metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m963-m964

{4-Hy­dr­oxy-N′-[(2E,3Z)-4-oxido-4-phenyl­but-3-en-2-yl­­idene]benzo­hydra­zidato}di­phenyl­tin(IV) methanol monosolvate

aFaculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, bAgilent Technologies UK Ltd, 10 Mead Road, Oxford Industrial Park, Oxford OX5 1QU, England, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 15 June 2011; accepted 15 June 2011; online 22 June 2011)

Two independent diphenyl­tin mol­ecules and two independent methanol mol­ecules comprise the asymmetric unit of the title compound, [Sn(C6H5)2(C17H14N2O3)]·CH3OH. The Sn atom in each is five-coordinated by a tridentate ligand and the ipso-C atoms of the Sn-bound benzene substituents. The resulting C2N2O donor set defines a coordination geometry that is inter­mediate between trigonal-bipyramidal (TP) and square-pyramidal (SP), with one mol­ecule slightly tending towards TP and the other slightly towards SP. The mol­ecules differ in terms of the relative orientations of the terminal benzene rings [dihedral angles = 45.71 (18) and 53.98 (17)°] and of the Sn-bound benzene substituents [dihedral angles = 59.5 (2) and 45.77 (18)°, respectively]. The most prominent feature of the crystal packing is the formation of four-mol­ecule aggregates via O—H⋯O and O—H⋯N hydrogen bonds, in which the hy­droxy group is connected to a methanol mol­ecule which, in turn, is linked to a non-coordinating N atom. Weak C—H⋯π inter­actions also occur.

Related literature

For background to the biological inter­est in related compounds, see: Affan et al. (2010[Affan, M. A., Sam, N. B., Ahmad, F. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m924.]). For related structures, see: Affan et al. (2009[Affan, M. A., Foo, S. W., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031-5037.], 2011[Affan, M. A., Sam, N. B., Ahmad, F. B., White, F. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m965.]). For additional structural analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)2(C17H14N2O3)]·CH4O

  • Mr = 599.23

  • Monoclinic, P 21 /c

  • a = 18.6824 (2) Å

  • b = 28.7280 (4) Å

  • c = 10.3369 (1) Å

  • β = 99.856 (1)°

  • V = 5466.02 (11) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 7.74 mm−1

  • T = 150 K

  • 0.37 × 0.29 × 0.17 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.231, Tmax = 0.611

  • 17500 measured reflections

  • 9175 independent reflections

  • 8138 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.079

  • S = 1.00

  • 9175 reflections

  • 675 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—O1 2.124 (2)
Sn1—O3 2.102 (2)
Sn1—N2 2.133 (2)
Sn1—C18 2.118 (4)
Sn1—C24 2.117 (3)
Sn2—O4 2.123 (2)
Sn2—O6 2.094 (2)
Sn2—N4 2.141 (3)
Sn2—C47 2.116 (3)
Sn2—C53 2.124 (3)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C31–C36, C18–C23 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯O8i 0.84 1.81 2.650 (4) 175
O5—H5o⋯O7ii 0.84 1.85 2.681 (4) 170
O7—H7o⋯N3iii 0.84 2.02 2.830 (4) 163
O8—H8o⋯N1iv 0.84 1.98 2.821 (4) 175
C50—H50⋯Cg1v 0.95 2.91 3.440 (5) 116
C57—H57⋯Cg2 0.95 2.84 3.664 (4) 145
C60—H60a⋯Cg3vi 0.98 2.98 3.886 (6) 155
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y, z+1; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z-1; (v) x, y, z-1; (vi) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Motivated by the biological activity of organotin derivatives of biological interest (Affan et al., 2009), the title compound, (I), was examined in connection with complementary structural studies (Affan et al., 2010). The analysis of (I) complements the structure of the dimethyltin derivative (Affan et al., 2011).

Two independent diphenyltin compounds and two methanol molecules of solvation comprise the asymmetric unit of (I). There are some conformational differences between the first independent molecule, Fig. 1, and that of the second, Fig. 2, as discussed below. The Sn atom in each molecule is five-coordinated by the tridentate ligand and two phenyl groups, Table 1. The resulting C2NO2 donor set defines a coordination geometry intermediate between square pyramidal and trigonal bipyramidal geometry. This is quantified by the value of τ = 0.55 [Sn1] which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). The value for the Sn2 atom, τ = 0.47, indicates a small deviation towards square pyramidal. The τ value for the dimethyl derivative of 0.51 (Affan et al., 2011) is intermediate between those calculated for the molecules in (I).

The five-membered SnCN2O chelate ring is buckled with a r.m.s. deviation = 0.182 Å and with maximum deviations of 0.116 (1) and -0.144 (2) Å for the Sn1 and N2 atoms, respectively [the equivalent parameters for the second molecule are r.m.s. = 0.224 Å, max. deviations: 0.142 (1) for Sn2 and -0.176 (3) for N4]. There is also considerable distortion in the SnC3NO six-membered chelate with the r.m.s. deviation being 0.185 Å, and with the O3 and Sn1 atoms lying 0.214 (2) and -0.160 (1) Å out of the least-squares plane [the equivalent parameters for the second molecule are r.m.s. = 0.222 Å, max. deviations: 0.255 (2) for O6 and -0.191 (1) for Sn2]. The hydroxybenzene ring is slightly twisted out of the plane from the adjacent five-membered chelate ring as seen in the O1—C1—C2—C3 torsion angle of -4.8 (5) ° [an even greater twist is found for the second molecule with O4—C30—C31—C32 being -170.3 (3) °]. By contrast, significant twists are found between the benzene ring and six-membered chelate ring with the O3—C11—C12—C13 torsion angle being -159.6 (3) ° [again, an even greater twist is found for the second independent molecule with O6—C40—C41—C42 = 150.4 (3) °]. The dihedral angle between the terminal benzene rings is 45.71 (18) ° consistent with twist in the tridentate ligand [the equivalent value for the second molecule is 53.98 (17) °]. The aforementioned differences are highlighted in the overlay diagram shown in Fig. 3. The other notable difference between the two independent molecules is found in the dihedral angle formed between the tin-bound benzene rings, i.e. 59.5 (2) ° for the Sn1-molecule and 45.77 (18) ° for the Sn2-molecule.

The crystal structure features four molecule aggregates whereby centrosymmetrically related molecules are bridged by methanol molecules. The connections between the molecules are O—H···O hydrogen bonds formed between the benzene-hydroxy group and the methanol-O, and O—H···N hydrogen bonds formed between the methanol and the non-coordinating nitrogen atom, Table 2. The resultant aggregate is cyclic and is stabilized by a 20-membered {···HO···HOC5N}2 synthon as illustrated for the Sn1 molecule in Fig. 4. Globally, the crystal structure comprises alternating layers made up of Sn1 and Sn2 molecules that stack along the a direction and are connected by C—H···π interactions, Table 2.

Related literature top

For background to the biological interest of related compounds, see: Affan et al. (2010). For related structures, see: Affan et al. (2009, 2011). For additional structural analysis, see: Addison et al. (1984).

Experimental top

Benzoylacetone 4-hydroxybenzhydrazone (0.59 g, 2 mmol) was dissolved in distilled methanol (20 ml) under a nitrogen atmosphere. Potassium hydroxide (0.23 g, 4 mmol) dissolved in methanol (10 ml) was added drop wise to the solution during which the colour of the solution changed from yellow to orange. The resulting mixture was refluxed for 1 h, then treated with diphenyltin dichloride (0.687 g, 2 mmol) in methanol (10 ml), heated under reflux for 4 h and allowed to cool to room temperature. Potassium chloride that formed during the reaction was removed via filtration. The filtrate was evaporated to dryness using a rotary evaporator to obtain yellow microcrystals. The microcrystals were filtered off, washed with ethanol and dried in vacuo over P2O5 overnight. Yellow blocks of (I) were obtained by slow evaporation of methanol and diethyl ether (1:3 ratio) solution at room temperature. Yield: 1.05 g, 70%. M.pt: 455–456 K. IR (νmax, cm-1, KBr): 3455 (OH), 1596 (C N—NC), 953 (N—N), 564 (Sn—C), 520 (Sn—O), 448 (Sn—N).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (O—H = 0.84 Å; C—H = 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2-Ueq(C) and 1.5-Ueq(O, methyl-C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the first independent molecule of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of the second independent molecule of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Overlay diagram of the two independent Sn-containing molecules comprising the asymmetric unit of (I). The first independent molecule (with the Sn1 atom) is shown in red.
[Figure 4] Fig. 4. A view of the supramolecular four molecule aggregate of Sn1-containing and methanol molecules in (I). The O—H···O and O—H···N hydrogen bonds are shown as orange and blue dashed lines, respectively.
[Figure 5] Fig. 5. A view in projection down the b axis of the crystal packing in (I) which comprises alternating layers of Sn1 and Sn2 molecules.
{4-Hydroxy-N'-[(2E,3Z)-4-oxido-4-phenylbut-3-en-2- ylidene]benzohydrazidato}diphenyltin(IV) methanol monosolvate top
Crystal data top
[Sn(C6H5)2(C17H14N2O3)]·CH4OF(000) = 2432
Mr = 599.23Dx = 1.456 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 10187 reflections
a = 18.6824 (2) Åθ = 3.1–74.5°
b = 28.7280 (4) ŵ = 7.74 mm1
c = 10.3369 (1) ÅT = 150 K
β = 99.856 (1)°Block, yellow
V = 5466.02 (11) Å30.37 × 0.29 × 0.17 mm
Z = 8
Data collection top
Agilent SuperNova Dual Cu at zero Atlas
diffractometer
9175 independent reflections
Radiation source: SuperNova (Cu) X-ray Source8138 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
ω scansθmax = 65.0°, θmin = 3.1°
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
h = 2121
Tmin = 0.231, Tmax = 0.611k = 2733
17500 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0362P)2]
where P = (Fo2 + 2Fc2)/3
9175 reflections(Δ/σ)max = 0.002
675 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Sn(C6H5)2(C17H14N2O3)]·CH4OV = 5466.02 (11) Å3
Mr = 599.23Z = 8
Monoclinic, P21/cCu Kα radiation
a = 18.6824 (2) ŵ = 7.74 mm1
b = 28.7280 (4) ÅT = 150 K
c = 10.3369 (1) Å0.37 × 0.29 × 0.17 mm
β = 99.856 (1)°
Data collection top
Agilent SuperNova Dual Cu at zero Atlas
diffractometer
9175 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
8138 reflections with I > 2σ(I)
Tmin = 0.231, Tmax = 0.611Rint = 0.036
17500 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.00Δρmax = 0.46 e Å3
9175 reflectionsΔρmin = 0.58 e Å3
675 parameters
Special details top

Experimental. Agilent Technologies (2011) CrysAlis PRO Software system, version 1.171.34.49, Agilent Technologies UK Ltd, Oxford, UK

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.913726 (11)0.613291 (8)0.89734 (2)0.02462 (7)
O10.88488 (11)0.55161 (8)0.9894 (2)0.0312 (5)
O20.84683 (13)0.42008 (9)1.4635 (2)0.0372 (6)
H2O0.88170.41371.52360.056*
O30.98171 (11)0.66440 (8)0.8377 (2)0.0296 (5)
N11.00051 (14)0.55638 (10)1.1106 (2)0.0267 (6)
N21.01155 (13)0.58776 (10)1.0125 (2)0.0250 (6)
C10.93374 (17)0.53974 (12)1.0898 (3)0.0265 (7)
C20.91311 (16)0.50704 (11)1.1859 (3)0.0245 (7)
C30.84140 (17)0.49194 (12)1.1748 (3)0.0285 (7)
H30.80640.50211.10260.034*
C40.82033 (18)0.46251 (13)1.2667 (3)0.0307 (8)
H40.77110.45281.25770.037*
C50.87068 (17)0.44702 (12)1.3725 (3)0.0290 (7)
C60.94380 (18)0.46045 (12)1.3823 (3)0.0309 (8)
H60.97910.44941.45280.037*
C70.96428 (17)0.48969 (12)1.2893 (3)0.0300 (8)
H71.01390.49821.29560.036*
C81.07935 (16)0.59773 (12)1.0015 (3)0.0256 (7)
C91.14014 (17)0.57482 (13)1.0926 (3)0.0317 (8)
H9A1.14150.58671.18190.048*
H9B1.18640.58171.06390.048*
H9C1.13230.54111.09180.048*
C101.09663 (17)0.62921 (12)0.9064 (3)0.0273 (7)
H101.14600.62970.89460.033*
C111.05056 (17)0.65907 (12)0.8290 (3)0.0265 (7)
C121.07698 (17)0.68986 (13)0.7317 (3)0.0303 (8)
C131.13904 (19)0.67964 (14)0.6808 (3)0.0374 (9)
H131.16530.65190.70730.045*
C141.1632 (2)0.70882 (16)0.5929 (4)0.0492 (11)
H141.20620.70130.55990.059*
C151.1258 (2)0.74874 (18)0.5519 (5)0.0609 (14)
H151.14320.76920.49210.073*
C161.0627 (2)0.75882 (17)0.5988 (5)0.0606 (13)
H161.03590.78610.56970.073*
C171.0382 (2)0.72947 (15)0.6878 (4)0.0456 (10)
H170.99450.73650.71890.055*
C180.85967 (17)0.66046 (13)1.0053 (3)0.0309 (8)
C190.8137 (2)0.64476 (16)1.0884 (4)0.0427 (9)
H190.80830.61221.10000.051*
C200.7761 (2)0.67520 (19)1.1540 (4)0.0555 (12)
H200.74450.66391.20970.067*
C210.7849 (2)0.7226 (2)1.1382 (5)0.0691 (16)
H210.76010.74391.18510.083*
C220.8298 (2)0.73929 (17)1.0541 (6)0.0684 (15)
H220.83480.77181.04210.082*
C230.8670 (2)0.70802 (15)0.9878 (5)0.0494 (11)
H230.89770.71920.93020.059*
C240.87277 (17)0.59245 (12)0.7023 (3)0.0290 (7)
C250.8810 (3)0.62217 (15)0.6003 (4)0.0578 (13)
H250.90560.65100.61850.069*
C260.8534 (3)0.60990 (18)0.4715 (4)0.0714 (16)
H260.85980.63000.40140.086*
C270.8168 (2)0.56845 (16)0.4456 (4)0.0517 (11)
H270.79650.56060.35760.062*
C280.8093 (2)0.53846 (16)0.5448 (4)0.0470 (10)
H280.78530.50950.52570.056*
C290.83686 (18)0.55053 (14)0.6737 (4)0.0368 (8)
H290.83110.52990.74300.044*
Sn20.544563 (10)0.625910 (7)0.42618 (2)0.02395 (7)
O40.58497 (11)0.56399 (8)0.5247 (2)0.0294 (5)
O50.67111 (12)0.44090 (9)1.0327 (2)0.0362 (6)
H5O0.64010.42911.07300.054*
O60.46618 (11)0.67353 (8)0.3385 (2)0.0275 (5)
N30.47311 (14)0.56128 (10)0.5916 (3)0.0266 (6)
N40.45350 (13)0.59189 (10)0.4855 (3)0.0263 (6)
C300.54222 (17)0.54933 (12)0.6031 (3)0.0265 (7)
C310.57345 (17)0.51907 (11)0.7128 (3)0.0263 (7)
C320.53045 (17)0.49582 (12)0.7912 (3)0.0296 (7)
H320.47910.49830.77060.035*
C330.56147 (17)0.46943 (12)0.8975 (3)0.0302 (7)
H330.53160.45410.94990.036*
C340.63680 (18)0.46532 (12)0.9277 (3)0.0289 (7)
C350.67993 (18)0.48745 (12)0.8492 (3)0.0315 (8)
H350.73130.48450.86900.038*
C360.64864 (17)0.51351 (12)0.7431 (3)0.0293 (7)
H360.67870.52800.68950.035*
C370.38430 (16)0.59648 (12)0.4367 (3)0.0254 (7)
C380.32879 (17)0.56738 (13)0.4907 (3)0.0344 (8)
H38A0.34670.53540.50440.052*
H38B0.28300.56740.42810.052*
H38C0.32070.58050.57450.052*
C390.36003 (17)0.62742 (12)0.3309 (3)0.0287 (7)
H390.31130.62360.28730.034*
C400.39911 (16)0.66212 (12)0.2850 (3)0.0256 (7)
C410.36756 (16)0.69069 (12)0.1693 (3)0.0265 (7)
C420.31586 (18)0.67235 (14)0.0691 (3)0.0364 (8)
H420.29910.64130.07520.044*
C430.2888 (2)0.69927 (16)0.0395 (4)0.0457 (10)
H430.25340.68650.10720.055*
C440.31245 (19)0.74418 (15)0.0508 (4)0.0403 (9)
H440.29370.76240.12560.048*
C450.3634 (2)0.76235 (15)0.0472 (4)0.0416 (9)
H450.38010.79340.04020.050*
C460.39095 (19)0.73594 (13)0.1562 (3)0.0345 (8)
H460.42640.74900.22320.041*
C470.58271 (17)0.60961 (12)0.2503 (3)0.0278 (7)
C480.55966 (19)0.63494 (14)0.1365 (3)0.0363 (8)
H480.52590.65970.13680.044*
C490.5859 (2)0.62421 (15)0.0219 (4)0.0431 (10)
H490.57070.64190.05560.052*
C500.6342 (2)0.58782 (16)0.0211 (4)0.0460 (10)
H500.65190.58040.05730.055*
C510.6567 (2)0.56233 (15)0.1331 (4)0.0451 (10)
H510.68970.53730.13170.054*
C520.63146 (19)0.57301 (13)0.2479 (4)0.0356 (8)
H520.64740.55540.32520.043*
C530.59273 (16)0.66994 (12)0.5821 (3)0.0271 (7)
C540.5622 (2)0.71212 (14)0.6050 (4)0.0415 (9)
H540.52270.72390.54350.050*
C550.5886 (2)0.73760 (16)0.7175 (4)0.0529 (11)
H550.56630.76630.73320.064*
C560.6464 (2)0.72180 (15)0.8055 (4)0.0456 (10)
H560.66420.73940.88210.055*
C570.6786 (2)0.68048 (15)0.7829 (4)0.0443 (10)
H570.71920.66970.84350.053*
C580.65233 (19)0.65424 (14)0.6718 (4)0.0394 (9)
H580.67500.62560.65690.047*
O70.58272 (16)0.40602 (10)0.1873 (3)0.0475 (7)
H7O0.57260.42030.25280.071*
C590.5821 (3)0.3582 (2)0.2101 (6)0.0833 (17)
H59A0.62860.34880.26280.125*
H59B0.57490.34160.12610.125*
H59C0.54250.35060.25760.125*
O80.04591 (17)0.60516 (10)0.3473 (3)0.0524 (8)
H8O0.03520.59010.27700.079*
C600.0200 (4)0.6484 (2)0.3296 (6)0.107 (2)
H60A0.02450.66410.41470.160*
H60B0.03130.64730.28840.160*
H60C0.04770.66550.27270.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02344 (11)0.02432 (12)0.02486 (11)0.00139 (8)0.00064 (8)0.00269 (8)
O10.0285 (11)0.0309 (13)0.0315 (12)0.0008 (10)0.0028 (10)0.0085 (11)
O20.0355 (13)0.0391 (15)0.0374 (13)0.0022 (11)0.0074 (11)0.0120 (12)
O30.0251 (11)0.0279 (13)0.0358 (12)0.0005 (9)0.0052 (10)0.0062 (10)
N10.0267 (13)0.0278 (15)0.0257 (13)0.0004 (12)0.0043 (11)0.0065 (12)
N20.0243 (13)0.0241 (15)0.0260 (13)0.0031 (11)0.0027 (11)0.0045 (11)
C10.0268 (16)0.0241 (17)0.0284 (16)0.0031 (13)0.0045 (14)0.0011 (14)
C20.0261 (16)0.0223 (17)0.0248 (16)0.0013 (13)0.0033 (13)0.0003 (13)
C30.0253 (16)0.0310 (19)0.0282 (16)0.0019 (14)0.0014 (13)0.0009 (15)
C40.0271 (16)0.035 (2)0.0303 (17)0.0036 (14)0.0058 (14)0.0004 (15)
C50.0318 (17)0.0277 (18)0.0284 (17)0.0012 (14)0.0080 (14)0.0021 (15)
C60.0299 (17)0.0313 (19)0.0301 (17)0.0007 (14)0.0014 (14)0.0045 (15)
C70.0233 (16)0.032 (2)0.0326 (17)0.0033 (14)0.0004 (14)0.0047 (15)
C80.0254 (16)0.0274 (18)0.0238 (15)0.0025 (13)0.0033 (13)0.0022 (14)
C90.0267 (16)0.034 (2)0.0345 (18)0.0035 (14)0.0048 (14)0.0078 (16)
C100.0254 (16)0.0298 (19)0.0270 (16)0.0001 (13)0.0055 (13)0.0021 (14)
C110.0305 (17)0.0251 (18)0.0236 (16)0.0024 (14)0.0037 (13)0.0037 (14)
C120.0305 (17)0.0316 (19)0.0273 (16)0.0035 (14)0.0007 (14)0.0065 (15)
C130.0359 (19)0.042 (2)0.0328 (18)0.0054 (17)0.0022 (16)0.0101 (17)
C140.039 (2)0.066 (3)0.043 (2)0.002 (2)0.0076 (18)0.018 (2)
C150.047 (2)0.070 (3)0.065 (3)0.006 (2)0.010 (2)0.038 (3)
C160.054 (3)0.053 (3)0.074 (3)0.007 (2)0.010 (2)0.035 (3)
C170.041 (2)0.044 (2)0.052 (2)0.0016 (18)0.0099 (18)0.017 (2)
C180.0238 (15)0.037 (2)0.0308 (17)0.0026 (14)0.0015 (14)0.0012 (15)
C190.039 (2)0.053 (3)0.035 (2)0.0079 (18)0.0040 (17)0.0037 (19)
C200.048 (2)0.080 (4)0.044 (2)0.010 (2)0.0208 (19)0.008 (2)
C210.050 (3)0.085 (4)0.075 (3)0.013 (3)0.015 (2)0.044 (3)
C220.050 (3)0.042 (3)0.114 (4)0.005 (2)0.016 (3)0.029 (3)
C230.038 (2)0.039 (2)0.074 (3)0.0014 (17)0.018 (2)0.011 (2)
C240.0308 (16)0.0282 (18)0.0266 (16)0.0033 (14)0.0012 (14)0.0028 (14)
C250.092 (3)0.038 (2)0.036 (2)0.018 (2)0.010 (2)0.0094 (19)
C260.111 (4)0.061 (3)0.035 (2)0.020 (3)0.011 (3)0.010 (2)
C270.058 (3)0.060 (3)0.033 (2)0.006 (2)0.0027 (19)0.013 (2)
C280.048 (2)0.050 (3)0.043 (2)0.016 (2)0.0094 (19)0.015 (2)
C290.0353 (19)0.038 (2)0.0384 (19)0.0087 (16)0.0110 (16)0.0006 (17)
Sn20.02155 (11)0.02523 (12)0.02636 (11)0.00062 (8)0.00779 (8)0.00407 (9)
O40.0268 (11)0.0286 (13)0.0354 (12)0.0052 (10)0.0127 (10)0.0096 (10)
O50.0348 (12)0.0356 (15)0.0378 (14)0.0066 (11)0.0049 (11)0.0128 (11)
O60.0223 (10)0.0278 (13)0.0315 (12)0.0006 (9)0.0024 (9)0.0048 (10)
N30.0253 (13)0.0280 (16)0.0275 (14)0.0017 (11)0.0073 (11)0.0074 (12)
N40.0254 (13)0.0249 (15)0.0289 (14)0.0005 (11)0.0059 (11)0.0034 (12)
C300.0280 (16)0.0235 (17)0.0292 (16)0.0001 (13)0.0083 (14)0.0004 (14)
C310.0293 (16)0.0219 (17)0.0280 (16)0.0015 (13)0.0058 (14)0.0008 (14)
C320.0247 (16)0.0287 (19)0.0355 (18)0.0004 (14)0.0057 (14)0.0052 (15)
C330.0302 (17)0.0280 (19)0.0329 (17)0.0021 (14)0.0072 (14)0.0068 (15)
C340.0349 (18)0.0228 (17)0.0292 (17)0.0033 (14)0.0061 (14)0.0008 (14)
C350.0265 (16)0.033 (2)0.0362 (18)0.0057 (14)0.0079 (14)0.0016 (16)
C360.0291 (17)0.0262 (18)0.0352 (18)0.0031 (14)0.0124 (14)0.0020 (15)
C370.0219 (15)0.0260 (18)0.0298 (16)0.0012 (13)0.0087 (13)0.0013 (14)
C380.0264 (17)0.040 (2)0.0382 (19)0.0060 (15)0.0086 (15)0.0058 (17)
C390.0239 (16)0.0326 (19)0.0296 (17)0.0001 (14)0.0047 (14)0.0011 (15)
C400.0273 (16)0.0261 (17)0.0243 (15)0.0048 (13)0.0071 (13)0.0026 (14)
C410.0219 (15)0.0322 (19)0.0269 (16)0.0030 (13)0.0090 (13)0.0000 (14)
C420.0364 (18)0.034 (2)0.0373 (19)0.0017 (16)0.0013 (16)0.0018 (16)
C430.041 (2)0.060 (3)0.0327 (19)0.0002 (19)0.0038 (17)0.0026 (19)
C440.0338 (19)0.056 (3)0.0326 (19)0.0110 (18)0.0101 (16)0.0173 (18)
C450.042 (2)0.041 (2)0.043 (2)0.0024 (17)0.0100 (18)0.0155 (18)
C460.0343 (18)0.035 (2)0.0330 (18)0.0053 (15)0.0025 (15)0.0073 (16)
C470.0269 (16)0.0313 (19)0.0270 (16)0.0050 (14)0.0096 (14)0.0030 (14)
C480.0356 (19)0.040 (2)0.0351 (19)0.0049 (16)0.0098 (16)0.0001 (17)
C490.049 (2)0.051 (3)0.0305 (19)0.0133 (19)0.0100 (17)0.0024 (18)
C500.052 (2)0.054 (3)0.037 (2)0.011 (2)0.0229 (18)0.017 (2)
C510.044 (2)0.042 (2)0.054 (2)0.0010 (18)0.0232 (19)0.012 (2)
C520.0373 (19)0.032 (2)0.0389 (19)0.0010 (16)0.0121 (16)0.0008 (16)
C530.0223 (15)0.0326 (19)0.0266 (16)0.0048 (13)0.0055 (13)0.0018 (14)
C540.0348 (19)0.038 (2)0.047 (2)0.0061 (17)0.0053 (17)0.0040 (18)
C550.048 (2)0.044 (3)0.063 (3)0.001 (2)0.000 (2)0.019 (2)
C560.046 (2)0.047 (3)0.043 (2)0.0163 (19)0.0046 (18)0.0058 (19)
C570.038 (2)0.050 (3)0.039 (2)0.0063 (18)0.0080 (17)0.0108 (19)
C580.0358 (19)0.037 (2)0.043 (2)0.0045 (16)0.0006 (17)0.0052 (17)
O70.0659 (18)0.0409 (16)0.0417 (15)0.0091 (14)0.0260 (14)0.0102 (13)
C590.096 (4)0.078 (4)0.082 (4)0.019 (3)0.033 (3)0.006 (3)
O80.0736 (19)0.0423 (17)0.0349 (14)0.0028 (15)0.0089 (14)0.0018 (13)
C600.123 (5)0.087 (5)0.089 (4)0.028 (4)0.040 (4)0.027 (4)
Geometric parameters (Å, º) top
Sn1—O12.124 (2)O4—C301.302 (4)
Sn1—O32.102 (2)O5—C341.357 (4)
Sn1—N22.133 (2)O5—H5O0.8400
Sn1—C182.118 (4)O6—C401.322 (4)
Sn1—C242.117 (3)N3—C301.322 (4)
O1—C11.305 (4)N3—N41.404 (4)
O2—C51.350 (4)N4—C371.312 (4)
O2—H2O0.8400C30—C311.468 (4)
O3—C111.314 (4)C31—C361.395 (4)
N1—C11.319 (4)C31—C321.404 (5)
N1—N21.399 (4)C32—C331.378 (4)
N2—C81.322 (4)C32—H320.9500
C1—C21.466 (5)C33—C341.393 (5)
C2—C31.394 (4)C33—H330.9500
C2—C71.398 (4)C34—C351.392 (5)
C3—C41.379 (5)C35—C361.372 (5)
C3—H30.9500C35—H350.9500
C4—C51.388 (5)C36—H360.9500
C4—H40.9500C37—C391.422 (5)
C5—C61.407 (5)C37—C381.511 (4)
C6—C71.379 (5)C38—H38A0.9800
C6—H60.9500C38—H38B0.9800
C7—H70.9500C38—H38C0.9800
C8—C101.413 (5)C39—C401.368 (5)
C8—C91.498 (4)C39—H390.9500
C9—H9A0.9800C40—C411.486 (4)
C9—H9B0.9800C41—C461.385 (5)
C9—H9C0.9800C41—C421.394 (5)
C10—C111.371 (5)C42—C431.385 (5)
C10—H100.9500C42—H420.9500
C11—C121.486 (5)C43—C441.375 (6)
C12—C171.383 (5)C43—H430.9500
C12—C131.384 (5)C44—C451.370 (5)
C13—C141.368 (5)C44—H440.9500
C13—H130.9500C45—C461.382 (5)
C14—C151.371 (6)C45—H450.9500
C14—H140.9500C46—H460.9500
C15—C161.380 (6)C47—C481.388 (5)
C15—H150.9500C47—C521.394 (5)
C16—C171.382 (6)C48—C491.392 (5)
C16—H160.9500C48—H480.9500
C17—H170.9500C49—C501.381 (6)
C18—C231.388 (5)C49—H490.9500
C18—C191.389 (5)C50—C511.374 (6)
C19—C201.372 (6)C50—H500.9500
C19—H190.9500C51—C521.384 (5)
C20—C211.385 (7)C51—H510.9500
C20—H200.9500C52—H520.9500
C21—C221.392 (7)C53—C541.377 (5)
C21—H210.9500C53—C581.396 (5)
C22—C231.387 (6)C54—C551.391 (5)
C22—H220.9500C54—H540.9500
C23—H230.9500C55—C561.365 (6)
C24—C251.385 (5)C55—H550.9500
C24—C291.385 (5)C56—C571.369 (6)
C25—C261.389 (6)C56—H560.9500
C25—H250.9500C57—C581.391 (5)
C26—C271.377 (6)C57—H570.9500
C26—H260.9500C58—H580.9500
C27—C281.365 (6)O7—C591.394 (6)
C27—H270.9500O7—H7O0.8400
C28—C291.389 (5)C59—H59A0.9800
C28—H280.9500C59—H59B0.9800
C29—H290.9500C59—H59C0.9800
Sn2—O42.123 (2)O8—C601.334 (6)
Sn2—O62.094 (2)O8—H8O0.8400
Sn2—N42.141 (3)C60—H60A0.9800
Sn2—C472.116 (3)C60—H60B0.9800
Sn2—C532.124 (3)C60—H60C0.9800
O3—Sn1—C2493.22 (11)C47—Sn2—N4123.12 (11)
O3—Sn1—C1894.26 (12)C53—Sn2—N4107.98 (11)
C24—Sn1—C18123.74 (12)O4—Sn2—N473.44 (9)
O3—Sn1—O1157.92 (8)C30—O4—Sn2111.35 (19)
C24—Sn1—O196.48 (11)C34—O5—H5O109.5
C18—Sn1—O196.73 (12)C40—O6—Sn2124.2 (2)
O3—Sn1—N284.31 (9)C30—N3—N4110.7 (3)
C24—Sn1—N2124.73 (11)C37—N4—N3118.1 (3)
C18—Sn1—N2111.49 (11)C37—N4—Sn2128.5 (2)
O1—Sn1—N273.86 (9)N3—N4—Sn2113.31 (18)
C1—O1—Sn1112.2 (2)O4—C30—N3123.6 (3)
C5—O2—H2O109.5O4—C30—C31117.9 (3)
C11—O3—Sn1125.9 (2)N3—C30—C31118.5 (3)
C1—N1—N2111.6 (2)C36—C31—C32118.0 (3)
C8—N2—N1117.7 (2)C36—C31—C30119.6 (3)
C8—N2—Sn1128.3 (2)C32—C31—C30122.4 (3)
N1—N2—Sn1114.07 (18)C33—C32—C31121.2 (3)
O1—C1—N1123.3 (3)C33—C32—H32119.4
O1—C1—C2118.5 (3)C31—C32—H32119.4
N1—C1—C2118.2 (3)C32—C33—C34119.7 (3)
C3—C2—C7118.3 (3)C32—C33—H33120.1
C3—C2—C1120.3 (3)C34—C33—H33120.1
C7—C2—C1121.5 (3)O5—C34—C35117.5 (3)
C4—C3—C2121.2 (3)O5—C34—C33122.9 (3)
C4—C3—H3119.4C35—C34—C33119.6 (3)
C2—C3—H3119.4C36—C35—C34120.3 (3)
C3—C4—C5120.3 (3)C36—C35—H35119.8
C3—C4—H4119.8C34—C35—H35119.8
C5—C4—H4119.8C35—C36—C31121.1 (3)
O2—C5—C4118.2 (3)C35—C36—H36119.4
O2—C5—C6122.7 (3)C31—C36—H36119.4
C4—C5—C6119.2 (3)N4—C37—C39121.5 (3)
C7—C6—C5120.0 (3)N4—C37—C38119.7 (3)
C7—C6—H6120.0C39—C37—C38118.8 (3)
C5—C6—H6120.0C37—C38—H38A109.5
C6—C7—C2121.0 (3)C37—C38—H38B109.5
C6—C7—H7119.5H38A—C38—H38B109.5
C2—C7—H7119.5C37—C38—H38C109.5
N2—C8—C10122.3 (3)H38A—C38—H38C109.5
N2—C8—C9119.0 (3)H38B—C38—H38C109.5
C10—C8—C9118.7 (3)C40—C39—C37127.1 (3)
C8—C9—H9A109.5C40—C39—H39116.4
C8—C9—H9B109.5C37—C39—H39116.4
H9A—C9—H9B109.5O6—C40—C39124.0 (3)
C8—C9—H9C109.5O6—C40—C41114.6 (3)
H9A—C9—H9C109.5C39—C40—C41121.3 (3)
H9B—C9—H9C109.5C46—C41—C42118.2 (3)
C11—C10—C8127.6 (3)C46—C41—C40120.6 (3)
C11—C10—H10116.2C42—C41—C40121.2 (3)
C8—C10—H10116.2C43—C42—C41120.1 (4)
O3—C11—C10123.9 (3)C43—C42—H42119.9
O3—C11—C12114.8 (3)C41—C42—H42119.9
C10—C11—C12121.3 (3)C44—C43—C42121.0 (4)
C17—C12—C13118.4 (3)C44—C43—H43119.5
C17—C12—C11119.8 (3)C42—C43—H43119.5
C13—C12—C11121.9 (3)C45—C44—C43119.2 (3)
C14—C13—C12121.0 (4)C45—C44—H44120.4
C14—C13—H13119.5C43—C44—H44120.4
C12—C13—H13119.5C44—C45—C46120.5 (4)
C15—C14—C13120.6 (4)C44—C45—H45119.7
C15—C14—H14119.7C46—C45—H45119.7
C13—C14—H14119.7C41—C46—C45121.0 (3)
C14—C15—C16119.2 (4)C41—C46—H46119.5
C14—C15—H15120.4C45—C46—H46119.5
C16—C15—H15120.4C48—C47—C52119.3 (3)
C15—C16—C17120.3 (4)C48—C47—Sn2120.7 (3)
C15—C16—H16119.8C52—C47—Sn2120.0 (3)
C17—C16—H16119.8C47—C48—C49120.1 (4)
C16—C17—C12120.4 (4)C47—C48—H48119.9
C16—C17—H17119.8C49—C48—H48119.9
C12—C17—H17119.8C50—C49—C48119.9 (4)
C23—C18—C19119.0 (4)C50—C49—H49120.1
C23—C18—Sn1119.6 (3)C48—C49—H49120.1
C19—C18—Sn1121.3 (3)C51—C50—C49120.3 (4)
C20—C19—C18121.5 (4)C51—C50—H50119.8
C20—C19—H19119.3C49—C50—H50119.8
C18—C19—H19119.3C50—C51—C52120.3 (4)
C19—C20—C21119.2 (4)C50—C51—H51119.9
C19—C20—H20120.4C52—C51—H51119.9
C21—C20—H20120.4C51—C52—C47120.1 (4)
C20—C21—C22120.6 (4)C51—C52—H52119.9
C20—C21—H21119.7C47—C52—H52119.9
C22—C21—H21119.7C54—C53—C58118.5 (3)
C23—C22—C21119.5 (5)C54—C53—Sn2121.4 (2)
C23—C22—H22120.3C58—C53—Sn2119.8 (3)
C21—C22—H22120.3C53—C54—C55120.5 (3)
C22—C23—C18120.3 (4)C53—C54—H54119.7
C22—C23—H23119.9C55—C54—H54119.7
C18—C23—H23119.9C56—C55—C54120.6 (4)
C25—C24—C29119.1 (3)C56—C55—H55119.7
C25—C24—Sn1118.8 (3)C54—C55—H55119.7
C29—C24—Sn1122.1 (3)C55—C56—C57119.7 (4)
C24—C25—C26120.1 (4)C55—C56—H56120.2
C24—C25—H25119.9C57—C56—H56120.2
C26—C25—H25119.9C56—C57—C58120.5 (3)
C27—C26—C25119.8 (4)C56—C57—H57119.7
C27—C26—H26120.1C58—C57—H57119.7
C25—C26—H26120.1C57—C58—C53120.1 (4)
C28—C27—C26120.8 (4)C57—C58—H58119.9
C28—C27—H27119.6C53—C58—H58119.9
C26—C27—H27119.6C59—O7—H7O109.5
C27—C28—C29119.7 (4)O7—C59—H59A109.5
C27—C28—H28120.2O7—C59—H59B109.5
C29—C28—H28120.2H59A—C59—H59B109.5
C24—C29—C28120.5 (4)O7—C59—H59C109.5
C24—C29—H29119.7H59A—C59—H59C109.5
C28—C29—H29119.7H59B—C59—H59C109.5
O6—Sn2—C4794.94 (11)C60—O8—H8O109.5
O6—Sn2—C5396.51 (11)O8—C60—H60A109.5
C47—Sn2—C53128.51 (12)O8—C60—H60B109.5
O6—Sn2—O4156.93 (8)H60A—C60—H60B109.5
C47—Sn2—O494.72 (11)O8—C60—H60C109.5
C53—Sn2—O493.76 (11)H60A—C60—H60C109.5
O6—Sn2—N483.75 (9)H60B—C60—H60C109.5
O3—Sn1—O1—C127.1 (4)O6—Sn2—O4—C3031.2 (4)
C24—Sn1—O1—C1142.6 (2)C47—Sn2—O4—C30145.7 (2)
C18—Sn1—O1—C192.2 (2)C53—Sn2—O4—C3085.2 (2)
N2—Sn1—O1—C118.2 (2)N4—Sn2—O4—C3022.5 (2)
C24—Sn1—O3—C1194.8 (3)C47—Sn2—O6—C4088.0 (2)
C18—Sn1—O3—C11141.0 (2)C53—Sn2—O6—C40142.3 (2)
O1—Sn1—O3—C1121.3 (4)O4—Sn2—O6—C4026.4 (4)
N2—Sn1—O3—C1129.8 (2)N4—Sn2—O6—C4034.8 (2)
C1—N1—N2—C8162.8 (3)C30—N3—N4—C37160.5 (3)
C1—N1—N2—Sn116.8 (3)C30—N3—N4—Sn220.0 (3)
O3—Sn1—N2—C816.0 (3)O6—Sn2—N4—C3719.1 (3)
C24—Sn1—N2—C874.0 (3)C47—Sn2—N4—C3772.7 (3)
C18—Sn1—N2—C8108.3 (3)C53—Sn2—N4—C37113.9 (3)
O1—Sn1—N2—C8160.7 (3)O4—Sn2—N4—C37157.5 (3)
O3—Sn1—N2—N1164.4 (2)O6—Sn2—N4—N3160.4 (2)
C24—Sn1—N2—N1105.6 (2)C47—Sn2—N4—N3107.8 (2)
C18—Sn1—N2—N172.0 (2)C53—Sn2—N4—N365.5 (2)
O1—Sn1—N2—N118.9 (2)O4—Sn2—N4—N323.0 (2)
Sn1—O1—C1—N116.5 (4)Sn2—O4—C30—N320.9 (4)
Sn1—O1—C1—C2162.1 (2)Sn2—O4—C30—C31157.0 (2)
N2—N1—C1—O10.1 (5)N4—N3—C30—O40.7 (5)
N2—N1—C1—C2178.7 (3)N4—N3—C30—C31177.2 (3)
O1—C1—C2—C34.8 (5)O4—C30—C31—C3610.9 (5)
N1—C1—C2—C3173.9 (3)N3—C30—C31—C36167.1 (3)
O1—C1—C2—C7174.3 (3)O4—C30—C31—C32170.3 (3)
N1—C1—C2—C77.0 (5)N3—C30—C31—C3211.6 (5)
C7—C2—C3—C43.3 (5)C36—C31—C32—C332.0 (5)
C1—C2—C3—C4177.7 (3)C30—C31—C32—C33176.8 (3)
C2—C3—C4—C50.4 (5)C31—C32—C33—C340.5 (5)
C3—C4—C5—O2176.8 (3)C32—C33—C34—O5178.3 (3)
C3—C4—C5—C62.1 (5)C32—C33—C34—C350.8 (5)
O2—C5—C6—C7177.1 (3)O5—C34—C35—C36178.6 (3)
C4—C5—C6—C71.8 (5)C33—C34—C35—C360.5 (5)
C5—C6—C7—C21.1 (5)C34—C35—C36—C311.0 (5)
C3—C2—C7—C63.6 (5)C32—C31—C36—C352.2 (5)
C1—C2—C7—C6177.3 (3)C30—C31—C36—C35176.6 (3)
N1—N2—C8—C10179.5 (3)N3—N4—C37—C39178.8 (3)
Sn1—N2—C8—C100.9 (5)Sn2—N4—C37—C390.6 (5)
N1—N2—C8—C90.6 (4)N3—N4—C37—C383.0 (5)
Sn1—N2—C8—C9179.0 (2)Sn2—N4—C37—C38177.6 (2)
N2—C8—C10—C1111.6 (6)N4—C37—C39—C4014.5 (6)
C9—C8—C10—C11168.6 (3)C38—C37—C39—C40167.2 (3)
Sn1—O3—C11—C1029.6 (4)Sn2—O6—C40—C3934.4 (4)
Sn1—O3—C11—C12153.2 (2)Sn2—O6—C40—C41146.4 (2)
C8—C10—C11—O33.7 (6)C37—C39—C40—O63.5 (6)
C8—C10—C11—C12179.3 (3)C37—C39—C40—C41177.4 (3)
O3—C11—C12—C1718.9 (5)O6—C40—C41—C4627.2 (4)
C10—C11—C12—C17158.4 (3)C39—C40—C41—C46152.0 (3)
O3—C11—C12—C13159.6 (3)O6—C40—C41—C42150.4 (3)
C10—C11—C12—C1323.0 (5)C39—C40—C41—C4230.4 (5)
C17—C12—C13—C142.5 (6)C46—C41—C42—C430.5 (5)
C11—C12—C13—C14178.9 (3)C40—C41—C42—C43178.2 (3)
C12—C13—C14—C150.7 (6)C41—C42—C43—C440.3 (6)
C13—C14—C15—C161.1 (7)C42—C43—C44—C450.1 (6)
C14—C15—C16—C171.2 (8)C43—C44—C45—C460.0 (6)
C15—C16—C17—C120.5 (7)C42—C41—C46—C450.5 (5)
C13—C12—C17—C162.3 (6)C40—C41—C46—C45178.1 (3)
C11—C12—C17—C16179.0 (4)C44—C45—C46—C410.2 (6)
O3—Sn1—C18—C2314.1 (3)O6—Sn2—C47—C488.8 (3)
C24—Sn1—C18—C2382.7 (3)C53—Sn2—C47—C4893.6 (3)
O1—Sn1—C18—C23174.9 (3)O4—Sn2—C47—C48167.8 (3)
N2—Sn1—C18—C2399.6 (3)N4—Sn2—C47—C4894.5 (3)
O3—Sn1—C18—C19169.4 (3)O6—Sn2—C47—C52171.1 (3)
C24—Sn1—C18—C1993.9 (3)C53—Sn2—C47—C5286.5 (3)
O1—Sn1—C18—C198.5 (3)O4—Sn2—C47—C5212.1 (3)
N2—Sn1—C18—C1983.8 (3)N4—Sn2—C47—C5285.4 (3)
C23—C18—C19—C200.5 (6)C52—C47—C48—C490.9 (5)
Sn1—C18—C19—C20177.1 (3)Sn2—C47—C48—C49179.2 (3)
C18—C19—C20—C210.8 (6)C47—C48—C49—C501.0 (6)
C19—C20—C21—C221.7 (7)C48—C49—C50—C510.4 (6)
C20—C21—C22—C231.3 (7)C49—C50—C51—C520.3 (6)
C21—C22—C23—C180.0 (7)C50—C51—C52—C470.3 (6)
C19—C18—C23—C220.9 (6)C48—C47—C52—C510.3 (5)
Sn1—C18—C23—C22177.5 (3)Sn2—C47—C52—C51179.8 (3)
O3—Sn1—C24—C2518.0 (3)O6—Sn2—C53—C548.4 (3)
C18—Sn1—C24—C2579.3 (4)C47—Sn2—C53—C54110.1 (3)
O1—Sn1—C24—C25178.1 (3)O4—Sn2—C53—C54150.9 (3)
N2—Sn1—C24—C25103.3 (3)N4—Sn2—C53—C5477.1 (3)
O3—Sn1—C24—C29163.2 (3)O6—Sn2—C53—C58178.1 (3)
C18—Sn1—C24—C2999.5 (3)C47—Sn2—C53—C5876.5 (3)
O1—Sn1—C24—C293.1 (3)O4—Sn2—C53—C5822.6 (3)
N2—Sn1—C24—C2977.9 (3)N4—Sn2—C53—C5896.3 (3)
C29—C24—C25—C260.1 (7)C58—C53—C54—C552.2 (6)
Sn1—C24—C25—C26178.7 (4)Sn2—C53—C54—C55171.3 (3)
C24—C25—C26—C271.0 (8)C53—C54—C55—C561.5 (7)
C25—C26—C27—C282.2 (8)C54—C55—C56—C570.0 (7)
C26—C27—C28—C292.1 (7)C55—C56—C57—C580.8 (6)
C25—C24—C29—C280.2 (6)C56—C57—C58—C530.1 (6)
Sn1—C24—C29—C28178.5 (3)C54—C53—C58—C571.4 (6)
C27—C28—C29—C240.9 (6)Sn2—C53—C58—C57172.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C31–C36, C18–C23 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2o···O8i0.841.812.650 (4)175
O5—H5o···O7ii0.841.852.681 (4)170
O7—H7o···N3iii0.842.022.830 (4)163
O8—H8o···N1iv0.841.982.821 (4)175
C50—H50···Cg1v0.952.913.440 (5)116
C57—H57···Cg20.952.843.664 (4)145
C60—H60a···Cg3vi0.982.983.886 (6)155
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z1; (v) x, y, z1; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2(C17H14N2O3)]·CH4O
Mr599.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)18.6824 (2), 28.7280 (4), 10.3369 (1)
β (°) 99.856 (1)
V3)5466.02 (11)
Z8
Radiation typeCu Kα
µ (mm1)7.74
Crystal size (mm)0.37 × 0.29 × 0.17
Data collection
DiffractometerAgilent SuperNova Dual Cu at zero Atlas
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.231, 0.611
No. of measured, independent and
observed [I > 2σ(I)] reflections
17500, 9175, 8138
Rint0.036
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.00
No. of reflections9175
No. of parameters675
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.58

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—O12.124 (2)Sn2—O42.123 (2)
Sn1—O32.102 (2)Sn2—O62.094 (2)
Sn1—N22.133 (2)Sn2—N42.141 (3)
Sn1—C182.118 (4)Sn2—C472.116 (3)
Sn1—C242.117 (3)Sn2—C532.124 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C31–C36, C18–C23 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2o···O8i0.841.812.650 (4)175
O5—H5o···O7ii0.841.852.681 (4)170
O7—H7o···N3iii0.842.022.830 (4)163
O8—H8o···N1iv0.841.982.821 (4)175
C50—H50···Cg1v0.952.913.440 (5)116
C57—H57···Cg20.952.843.664 (4)145
C60—H60a···Cg3vi0.982.983.886 (6)155
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z1; (v) x, y, z1; (vi) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: maaffan@yahoo.com.

Acknowledgements

We thank MOSTI (grant No. 06–01-09-SF0046) and the Universiti Malaysia Sarawak for support of this work.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAffan, M. A., Foo, S. W., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031–5037.  Web of Science CSD CrossRef Google Scholar
First citationAffan, M. A., Sam, N. B., Ahmad, F. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m924.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAffan, M. A., Sam, N. B., Ahmad, F. B., White, F. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m965.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m963-m964
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds