organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Hy­dr­oxy­methyl-1H-1,2,3-triazol-1-yl)benzoic acid

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 7 June 2011; accepted 9 June 2011; online 18 June 2011)

In the title compound, C10H9N3O3, there is a small twist between the benzene and triazole rings [dihedral angle = 6.32 (7)°]; the carb­oxy­lic acid residue is almost coplanar with the benzene ring to which it is attached [O—C—C—C torsion angle = 1.49 (19)°]. The main deviation from coplanarity of the non-H atoms is found for the hy­droxy group which is almost perpendicular to the remaining atoms [N—C—C—O torsion angle = −75.46 (16)°]. In the crystal, the presence of O—H⋯O (between carboxyl groups) and O—H⋯N (between the hy­droxy group and the triazole ring) hydrogen bonds leads to supra­molecular chains along [03[\overline{1}]]. The chains are connected into sheets via C—H⋯O(hy­droxy) inter­actions.

Related literature

For background to the fluorescence potential, see: McCaroll & Wandruzska (1997[McCaroll, M. E. & Wandruzska, R. V. (1997). J. Fluoresc. 7, 185-193.]). For synthetic protocols, see: Rostovtsev et al. (2002[Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596-2699.]); Ryu & Zhao (2005[Ryu, E. H. & Zhao, Y. (2005). Org. Lett. 7, 1035-1037.]); Himo et al. (2005[Himo, F., Lovell, T., Hilgraf, R., Rostovtsev, V. V., Noodleman, L., Sharpless, K. B. & Fokin, V. V. (2005). J. Am. Chem. Soc. 127, 210-216.]). For additional geometric analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N3O3

  • Mr = 219.20

  • Triclinic, [P \overline 1]

  • a = 5.4641 (7) Å

  • b = 6.6596 (8) Å

  • c = 13.1898 (16) Å

  • α = 88.828 (2)°

  • β = 83.577 (2)°

  • γ = 75.828 (2)°

  • V = 462.42 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.684, Tmax = 0.746

  • 5837 measured reflections

  • 2099 independent reflections

  • 1852 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.130

  • S = 1.08

  • 2099 reflections

  • 151 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2i 0.85 (1) 1.77 (2) 2.6119 (14) 173 (2)
O3—H3o⋯N3ii 0.85 (1) 1.96 (1) 2.7995 (16) 169 (2)
C6—H6⋯O3iii 0.95 2.60 3.5309 (19) 167
C8—H8⋯O3iii 0.95 2.23 3.1262 (18) 158
Symmetry codes: (i) -x, -y-1, -z+1; (ii) -x, -y+2, -z; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), is a precursor for the synthesis of fluorescent surfactants (McCaroll & Wandruzska, 1997). With the exception of the hydroxy substituent, the molecule of (I), Fig. 1, is essentially planar. The triazole ring is slightly twisted out of the plane of the benzene ring as seen in the value of the N2—N1—C5—C4 torsion angle of -6.43 (19) °; the dihedral angle between the rings is 6.32 (7) °. The carboxylic acid group is co-planar with the benzene ring to which it is attached: the O1—C1—C2—C3 torsion angle is 1.49 (19) °. The hydroxy group occupies a position almost perpendicular to the rest of the molecule with the N3—C9—C10—O3 torsion angle being -75.46 (16) °. Within the triazole ring, the sequence of N1—N2 [1.3562 (15) Å], N2—N3 [1.3141 (16) Å], N1—C8 [1.3579 (17) Å], N3—C9 [1.3627 (17) Å] and C8—C9 [1.3624 (19) Å] bond distances indicates considerable delocalization of π-electron density within the ring.

The crystal packing is dominated by O—H···O,N hydrogen bonding, Table 1. The carboxylic acid residues self-associate via the familiar eight-membered {··· HOC(O)}2 synthon, and the hydroxy groups forms a hydrogen bond with the triazole-N3 atom via centrosymmetric 10-membered {···HOC2N}2 synthons. The result is the formation of a linear supramolecular chain with base vector [0 3 1], Fig. 2. Chains are connected into flat arrays via C—H···O hydrogen bonds and centrosymmetric ten-membered {···HC3O}2 synthons, Table 1 and Fig. 2. The closest interactions between layers are weak π···π contacts occurring between translationally related benzene and triazole rings [3.9433 (9) Å for symmetry operation x, 1 + y, z].

Related literature top

For background to the fluorescence potential, see: McCaroll & Wandruzska (1997). For synthetic protocols, see: Rostovtsev et al. (2002); Ryu & Zhao (2005); Himo et al. (2005). For additional geometric analysis, see: Spek (2009).

Experimental top

The title compound was synthesized via a Cu(I)-catalyzed cycloaddition between 4-azidobenzoic acid and propargyl alcohol after literature procedures (Rostovtsev et al., 2002; Ryu & Zhao, 2005). 4-Azidobenzoic acid (1.0 g, 6.1 mmol) and propargyl alcohol (1.03 g, 18.4 mmol) were dissolved in methanol (20 ml) while stirring in the dark. Freshly prepared catalyst was prepared from the reduction of copper(II) sulfate (0.2 g, 0.08 mmol) with sodium ascorbate (0.4 g, 2 mmol) in about 2 ml of water (Himo et al., 2005). The catalyst was then added into the mixture followed by stirring for 3 h. The crude product was dissolved in diethyl ether and washed with cold distilled water (50 ml). The organic layer was dried over magnesium sulfate, and the solvent was removed under vacuum to obtain 0.12 g (21%) of pure product. Yellow blocks were grown from its solution of THF (with a drop of ethyl acetate); M.pt. 529 - 532 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C). The O-bound H atoms were located in a difference map and their positions refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer in (I) mediated by O—H···O, O—H···N and C—H···O interactions, shown as orange, blue and purple dashed lines, respectively.
4-(4-Hydroxymethyl-1H-1,2,3-triazol-1-yl)benzoic acid top
Crystal data top
C10H9N3O3Z = 2
Mr = 219.20F(000) = 228
Triclinic, P1Dx = 1.574 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4641 (7) ÅCell parameters from 3318 reflections
b = 6.6596 (8) Åθ = 3.1–30.7°
c = 13.1898 (16) ŵ = 0.12 mm1
α = 88.828 (2)°T = 100 K
β = 83.577 (2)°Block, yellow
γ = 75.828 (2)°0.20 × 0.20 × 0.18 mm
V = 462.42 (10) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2099 independent reflections
Radiation source: fine-focus sealed tube1852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.684, Tmax = 0.746k = 88
5837 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0804P)2 + 0.1593P]
where P = (Fo2 + 2Fc2)/3
2099 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.30 e Å3
2 restraintsΔρmin = 0.33 e Å3
Crystal data top
C10H9N3O3γ = 75.828 (2)°
Mr = 219.20V = 462.42 (10) Å3
Triclinic, P1Z = 2
a = 5.4641 (7) ÅMo Kα radiation
b = 6.6596 (8) ŵ = 0.12 mm1
c = 13.1898 (16) ÅT = 100 K
α = 88.828 (2)°0.20 × 0.20 × 0.18 mm
β = 83.577 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2099 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1852 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.746Rint = 0.022
5837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.30 e Å3
2099 reflectionsΔρmin = 0.33 e Å3
151 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21174 (19)0.26084 (15)0.47377 (8)0.0193 (3)
H1O0.202 (4)0.376 (2)0.5038 (14)0.029*
O20.19712 (19)0.40260 (15)0.41945 (7)0.0187 (3)
O30.24825 (19)0.81745 (15)0.07164 (7)0.0188 (3)
H3O0.219 (4)0.9413 (17)0.0937 (14)0.028*
N10.0479 (2)0.47484 (17)0.19947 (8)0.0133 (3)
N20.1613 (2)0.63139 (18)0.19229 (9)0.0163 (3)
N30.0881 (2)0.76979 (18)0.13169 (9)0.0161 (3)
C10.0044 (3)0.2560 (2)0.42301 (10)0.0141 (3)
C20.0120 (2)0.06148 (19)0.36720 (10)0.0133 (3)
C30.2008 (3)0.1064 (2)0.37192 (10)0.0144 (3)
H30.35300.09770.41230.017*
C40.1908 (3)0.2860 (2)0.31786 (10)0.0149 (3)
H40.33450.40070.32140.018*
C50.0336 (2)0.2951 (2)0.25830 (10)0.0131 (3)
C60.2481 (3)0.1299 (2)0.25451 (10)0.0145 (3)
H60.40080.13940.21460.017*
C70.2373 (3)0.0480 (2)0.30923 (10)0.0148 (3)
H70.38310.16080.30730.018*
C80.2538 (3)0.5157 (2)0.14328 (10)0.0155 (3)
H80.42270.43180.13560.019*
C90.1648 (2)0.7034 (2)0.10030 (10)0.0146 (3)
C100.3059 (3)0.8278 (2)0.03094 (10)0.0171 (3)
H10A0.25850.97390.05430.021*
H10B0.49080.77400.03350.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0197 (5)0.0161 (5)0.0217 (5)0.0063 (4)0.0026 (4)0.0063 (4)
O20.0211 (5)0.0135 (5)0.0195 (5)0.0024 (4)0.0010 (4)0.0038 (4)
O30.0226 (5)0.0145 (5)0.0167 (5)0.0011 (4)0.0003 (4)0.0049 (4)
N10.0136 (5)0.0111 (5)0.0149 (5)0.0028 (4)0.0013 (4)0.0033 (4)
N20.0152 (6)0.0136 (6)0.0188 (6)0.0019 (4)0.0010 (4)0.0050 (4)
N30.0167 (6)0.0138 (5)0.0175 (6)0.0039 (4)0.0008 (4)0.0050 (4)
C10.0170 (6)0.0132 (6)0.0128 (6)0.0054 (5)0.0012 (5)0.0011 (5)
C20.0162 (7)0.0116 (6)0.0129 (6)0.0050 (5)0.0017 (5)0.0017 (5)
C30.0139 (6)0.0150 (6)0.0148 (6)0.0054 (5)0.0003 (4)0.0021 (5)
C40.0135 (6)0.0137 (6)0.0166 (6)0.0019 (5)0.0014 (5)0.0025 (5)
C50.0159 (6)0.0121 (6)0.0124 (6)0.0056 (5)0.0020 (5)0.0029 (5)
C60.0138 (6)0.0139 (6)0.0155 (6)0.0039 (5)0.0001 (5)0.0025 (5)
C70.0154 (6)0.0123 (6)0.0159 (6)0.0026 (5)0.0009 (5)0.0018 (5)
C80.0142 (6)0.0153 (6)0.0165 (6)0.0042 (5)0.0007 (5)0.0031 (5)
C90.0148 (6)0.0137 (6)0.0154 (6)0.0039 (5)0.0016 (5)0.0021 (5)
C100.0175 (6)0.0166 (6)0.0173 (7)0.0052 (5)0.0009 (5)0.0048 (5)
Geometric parameters (Å, º) top
O1—C11.2982 (16)C3—C41.3891 (18)
O1—H1O0.848 (9)C3—H30.9500
O2—C11.2456 (17)C4—C51.3939 (18)
O3—C101.4299 (17)C4—H40.9500
O3—H3O0.852 (9)C5—C61.3944 (18)
N1—N21.3562 (15)C6—C71.3852 (18)
N1—C81.3579 (17)C6—H60.9500
N1—C51.4266 (16)C7—H70.9500
N2—N31.3141 (16)C8—C91.3624 (19)
N3—C91.3627 (17)C8—H80.9500
C1—C21.4838 (18)C9—C101.4970 (18)
C2—C71.3961 (18)C10—H10A0.9900
C2—C31.3985 (18)C10—H10B0.9900
C1—O1—H1O110.8 (14)C4—C5—N1120.37 (12)
C10—O3—H3O106.1 (13)C6—C5—N1118.51 (12)
N2—N1—C8110.82 (11)C7—C6—C5119.59 (12)
N2—N1—C5121.00 (11)C7—C6—H6120.2
C8—N1—C5128.16 (11)C5—C6—H6120.2
N3—N2—N1106.38 (11)C6—C7—C2119.94 (12)
N2—N3—C9109.65 (11)C6—C7—H7120.0
O2—C1—O1123.72 (12)C2—C7—H7120.0
O2—C1—C2120.44 (12)N1—C8—C9104.78 (12)
O1—C1—C2115.84 (12)N1—C8—H8127.6
C7—C2—C3120.00 (12)C9—C8—H8127.6
C7—C2—C1118.69 (12)C8—C9—N3108.36 (11)
C3—C2—C1121.31 (12)C8—C9—C10129.04 (12)
C4—C3—C2120.37 (12)N3—C9—C10122.59 (12)
C4—C3—H3119.8O3—C10—C9110.65 (11)
C2—C3—H3119.8O3—C10—H10A109.5
C3—C4—C5118.94 (12)C9—C10—H10A109.5
C3—C4—H4120.5O3—C10—H10B109.5
C5—C4—H4120.5C9—C10—H10B109.5
C4—C5—C6121.12 (12)H10A—C10—H10B108.1
C8—N1—N2—N30.21 (15)C8—N1—C5—C65.0 (2)
C5—N1—N2—N3178.52 (11)C4—C5—C6—C71.2 (2)
N1—N2—N3—C90.04 (15)N1—C5—C6—C7178.62 (11)
O2—C1—C2—C71.3 (2)C5—C6—C7—C20.4 (2)
O1—C1—C2—C7178.57 (11)C3—C2—C7—C61.5 (2)
O2—C1—C2—C3178.67 (12)C1—C2—C7—C6178.55 (12)
O1—C1—C2—C31.49 (19)N2—N1—C8—C90.29 (15)
C7—C2—C3—C41.0 (2)C5—N1—C8—C9178.32 (12)
C1—C2—C3—C4179.03 (11)N1—C8—C9—N30.26 (15)
C2—C3—C4—C50.6 (2)N1—C8—C9—C10179.62 (13)
C3—C4—C5—C61.7 (2)N2—N3—C9—C80.14 (16)
C3—C4—C5—N1178.15 (11)N2—N3—C9—C10179.55 (12)
N2—N1—C5—C46.43 (19)C8—C9—C10—O3105.27 (16)
C8—N1—C5—C4175.08 (12)N3—C9—C10—O375.46 (16)
N2—N1—C5—C6173.44 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.85 (1)1.77 (2)2.6119 (14)173 (2)
O3—H3O···N3ii0.85 (1)1.96 (1)2.7995 (16)169 (2)
C6—H6···O3iii0.952.603.5309 (19)167
C8—H8···O3iii0.952.233.1262 (18)158
Symmetry codes: (i) x, y1, z+1; (ii) x, y+2, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H9N3O3
Mr219.20
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.4641 (7), 6.6596 (8), 13.1898 (16)
α, β, γ (°)88.828 (2), 83.577 (2), 75.828 (2)
V3)462.42 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.684, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
5837, 2099, 1852
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.130, 1.08
No. of reflections2099
No. of parameters151
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.849 (14)1.768 (15)2.6119 (14)172.8 (18)
O3—H3O···N3ii0.852 (12)1.957 (12)2.7995 (16)169 (2)
C6—H6···O3iii0.952.603.5309 (19)167
C8—H8···O3iii0.952.233.1262 (18)158
Symmetry codes: (i) x, y1, z+1; (ii) x, y+2, z; (iii) x+1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: hairul@um.edu.my.

Acknowledgements

The University of Malaya is thanked for a University of Malaya Research Grant (No. RG080/09AFR) and for support of the crystallographic facility.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHimo, F., Lovell, T., Hilgraf, R., Rostovtsev, V. V., Noodleman, L., Sharpless, K. B. & Fokin, V. V. (2005). J. Am. Chem. Soc. 127, 210–216.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcCaroll, M. E. & Wandruzska, R. V. (1997). J. Fluoresc. 7, 185–193.  Google Scholar
First citationRostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596–2699.  CrossRef CAS Google Scholar
First citationRyu, E. H. & Zhao, Y. (2005). Org. Lett. 7, 1035–1037.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds