metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N,N′-Bis[1-(pyridin-2-yl)ethyl­­idene]­propane-1,3-di­amine}­bromidocopper(II) tetra­fluoridoborate

aExperimental Center, Linyi University, Linyi Shandong 276005, People's Republic of China
*Correspondence e-mail: xiaoerduoaa@hotmail.com

(Received 30 May 2011; accepted 31 May 2011; online 11 June 2011)

In the title compound, [CuBr(C17H20N4)]BF4, the CuII ion is five-coordinated by the four N atoms of the tetra­dentate Schiff base ligand and by one bromide ion, thereby forming a square-pyramidal CuN4Br coordination geometry. The dihedral angle between the pyridine rings of the Schiff base is 54.39 (18)°. In the crystal, the components are linked by C—H⋯F inter­actions.

Related literature

For a related structure and background references, see: Liu (2011[Liu, L.-J. (2011). Acta Cryst. E67, m876-m877.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr(C17H20N4)]BF4

  • Mr = 510.63

  • Triclinic, [P \overline 1]

  • a = 8.2508 (17) Å

  • b = 8.9511 (18) Å

  • c = 13.158 (3) Å

  • α = 92.391 (2)°

  • β = 94.847 (2)°

  • γ = 96.422 (2)°

  • V = 960.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.26 mm−1

  • T = 298 K

  • 0.27 × 0.27 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.473, Tmax = 0.521

  • 5958 measured reflections

  • 3683 independent reflections

  • 2723 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.087

  • S = 1.05

  • 3683 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N2 1.978 (3)
Cu1—N4 1.998 (3)
Cu1—N3 2.010 (3)
Cu1—N1 2.067 (3)
Cu1—Br1 2.5447 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F1 0.93 2.49 3.413 (5) 173
C12—H12B⋯F3i 0.96 2.50 3.430 (5) 162
C15—H15⋯F2ii 0.93 2.40 3.252 (5) 152
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a continuation of our work on the Schiff base copper(II) complexes (Liu, 2011), the title new copper complex, (I), is reported.

The title compound contains a mononuclear copper(II) complex cation and a fluoroborate anion, Fig. 1. The CuII atom in the complex is five-coordinated by the four N atoms of the Schiff base ligand, and by one bromide ion, forming a square-pyramidal geometry. The bond lengths (Table 1) related to the Cu atom are comparable with those observed in similar copper complexes with square-pyramidal geometry (Liu, 2011).

Related literature top

For a related structure and background references, see: Liu (2011).

Experimental top

2-Acetylpyridine (0.2 mmol, 24.2 mg), propane-1,3-diamine (0.1 mmol, 7.4 mg), copper bromide (0.1 mmol, 22.3 mg), and ammonium fluoroborate (0.1 mmol, 10.5 mg) were mixed and stirred in methanol (20 ml) at reflux for 2 h, to give a blue solution. The solution was cooled to room temperature, and blue block-shaped single crystals of (I) were formed by slow evaporation of the solution in air.

Refinement top

H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids.
{N,N'-Bis[1-(pyridin-2-yl)ethylidene]propane-1,3- diamine}bromidocopper(II) tetrafluoridoborate top
Crystal data top
[CuBr(C17H20N4)]BF4Z = 2
Mr = 510.63F(000) = 510
Triclinic, P1Dx = 1.765 Mg m3
a = 8.2508 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9511 (18) ÅCell parameters from 1747 reflections
c = 13.158 (3) Åθ = 2.5–25.3°
α = 92.391 (2)°µ = 3.26 mm1
β = 94.847 (2)°T = 298 K
γ = 96.422 (2)°Block, blue
V = 960.9 (3) Å30.27 × 0.27 × 0.23 mm
Data collection top
Bruker APEXII CCD
diffractometer
3683 independent reflections
Radiation source: fine-focus sealed tube2723 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 910
Tmin = 0.473, Tmax = 0.521k = 1110
5958 measured reflectionsl = 1611
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.1409P]
where P = (Fo2 + 2Fc2)/3
3683 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[CuBr(C17H20N4)]BF4γ = 96.422 (2)°
Mr = 510.63V = 960.9 (3) Å3
Triclinic, P1Z = 2
a = 8.2508 (17) ÅMo Kα radiation
b = 8.9511 (18) ŵ = 3.26 mm1
c = 13.158 (3) ÅT = 298 K
α = 92.391 (2)°0.27 × 0.27 × 0.23 mm
β = 94.847 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3683 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2723 reflections with I > 2σ(I)
Tmin = 0.473, Tmax = 0.521Rint = 0.026
5958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.05Δρmax = 0.39 e Å3
3683 reflectionsΔρmin = 0.46 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.90467 (5)0.78988 (5)0.74936 (3)0.03382 (14)
Br11.14320 (5)0.95979 (5)0.69040 (3)0.04830 (14)
F10.5630 (4)0.4076 (3)0.2862 (2)0.0787 (8)
F20.4093 (3)0.5940 (3)0.2543 (2)0.0754 (8)
F30.6555 (3)0.5941 (3)0.1938 (2)0.0870 (9)
F40.4467 (4)0.4290 (3)0.1279 (2)0.0792 (8)
N10.9085 (3)0.5870 (3)0.6691 (2)0.0318 (7)
N20.7458 (4)0.8146 (3)0.6317 (2)0.0370 (7)
N30.7643 (3)0.8783 (3)0.8484 (2)0.0339 (7)
N41.0231 (3)0.7455 (3)0.8815 (2)0.0343 (7)
B10.5174 (6)0.5077 (5)0.2150 (4)0.0410 (11)
C10.8099 (4)0.5758 (4)0.5809 (3)0.0333 (8)
C20.7912 (5)0.4481 (4)0.5165 (3)0.0410 (10)
H20.72380.44320.45580.049*
C30.8740 (5)0.3273 (4)0.5435 (3)0.0490 (11)
H30.86280.24030.50110.059*
C40.9726 (5)0.3373 (4)0.6333 (3)0.0463 (10)
H41.02840.25700.65300.056*
C50.9879 (5)0.4694 (4)0.6942 (3)0.0388 (9)
H51.05580.47640.75480.047*
C60.7252 (4)0.7110 (4)0.5613 (3)0.0338 (8)
C70.6216 (5)0.7181 (5)0.4626 (3)0.0549 (12)
H7A0.50980.72270.47630.082*
H7B0.62870.62990.41980.082*
H7C0.66020.80620.42850.082*
C80.6550 (5)0.9469 (4)0.6228 (3)0.0506 (11)
H8A0.53990.91300.60500.061*
H8B0.69431.00600.56780.061*
C90.6728 (5)1.0446 (4)0.7192 (3)0.0496 (11)
H9A0.60331.12450.71030.060*
H9B0.78521.09110.73080.060*
C100.6290 (5)0.9614 (5)0.8124 (3)0.0478 (11)
H10A0.60761.03240.86600.057*
H10B0.53050.89190.79560.057*
C110.7903 (4)0.8446 (4)0.9409 (3)0.0339 (8)
C120.6860 (5)0.8754 (5)1.0249 (3)0.0546 (12)
H12A0.74350.95221.07180.082*
H12B0.66140.78501.06010.082*
H12C0.58600.90890.99660.082*
C130.9414 (4)0.7715 (4)0.9639 (3)0.0316 (8)
C140.9996 (5)0.7370 (5)1.0603 (3)0.0447 (10)
H140.94100.75381.11630.054*
C151.1478 (5)0.6765 (5)1.0722 (3)0.0492 (11)
H151.18930.65181.13640.059*
C161.2322 (5)0.6535 (4)0.9889 (3)0.0434 (10)
H161.33130.61300.99600.052*
C171.1684 (4)0.6912 (4)0.8944 (3)0.0403 (9)
H171.22750.67880.83810.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0384 (3)0.0369 (3)0.0276 (3)0.0138 (2)0.00162 (19)0.00188 (19)
Br10.0507 (3)0.0410 (3)0.0523 (3)0.00041 (19)0.0050 (2)0.00788 (19)
F10.103 (2)0.0687 (19)0.0661 (19)0.0260 (16)0.0107 (16)0.0165 (15)
F20.0599 (16)0.101 (2)0.0701 (18)0.0396 (16)0.0013 (14)0.0089 (16)
F30.0684 (19)0.080 (2)0.112 (3)0.0095 (16)0.0233 (17)0.0126 (18)
F40.096 (2)0.0772 (19)0.0576 (18)0.0063 (16)0.0192 (15)0.0198 (15)
N10.0362 (17)0.0312 (17)0.0286 (17)0.0035 (13)0.0064 (13)0.0045 (13)
N20.0417 (19)0.0374 (19)0.0320 (18)0.0093 (15)0.0039 (14)0.0064 (15)
N30.0322 (17)0.0351 (17)0.0354 (18)0.0110 (13)0.0012 (14)0.0001 (14)
N40.0341 (17)0.0398 (18)0.0299 (17)0.0095 (14)0.0001 (14)0.0019 (14)
B10.041 (3)0.043 (3)0.038 (3)0.010 (2)0.003 (2)0.003 (2)
C10.033 (2)0.035 (2)0.031 (2)0.0037 (16)0.0076 (16)0.0049 (17)
C20.039 (2)0.043 (2)0.039 (2)0.0075 (18)0.0090 (18)0.0057 (19)
C30.058 (3)0.034 (2)0.055 (3)0.009 (2)0.026 (2)0.011 (2)
C40.056 (3)0.030 (2)0.058 (3)0.0101 (19)0.024 (2)0.008 (2)
C50.046 (2)0.038 (2)0.035 (2)0.0116 (18)0.0108 (18)0.0052 (18)
C60.0279 (19)0.045 (2)0.028 (2)0.0011 (16)0.0007 (15)0.0060 (18)
C70.054 (3)0.065 (3)0.042 (3)0.004 (2)0.014 (2)0.001 (2)
C80.061 (3)0.045 (3)0.047 (3)0.020 (2)0.008 (2)0.009 (2)
C90.058 (3)0.040 (2)0.054 (3)0.025 (2)0.002 (2)0.008 (2)
C100.042 (2)0.049 (3)0.056 (3)0.024 (2)0.003 (2)0.003 (2)
C110.036 (2)0.033 (2)0.034 (2)0.0071 (16)0.0058 (17)0.0003 (17)
C120.053 (3)0.071 (3)0.045 (3)0.023 (2)0.015 (2)0.003 (2)
C130.0322 (19)0.032 (2)0.030 (2)0.0042 (16)0.0006 (16)0.0007 (16)
C140.048 (2)0.058 (3)0.030 (2)0.010 (2)0.0038 (18)0.0015 (19)
C150.056 (3)0.058 (3)0.034 (2)0.014 (2)0.010 (2)0.010 (2)
C160.039 (2)0.052 (3)0.040 (2)0.0129 (19)0.0053 (19)0.0042 (19)
C170.037 (2)0.047 (2)0.039 (2)0.0144 (18)0.0048 (18)0.0019 (18)
Geometric parameters (Å, º) top
Cu1—N21.978 (3)C6—C71.501 (5)
Cu1—N41.998 (3)C7—H7A0.9600
Cu1—N32.010 (3)C7—H7B0.9600
Cu1—N12.067 (3)C7—H7C0.9600
Cu1—Br12.5447 (7)C8—C91.498 (6)
F1—B11.381 (5)C8—H8A0.9700
F2—B11.363 (5)C8—H8B0.9700
F3—B11.360 (5)C9—C101.511 (5)
F4—B11.370 (5)C9—H9A0.9700
N1—C51.339 (4)C9—H9B0.9700
N1—C11.354 (4)C10—H10A0.9700
N2—C61.270 (4)C10—H10B0.9700
N2—C81.474 (4)C11—C131.486 (5)
N3—C111.272 (4)C11—C121.492 (5)
N3—C101.467 (4)C12—H12A0.9600
N4—C171.343 (4)C12—H12B0.9600
N4—C131.349 (4)C12—H12C0.9600
C1—C21.381 (5)C13—C141.378 (5)
C1—C61.485 (5)C14—C151.392 (5)
C2—C31.385 (5)C14—H140.9300
C2—H20.9300C15—C161.367 (5)
C3—C41.371 (6)C15—H150.9300
C3—H30.9300C16—C171.380 (5)
C4—C51.388 (5)C16—H160.9300
C4—H40.9300C17—H170.9300
C5—H50.9300
N2—Cu1—N4167.79 (12)C6—C7—H7B109.5
N2—Cu1—N392.15 (12)H7A—C7—H7B109.5
N4—Cu1—N379.82 (12)C6—C7—H7C109.5
N2—Cu1—N180.08 (12)H7A—C7—H7C109.5
N4—Cu1—N199.56 (12)H7B—C7—H7C109.5
N3—Cu1—N1137.46 (11)N2—C8—C9112.8 (3)
N2—Cu1—Br196.74 (9)N2—C8—H8A109.0
N4—Cu1—Br195.17 (9)C9—C8—H8A109.0
N3—Cu1—Br1118.16 (9)N2—C8—H8B109.0
N1—Cu1—Br1104.32 (8)C9—C8—H8B109.0
C5—N1—C1118.4 (3)H8A—C8—H8B107.8
C5—N1—Cu1129.4 (2)C8—C9—C10113.9 (4)
C1—N1—Cu1112.2 (2)C8—C9—H9A108.8
C6—N2—C8120.0 (3)C10—C9—H9A108.8
C6—N2—Cu1117.1 (2)C8—C9—H9B108.8
C8—N2—Cu1122.9 (3)C10—C9—H9B108.8
C11—N3—C10123.0 (3)H9A—C9—H9B107.7
C11—N3—Cu1115.8 (2)N3—C10—C9109.7 (3)
C10—N3—Cu1120.8 (2)N3—C10—H10A109.7
C17—N4—C13119.2 (3)C9—C10—H10A109.7
C17—N4—Cu1126.9 (2)N3—C10—H10B109.7
C13—N4—Cu1113.8 (2)C9—C10—H10B109.7
F3—B1—F2110.9 (4)H10A—C10—H10B108.2
F3—B1—F4109.5 (4)N3—C11—C13114.8 (3)
F2—B1—F4110.2 (4)N3—C11—C12125.8 (3)
F3—B1—F1107.5 (3)C13—C11—C12119.4 (3)
F2—B1—F1109.3 (4)C11—C12—H12A109.5
F4—B1—F1109.3 (4)C11—C12—H12B109.5
N1—C1—C2121.8 (3)H12A—C12—H12B109.5
N1—C1—C6114.1 (3)C11—C12—H12C109.5
C2—C1—C6124.1 (3)H12A—C12—H12C109.5
C1—C2—C3119.1 (4)H12B—C12—H12C109.5
C1—C2—H2120.4N4—C13—C14121.6 (3)
C3—C2—H2120.4N4—C13—C11114.1 (3)
C4—C3—C2119.3 (4)C14—C13—C11124.3 (3)
C4—C3—H3120.4C13—C14—C15118.5 (4)
C2—C3—H3120.4C13—C14—H14120.7
C3—C4—C5118.9 (4)C15—C14—H14120.7
C3—C4—H4120.6C16—C15—C14119.7 (4)
C5—C4—H4120.6C16—C15—H15120.1
N1—C5—C4122.5 (4)C14—C15—H15120.1
N1—C5—H5118.8C15—C16—C17119.1 (4)
C4—C5—H5118.8C15—C16—H16120.4
N2—C6—C1116.3 (3)C17—C16—H16120.4
N2—C6—C7124.1 (4)N4—C17—C16121.7 (3)
C1—C6—C7119.6 (3)N4—C17—H17119.2
C6—C7—H7A109.5C16—C17—H17119.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F10.932.493.413 (5)173
C12—H12B···F3i0.962.503.430 (5)162
C15—H15···F2ii0.932.403.252 (5)152
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[CuBr(C17H20N4)]BF4
Mr510.63
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.2508 (17), 8.9511 (18), 13.158 (3)
α, β, γ (°)92.391 (2), 94.847 (2), 96.422 (2)
V3)960.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.26
Crystal size (mm)0.27 × 0.27 × 0.23
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.473, 0.521
No. of measured, independent and
observed [I > 2σ(I)] reflections
5958, 3683, 2723
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.087, 1.05
No. of reflections3683
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.46

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N21.978 (3)Cu1—N12.067 (3)
Cu1—N41.998 (3)Cu1—Br12.5447 (7)
Cu1—N32.010 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F10.932.493.413 (5)173
C12—H12B···F3i0.962.503.430 (5)162
C15—H15···F2ii0.932.403.252 (5)152
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The author thanks the Experimental Center of Linyi University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, L.-J. (2011). Acta Cryst. E67, m876–m877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds