.08380.089*
H7B0.54910.09260.09860.089*
H7C0.56560.16230.02440.089*
C80.6416 (4)0.3483 (2)0.04519 (18)0.0578 (8)
H8A0.53830.34460.03930.069*
H8B0.66760.31660.00320.069*
C90.6869 (3)0.4539 (2)0.04699 (17)0.0540 (7)
H9A0.78850.45690.04590.065*
H9B0.63580.48560.00350.065*
C100.6597 (3)0.5092 (2)0.12256 (17)0.0572 (8)
H10A0.65880.57850.11120.069*
H10B0.56700.49120.13450.069*
C110.8076 (3)0.54422 (19)0.25782 (17)0.0455 (6)
C120.7350 (4)0.6387 (2)0.2680 (2)0.0727 (10)
H12A0.79470.69150.25680.109*
H12B0.71870.64390.32450.109*
H12C0.64480.64140.22910.109*
C130.9330 (3)0.51342 (18)0.32143 (16)0.0421 (6)
C140.9964 (3)0.5691 (2)0.38931 (17)0.0520 (7)
H140.95560.62800.40020.062*
C151.1200 (3)0.5373 (2)0.44084 (18)0.0569 (8)
H151.16270.57380.48740.068*
C161.1795 (3)0.4511 (2)0.42266 (18)0.0564 (8)
H161.26400.42860.45600.068*
C171.1114 (3)0.3979 (2)0.35371 (19)0.0526 (7)
H171.15290.34010.34080.063*
C181.0978 (3)0.32353 (18)0.08884 (17)0.0418 (6)
B10.5510 (4)0.3543 (3)0.3428 (2)0.0678 (11)0.614 (8)
F10.5253 (15)0.3475 (8)0.2600 (4)0.138 (4)0.614 (8)
F20.6776 (6)0.3143 (6)0.3830 (3)0.130 (3)0.614 (8)
F30.4436 (7)0.3062 (7)0.3717 (3)0.140 (3)0.614 (8)
F40.5594 (10)0.4452 (3)0.3778 (4)0.153 (3)0.614 (8)
B1'0.5510 (4)0.3543 (3)0.3428 (2)0.0678 (11)0.386 (8)
F1'0.527 (2)0.3819 (11)0.2591 (5)0.116 (4)0.386 (8)
F2'0.5547 (12)0.2555 (4)0.3521 (5)0.110 (3)0.386 (8)
F3'0.4465 (10)0.3895 (9)0.3752 (5)0.112 (4)0.386 (8)
F4'0.6822 (10)0.3896 (10)0.3720 (6)0.140 (5)0.386 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0456 (2)0.03860 (18)0.0420 (2)0.00179 (14)0.00258 (14)0.00137 (13)
S10.0590 (5)0.0726 (5)0.0545 (5)0.0038 (4)0.0188 (4)0.0015 (4)
N10.0429 (13)0.0401 (11)0.0416 (12)0.0034 (10)0.0073 (10)0.0000 (9)
N20.0466 (14)0.0464 (13)0.0386 (12)0.0007 (10)0.0055 (10)0.0018 (10)
N30.0445 (13)0.0446 (12)0.0440 (12)0.0077 (10)0.0078 (10)0.0055 (10)
N40.0427 (13)0.0398 (11)0.0458 (12)0.0009 (10)0.0059 (10)0.0008 (9)
N50.0611 (17)0.0551 (15)0.0660 (17)0.0031 (13)0.0226 (15)0.0104 (13)
C10.0391 (15)0.0404 (14)0.0455 (15)0.0049 (11)0.0141 (12)0.0029 (11)
C20.0499 (17)0.0439 (15)0.0594 (18)0.0006 (13)0.0140 (14)0.0017 (13)
C30.066 (2)0.0422 (16)0.072 (2)0.0067 (15)0.0195 (17)0.0127 (15)
C40.066 (2)0.0563 (18)0.0538 (18)0.0100 (16)0.0063 (15)0.0111 (14)
C50.0571 (19)0.0519 (16)0.0443 (15)0.0035 (14)0.0012 (13)0.0039 (13)
C60.0376 (15)0.0458 (15)0.0449 (15)0.0022 (12)0.0109 (12)0.0044 (12)
C70.0503 (19)0.0624 (19)0.0613 (19)0.0083 (15)0.0005 (15)0.0012 (15)
C80.059 (2)0.0634 (19)0.0449 (16)0.0037 (15)0.0039 (14)0.0073 (14)
C90.0571 (19)0.0591 (18)0.0427 (15)0.0018 (14)0.0020 (13)0.0125 (13)
C100.0585 (19)0.0557 (17)0.0535 (17)0.0154 (15)0.0006 (15)0.0094 (14)
C110.0482 (16)0.0412 (14)0.0502 (16)0.0020 (12)0.0171 (13)0.0019 (12)
C120.077 (2)0.0548 (19)0.084 (2)0.0179 (17)0.009 (2)0.0135 (17)
C130.0466 (16)0.0378 (13)0.0450 (14)0.0036 (11)0.0163 (12)0.0003 (11)
C140.065 (2)0.0424 (14)0.0514 (17)0.0083 (14)0.0187 (15)0.0076 (13)
C150.066 (2)0.0581 (18)0.0460 (16)0.0184 (16)0.0084 (15)0.0048 (14)
C160.0533 (18)0.0627 (19)0.0493 (16)0.0093 (15)0.0002 (14)0.0076 (14)
C170.0503 (18)0.0466 (15)0.0583 (18)0.0014 (13)0.0039 (14)0.0017 (13)
C180.0446 (16)0.0311 (12)0.0472 (15)0.0029 (11)0.0025 (13)0.0000 (11)
B10.072 (3)0.071 (3)0.064 (3)0.023 (2)0.021 (2)0.008 (2)
F10.180 (6)0.172 (8)0.065 (4)0.003 (6)0.029 (4)0.006 (3)
F20.109 (5)0.147 (6)0.138 (4)0.076 (5)0.034 (4)0.016 (4)
F30.116 (5)0.208 (8)0.098 (3)0.066 (6)0.027 (3)0.015 (4)
F40.190 (7)0.075 (3)0.175 (5)0.035 (4)0.011 (4)0.017 (3)
B1'0.072 (3)0.071 (3)0.064 (3)0.023 (2)0.021 (2)0.008 (2)
F1'0.142 (7)0.129 (8)0.084 (7)0.010 (6)0.038 (5)0.041 (5)
F2'0.128 (7)0.077 (4)0.122 (5)0.005 (4)0.013 (5)0.011 (4)
F3'0.111 (7)0.145 (7)0.094 (5)0.073 (6)0.059 (4)0.020 (5)
F4'0.114 (7)0.169 (8)0.127 (6)0.055 (7)0.001 (5)0.000 (6)
Geometric parameters (Å, º) top
Cu1—N21.986 (2)C7—H7C0.9600
Cu1—N32.003 (2)C8—C91.513 (4)
Cu1—N42.021 (2)C8—H8A0.9700
Cu1—N12.063 (2)C8—H8B0.9700
Cu1—N52.091 (3)C9—C101.505 (4)
S1—C181.620 (3)C9—H9A0.9700
N1—C51.327 (3)C9—H9B0.9700
N1—C11.351 (3)C10—H10A0.9700
N2—C61.278 (3)C10—H10B0.9700
N2—C81.477 (3)C11—C131.478 (4)
N3—C111.279 (3)C11—C121.496 (4)
N3—C101.464 (3)C12—H12A0.9600
N4—C171.330 (3)C12—H12B0.9600
N4—C131.354 (3)C12—H12C0.9600
N5—C181.151 (4)C13—C141.378 (4)
C1—C21.380 (4)C14—C151.373 (4)
C1—C61.483 (4)C14—H140.9300
C2—C31.383 (4)C15—C161.371 (4)
C2—H20.9300C15—H150.9300
C3—C41.355 (4)C16—C171.385 (4)
C3—H30.9300C16—H160.9300
C4—C51.385 (4)C17—H170.9300
C4—H40.9300B1—F11.320 (7)
C5—H50.9300B1—F21.367 (5)
C6—C71.491 (4)B1—F41.368 (5)
C7—H7A0.9600B1—F31.372 (5)
C7—H7B0.9600
N2—Cu1—N392.05 (9)N2—C8—H8A109.4
N2—Cu1—N4167.96 (9)C9—C8—H8A109.4
N3—Cu1—N479.77 (9)N2—C8—H8B109.4
N2—Cu1—N180.19 (9)C9—C8—H8B109.4
N3—Cu1—N1140.31 (9)H8A—C8—H8B108.0
N4—Cu1—N1100.42 (8)C10—C9—C8114.0 (3)
N2—Cu1—N594.19 (10)C10—C9—H9A108.7
N3—Cu1—N5113.90 (9)C8—C9—H9A108.7
N4—Cu1—N597.20 (9)C10—C9—H9B108.7
N1—Cu1—N5105.51 (9)C8—C9—H9B108.7
C5—N1—C1118.3 (2)H9A—C9—H9B107.6
C5—N1—Cu1129.53 (19)N3—C10—C9109.3 (2)
C1—N1—Cu1112.00 (17)N3—C10—H10A109.8
C6—N2—C8119.6 (2)C9—C10—H10A109.8
C6—N2—Cu1117.11 (18)N3—C10—H10B109.8
C8—N2—Cu1123.28 (18)C9—C10—H10B109.8
C11—N3—C10122.8 (2)H10A—C10—H10B108.3
C11—N3—Cu1115.70 (18)N3—C11—C13115.1 (2)
C10—N3—Cu1121.13 (18)N3—C11—C12124.9 (3)
C17—N4—C13118.6 (2)C13—C11—C12120.0 (3)
C17—N4—Cu1128.55 (19)C11—C12—H12A109.5
C13—N4—Cu1112.82 (17)C11—C12—H12B109.5
C18—N5—Cu1172.4 (3)H12A—C12—H12B109.5
N1—C1—C2121.7 (2)C11—C12—H12C109.5
N1—C1—C6115.0 (2)H12A—C12—H12C109.5
C2—C1—C6123.3 (3)H12B—C12—H12C109.5
C1—C2—C3119.1 (3)N4—C13—C14121.1 (3)
C1—C2—H2120.4N4—C13—C11114.3 (2)
C3—C2—H2120.4C14—C13—C11124.4 (2)
C4—C3—C2119.0 (3)C15—C14—C13119.8 (3)
C4—C3—H3120.5C15—C14—H14120.1
C2—C3—H3120.5C13—C14—H14120.1
C3—C4—C5119.4 (3)C16—C15—C14119.0 (3)
C3—C4—H4120.3C16—C15—H15120.5
C5—C4—H4120.3C14—C15—H15120.5
N1—C5—C4122.5 (3)C15—C16—C17118.8 (3)
N1—C5—H5118.8C15—C16—H16120.6
C4—C5—H5118.8C17—C16—H16120.6
N2—C6—C1115.7 (2)N4—C17—C16122.5 (3)
N2—C6—C7123.9 (2)N4—C17—H17118.8
C1—C6—C7120.4 (2)C16—C17—H17118.8
C6—C7—H7A109.5N5—C18—S1178.5 (3)
C6—C7—H7B109.5F1—B1—F2115.3 (7)
H7A—C7—H7B109.5F1—B1—F4118.0 (6)
C6—C7—H7C109.5F2—B1—F4101.3 (5)
H7A—C7—H7C109.5F1—B1—F3108.0 (7)
H7B—C7—H7C109.5F2—B1—F3106.8 (5)
N2—C8—C9111.3 (2)F4—B1—F3106.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F4i0.932.493.416 (8)176
C7—H7B···F4i0.962.343.234 (6)155
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(NCS)(C17H20N4)]BF4
Mr488.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.5057 (7), 13.7527 (11), 16.1902 (13)
β (°) 101.200 (1)
V3)2076.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.33 × 0.30 × 0.28
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.692, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
17908, 5059, 3368
Rint0.034
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.03
No. of reflections5059
No. of parameters310
No. of restraints56
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.28

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N21.986 (2)Cu1—N12.063 (2)
Cu1—N32.003 (2)Cu1—N52.091 (3)
Cu1—N42.021 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F4i0.932.493.416 (8)176
C7—H7B···F4i0.962.343.234 (6)155
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The author thanks the Experimental Center of Linyi University for supporting this work.

References

First citationAdhikary, C., Sen, R., Bocelli, G., Cantoni, A., Solzi, M., Chaudhuri, S. & Koner, S. (2009). J. Coord. Chem. 62, 3573–3582.  Web of Science CSD CrossRef CAS Google Scholar
First citationAl-Karawi, A. J. M. (2009). Transition Met. Chem. 34, 891–897.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChattopadhyay, S., Drew, M. G. B. & Ghosh, A. (2006). Inorg. Chim. Acta, 359, 4519–4525.  CrossRef CAS Google Scholar
First citationLiu, L.-J. (2010). Acta Cryst. E66, m939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, C.-M., Xiong, R.-G., You, X.-Z., Fun, H.-K. & Sivakumar, K. (1997). Polyhedron, 16, 119–123.  CrossRef CAS Google Scholar
First citationQin, D.-D., Yang, Z.-Y., Zhang, F.-H., Du, B., Wang, P. & Li, T.-R. (2010). Inorg. Chem. Commun. 13, 727–729.  Web of Science CSD CrossRef CAS Google Scholar
First citationRahaman, S. H., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 3091–3097.  CrossRef CAS Google Scholar
First citationRajasekar, M., Sreedaran, S., Prabu, R., Narayanan, V., Jegadeesh, R., Raaman, N. & Rahiman, A. K. (2010). J. Coord. Chem. 63, 136–146.  Web of Science CrossRef CAS Google Scholar
First citationSang, Y.-L. & Lin, X.-S. (2010). J. Coord. Chem. 63, 316–322.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, J.-M. & Zhang, W. (2009). Inorg. Chem. Commun. 12, 1175–1178.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m876-m877
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds