organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,E)-1,2-Bis[3-meth­­oxy-4-(prop-2-yn-1-yl­­oxy)benzyl­­idene]hydrazine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: rosiyah@um.edu.my, edward.tiekink@gmail.com

(Received 7 June 2011; accepted 9 June 2011; online 18 June 2011)

The complete mol­ecule in the title compound, C22H20N2O4, is generated by the application of an inversion centre. With the exception of the terminal acetyl­ene groups [C—O—C—C = −78.02 (17)°], the remaining atoms constituting the mol­ecule are essentially coplanar. The configuration around the C=N bond [1.282 (2) Å] is E. The formation of supra­molecular chains mediated by C—H⋯O inter­actions, occurring between methyl­ene H and meth­oxy O atoms, is the most notable feature of the crystal packing.

Related literature

For background to the study see: Xu et al. (1997[Xu, Z., Thompson, L. K. & Miller, D. O. (1997). Inorg. Chem. 36, 3985-3995.]); Zheng et al. (2005[Zheng, P.-W., Wang, W. & Duan, X.-M. (2005). Acta Cryst. E61, o3020-o3021.]); Kundu et al. (2005[Kundu, N., Chatterjee, P. B., Chaudhury, M. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m1583-m1585.]). For additional analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O4

  • Mr = 376.40

  • Monoclinic, P 21 /n

  • a = 4.4840 (3) Å

  • b = 14.4636 (8) Å

  • c = 14.3939 (9) Å

  • β = 91.674 (4)°

  • V = 933.11 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.25 × 0.11 × 0.07 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.368, Tmax = 0.746

  • 8574 measured reflections

  • 2138 independent reflections

  • 1625 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.124

  • S = 1.05

  • 2138 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8a⋯O2i 0.99 2.36 3.255 (2) 150
Symmetry code: (i) -x+3, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Molecules combining an azine functionality and/or a diimine linkage have been investigated in terms of their crystallography and coordination chemistry (Xu et al., 1997; Zheng et al., 2005; Kundu et al., 2005). In this connection the title compound, (I), was studied.

The molecule of (I), Fig. 1, is centrosymmetric around the central azine [N1—N1i = 1.413 (2) Å] bond; symmetry operation i: 1 - x, 1 - y, -z. The configuration around the C1N1 bond [1.282 (2) Å] is E. With the exception of the terminal acetylene group, the molecule is essentially planar as seen in the values of the N1—C1—C2—C7 and C11—O2—C6—C5 torsion angles of 2.9 (2) and 177.04 (14) °, respectively. By contrast, the torsion angle C5—O1—C8—C9 of -78.02 (17) ° indicates the acetylene group is almost perpendicular to the rest of the molecule.

The most prominent feature of the crystal packing is the presence of C—H···O interactions, occurring between methylene-H and the methoxy-O atoms, which serve to link molecules into supramolecular chains mediated by centrosymmetric 12-membered {···HCOC2O}2 synthons, Table 1 and Fig. 2. Chains pack in the ac plane and interdigitate along the b axis., Fig. 3. Each acetylene-H atom is orientated towards an imino-N atom, being separated by 2.77 Å, i.e. outside the standard criteria to be considered significant (Spek, 2009).

Related literature top

For background to the study see: Xu et al. (1997); Zheng et al. (2005); Kundu et al. (2005). For additional analysis, see: Spek (2009).

Experimental top

Vanillinazine (2.0 g, 6.7 mmol) in dry acetone and anhydrous K2CO3 (1.84 g, 13.3 mmol) was stirred at room temperature for about 20 min. Then, an excess of propargyl bromide (1.74 g, 14.7 mmol) was added drop wise. The mixture was refluxed for 48 h. The solvent was evaporated under reduced pressure and the product extracted with 100 ml diethyl ether. The organic layer was washed with brine and dried over MgSO4. The yellow compound was recrystallized from ethyl acetate/methanol (1/1) solution to yield yellow needles of (I); yield 72% and M.pt. 460 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of centrosymmetric compound (I) showing displacement ellipsoids at the 50% probability level. Symmetry code i: 1 - x, 1 - y, -z.
[Figure 2] Fig. 2. A view of the supramolecular chains in (I) mediated by C—H···O interactions (orange dashed lines) and their aggregation into layers in the ac plane.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents for (I); the C—H···O interactions are shown as orange dashed lines.
(E,E)-1,2-Bis[3-methoxy-4-(prop-2-yn-1-yloxy)benzylidene]hydrazine top
Crystal data top
C22H20N2O4F(000) = 396
Mr = 376.40Dx = 1.340 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1658 reflections
a = 4.4840 (3) Åθ = 2.8–29.5°
b = 14.4636 (8) ŵ = 0.09 mm1
c = 14.3939 (9) ÅT = 100 K
β = 91.674 (4)°Needle, yellow
V = 933.11 (10) Å30.25 × 0.11 × 0.07 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
2138 independent reflections
Radiation source: fine-focus sealed tube1625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.368, Tmax = 0.746k = 1818
8574 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.2035P]
where P = (Fo2 + 2Fc2)/3
2138 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C22H20N2O4V = 933.11 (10) Å3
Mr = 376.40Z = 2
Monoclinic, P21/nMo Kα radiation
a = 4.4840 (3) ŵ = 0.09 mm1
b = 14.4636 (8) ÅT = 100 K
c = 14.3939 (9) Å0.25 × 0.11 × 0.07 mm
β = 91.674 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2138 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1625 reflections with I > 2σ(I)
Tmin = 0.368, Tmax = 0.746Rint = 0.069
8574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
2138 reflectionsΔρmin = 0.25 e Å3
128 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.2641 (2)0.54779 (7)0.43315 (7)0.0201 (3)
O21.3374 (2)0.41802 (7)0.31509 (8)0.0218 (3)
N10.5998 (3)0.49139 (8)0.03789 (9)0.0204 (3)
C10.5930 (3)0.55648 (10)0.09829 (11)0.0195 (4)
H10.46380.60750.08670.023*
C20.7742 (3)0.55572 (10)0.18375 (11)0.0187 (3)
C30.7351 (3)0.62536 (10)0.24843 (11)0.0201 (4)
H30.59550.67330.23510.024*
C40.8968 (3)0.62633 (10)0.33254 (11)0.0192 (3)
H40.86940.67500.37580.023*
C51.0972 (3)0.55612 (9)0.35270 (10)0.0170 (3)
C61.1383 (3)0.48469 (9)0.28727 (11)0.0178 (3)
C70.9810 (3)0.48486 (9)0.20414 (11)0.0182 (3)
H71.01170.43700.16020.022*
C81.2080 (4)0.61172 (10)0.50702 (11)0.0209 (4)
H8A1.28880.58570.56620.025*
H8B0.98980.61890.51280.025*
C91.3423 (4)0.70363 (10)0.49229 (11)0.0214 (4)
C101.4542 (4)0.77718 (11)0.48483 (12)0.0262 (4)
H101.54410.83630.47880.031*
C111.3762 (4)0.34187 (10)0.25333 (12)0.0255 (4)
H11A1.18300.31210.24050.038*
H11B1.51420.29710.28210.038*
H11C1.45780.36420.19500.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0245 (6)0.0180 (5)0.0174 (6)0.0022 (4)0.0053 (5)0.0022 (4)
O20.0261 (6)0.0161 (5)0.0228 (6)0.0055 (4)0.0061 (5)0.0030 (4)
N10.0202 (7)0.0225 (6)0.0182 (7)0.0017 (5)0.0047 (6)0.0031 (5)
C10.0185 (8)0.0176 (7)0.0223 (8)0.0017 (6)0.0020 (7)0.0035 (6)
C20.0180 (8)0.0171 (7)0.0209 (8)0.0036 (6)0.0014 (7)0.0025 (6)
C30.0184 (8)0.0160 (7)0.0260 (9)0.0001 (6)0.0019 (7)0.0029 (6)
C40.0221 (8)0.0150 (7)0.0207 (8)0.0009 (6)0.0004 (7)0.0012 (6)
C50.0176 (8)0.0162 (7)0.0171 (8)0.0029 (6)0.0013 (6)0.0016 (5)
C60.0172 (8)0.0132 (7)0.0230 (8)0.0006 (6)0.0007 (6)0.0023 (6)
C70.0195 (8)0.0148 (7)0.0202 (8)0.0019 (6)0.0002 (6)0.0013 (5)
C80.0259 (9)0.0211 (7)0.0154 (8)0.0006 (6)0.0024 (7)0.0026 (6)
C90.0245 (9)0.0227 (8)0.0169 (8)0.0031 (6)0.0020 (7)0.0032 (6)
C100.0325 (10)0.0215 (8)0.0244 (9)0.0001 (7)0.0031 (8)0.0031 (6)
C110.0293 (9)0.0176 (7)0.0293 (9)0.0034 (6)0.0056 (8)0.0055 (6)
Geometric parameters (Å, º) top
O1—C51.3655 (17)C4—H40.9500
O1—C81.4368 (18)C5—C61.414 (2)
O2—C61.3664 (16)C6—C71.371 (2)
O2—C111.4292 (18)C7—H70.9500
N1—C11.282 (2)C8—C91.477 (2)
N1—N1i1.413 (2)C8—H8A0.9900
C1—C21.454 (2)C8—H8B0.9900
C1—H10.9500C9—C101.182 (2)
C2—C31.386 (2)C10—H100.9500
C2—C71.407 (2)C11—H11A0.9800
C3—C41.393 (2)C11—H11B0.9800
C3—H30.9500C11—H11C0.9800
C4—C51.381 (2)
C5—O1—C8117.87 (11)O2—C6—C5114.66 (13)
C6—O2—C11116.87 (11)C7—C6—C5120.43 (13)
C1—N1—N1i111.53 (15)C6—C7—C2120.15 (14)
N1—C1—C2122.96 (14)C6—C7—H7119.9
N1—C1—H1118.5C2—C7—H7119.9
C2—C1—H1118.5O1—C8—C9113.08 (13)
C3—C2—C7118.98 (14)O1—C8—H8A109.0
C3—C2—C1118.95 (13)C9—C8—H8A109.0
C7—C2—C1122.03 (14)O1—C8—H8B109.0
C2—C3—C4121.22 (14)C9—C8—H8B109.0
C2—C3—H3119.4H8A—C8—H8B107.8
C4—C3—H3119.4C10—C9—C8176.86 (17)
C5—C4—C3119.61 (14)C9—C10—H10180.0
C5—C4—H4120.2O2—C11—H11A109.5
C3—C4—H4120.2O2—C11—H11B109.5
O1—C5—C4125.46 (13)H11A—C11—H11B109.5
O1—C5—C6114.94 (12)O2—C11—H11C109.5
C4—C5—C6119.60 (13)H11A—C11—H11C109.5
O2—C6—C7124.90 (13)H11B—C11—H11C109.5
N1i—N1—C1—C2179.28 (15)C11—O2—C6—C5177.04 (14)
N1—C1—C2—C3174.95 (15)O1—C5—C6—O20.4 (2)
N1—C1—C2—C72.9 (2)C4—C5—C6—O2178.85 (13)
C7—C2—C3—C40.2 (2)O1—C5—C6—C7179.38 (13)
C1—C2—C3—C4178.11 (14)C4—C5—C6—C70.1 (2)
C2—C3—C4—C50.9 (2)O2—C6—C7—C2178.03 (14)
C8—O1—C5—C46.4 (2)C5—C6—C7—C20.8 (2)
C8—O1—C5—C6172.80 (13)C3—C2—C7—C60.7 (2)
C3—C4—C5—O1178.48 (15)C1—C2—C7—C6177.22 (15)
C3—C4—C5—C60.7 (2)C5—O1—C8—C978.02 (17)
C11—O2—C6—C71.8 (2)O1—C8—C9—C10136 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8a···O2ii0.992.363.255 (2)150
Symmetry code: (ii) x+3, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H20N2O4
Mr376.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)4.4840 (3), 14.4636 (8), 14.3939 (9)
β (°) 91.674 (4)
V3)933.11 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.11 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.368, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
8574, 2138, 1625
Rint0.069
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.124, 1.05
No. of reflections2138
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8a···O2i0.992.363.255 (2)150
Symmetry code: (i) x+3, y+1, z+1.
 

Acknowledgements

The University of Malaya is thanked for support of this research through a research grant (No. FRGS FP001/2010 A) and for the maintenance of the crystallographic facility.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKundu, N., Chatterjee, P. B., Chaudhury, M. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m1583–m1585.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z., Thompson, L. K. & Miller, D. O. (1997). Inorg. Chem. 36, 3985–3995.  CSD CrossRef CAS Web of Science Google Scholar
First citationZheng, P.-W., Wang, W. & Duan, X.-M. (2005). Acta Cryst. E61, o3020–o3021.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds