Experimental
Crystal data
[Sn(CH3)2(C17H14N2O3)] Mr = 443.06 Monoclinic, P 21 /c a = 8.0784 (2) Å b = 20.5410 (5) Å c = 11.1678 (3) Å β = 93.025 (2)° V = 1850.58 (8) Å3 Z = 4 Cu Kα radiation μ = 11.15 mm−1 T = 150 K 0.22 × 0.16 × 0.10 mm
|
Data collection
Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: analytical (CrysAlis PRO; Agilent, 2011 ) Tmin = 0.696, Tmax = 0.822 5718 measured reflections 3124 independent reflections 2690 reflections with I > 2σ(I) Rint = 0.038
|
Sn—O1 | 2.156 (3) | Sn—O3 | 2.099 (3) | Sn—N2 | 2.148 (3) | Sn—C18 | 2.105 (4) | Sn—C19 | 2.112 (4) | | O1—Sn—O3 | 155.08 (10) | C18—Sn—C19 | 124.65 (18) | | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O2—H2o⋯O1i | 0.84 | 1.91 | 2.702 (3) | 156 | C4—H4⋯Cg1ii | 0.95 | 2.91 | 3.624 (4) | 133 | C9—H9c⋯Cg2iii | 0.98 | 2.88 | 3.777 (4) | 152 | C16—H16⋯Cg3iv | 0.95 | 2.89 | 3.668 (4) | 140 | Symmetry codes: (i) ; (ii) ; (iii) -x, -y, -z+1; (iv) . | |
Data collection: CrysAlis PRO (Agilent, 2011
); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008
); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008
); molecular graphics: ORTEP-3 (Farrugia, 1997
) and DIAMOND (Brandenburg, 2006
); software used to prepare material for publication: PLATON (Spek, 2009
) and publCIF (Westrip, 2010
).
Supporting information
Benzoylacetone 4-hydroxybenzhydrazone (0.59 g, 2 mmol) was dissolved in distilled methanol (20 ml) under a nitrogen atmosphere. Potassium hydroxide (0.23 g, 4 mmol) dissolved in methanol (10 ml) was added drop wise to the solution. The colour of the solution changed from yellow to orange. The resulting mixture was refluxed for 1 h and then treated with dimethyltin dichloride (0.439 g, 2 mmol) in distilled methanol (10 ml). The resulting mixture was heated under reflux conditions for 4 h and allowed to cool to room temperature. Potassium chloride (KCl) was removed via filtration. The filtrate was evaporated to dryness using a rotary evaporator to yield yellow microcrystals. The microcrystals were filtered off and washed with ethanol and dried in vacuo over P2O5 overnight. Yellow blocks of (I) were obtained by slow evaporation of its acetone solution at room temperature. Yield: 0.94 g, 75%. M.pt.: 504–506 K. IR (νmax, cm-1, KBr): 3569 (OH), 1591 (C═N—N═C), 949 (N—N), 562 (Sn—C), 525 (Sn—O), 447 (Sn—N).
Carbon-bound H-atoms were placed in calculated positions (O—H = 0.84 Å; C—H = 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2-Ueq(C) and 1.5-Ueq(O, methyl-C).
Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).
{4-Hydroxy-
N-[(2
E,3
Z)-4-oxido-4-phenylbut-3-en-2- ylidene]benzohydrazidato}dimethyltin(IV)
top Crystal data top [Sn(CH3)2(C17H14N2O3)] | F(000) = 888 |
Mr = 443.06 | Dx = 1.590 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ybc | Cell parameters from 3495 reflections |
a = 8.0784 (2) Å | θ = 4.0–74.2° |
b = 20.5410 (5) Å | µ = 11.15 mm−1 |
c = 11.1678 (3) Å | T = 150 K |
β = 93.025 (2)° | Block, yellow |
V = 1850.58 (8) Å3 | 0.22 × 0.16 × 0.10 mm |
Z = 4 | |
Data collection top Agilent SuperNova Dual diffractometer with an Atlas detector | 3124 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 2690 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.038 |
ω scans | θmax = 65.0°, θmin = 4.5° |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2011) | h = −6→9 |
Tmin = 0.696, Tmax = 0.822 | k = −24→24 |
5718 measured reflections | l = −13→13 |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0384P)2] where P = (Fo2 + 2Fc2)/3 |
3124 reflections | (Δ/σ)max < 0.001 |
230 parameters | Δρmax = 0.76 e Å−3 |
0 restraints | Δρmin = −0.72 e Å−3 |
Crystal data top [Sn(CH3)2(C17H14N2O3)] | V = 1850.58 (8) Å3 |
Mr = 443.06 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 8.0784 (2) Å | µ = 11.15 mm−1 |
b = 20.5410 (5) Å | T = 150 K |
c = 11.1678 (3) Å | 0.22 × 0.16 × 0.10 mm |
β = 93.025 (2)° | |
Data collection top Agilent SuperNova Dual diffractometer with an Atlas detector | 3124 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2011) | 2690 reflections with I > 2σ(I) |
Tmin = 0.696, Tmax = 0.822 | Rint = 0.038 |
5718 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.76 e Å−3 |
3124 reflections | Δρmin = −0.72 e Å−3 |
230 parameters | |
Special details top Experimental. Agilent Technologies (2011) CrysAlis PRO Software system, version 1.171.34.49, Agilent Technologies UK Ltd, Oxford, UK |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Sn | 0.18670 (3) | 0.011355 (13) | 0.22279 (2) | 0.02375 (11) | |
O1 | 0.0690 (3) | 0.09638 (13) | 0.2930 (2) | 0.0267 (6) | |
O2 | −0.0780 (3) | 0.34947 (13) | 0.5942 (2) | 0.0309 (6) | |
H2o | −0.0354 | 0.3553 | 0.6636 | 0.046* | |
O3 | 0.3618 (3) | −0.06412 (14) | 0.2237 (2) | 0.0333 (7) | |
N1 | 0.1880 (4) | 0.06513 (16) | 0.4764 (3) | 0.0242 (7) | |
N2 | 0.2394 (4) | 0.01068 (16) | 0.4134 (3) | 0.0232 (7) | |
C1 | 0.1054 (4) | 0.10630 (19) | 0.4079 (3) | 0.0230 (8) | |
C2 | 0.0519 (4) | 0.16830 (19) | 0.4610 (3) | 0.0208 (8) | |
C3 | −0.0628 (5) | 0.2084 (2) | 0.3999 (3) | 0.0263 (9) | |
H3 | −0.1131 | 0.1942 | 0.3256 | 0.032* | |
C4 | −0.1051 (5) | 0.2685 (2) | 0.4452 (3) | 0.0275 (9) | |
H4 | −0.1835 | 0.2952 | 0.4020 | 0.033* | |
C5 | −0.0331 (5) | 0.28957 (19) | 0.5535 (3) | 0.0240 (8) | |
C6 | 0.0800 (4) | 0.2492 (2) | 0.6178 (3) | 0.0250 (8) | |
H6 | 0.1282 | 0.2631 | 0.6929 | 0.030* | |
C7 | 0.1213 (4) | 0.18929 (19) | 0.5719 (3) | 0.0245 (8) | |
H7 | 0.1975 | 0.1621 | 0.6159 | 0.029* | |
C8 | 0.2979 (5) | −0.0386 (2) | 0.4775 (3) | 0.0247 (8) | |
C9 | 0.3027 (5) | −0.0339 (2) | 0.6122 (3) | 0.0311 (9) | |
H9A | 0.3736 | 0.0027 | 0.6385 | 0.047* | |
H9B | 0.3474 | −0.0744 | 0.6472 | 0.047* | |
H9C | 0.1903 | −0.0269 | 0.6385 | 0.047* | |
C10 | 0.3544 (5) | −0.0971 (2) | 0.4265 (3) | 0.0268 (9) | |
H10 | 0.3750 | −0.1326 | 0.4797 | 0.032* | |
C11 | 0.3827 (5) | −0.1079 (2) | 0.3075 (3) | 0.0255 (9) | |
C12 | 0.4463 (4) | −0.1711 (2) | 0.2669 (3) | 0.0243 (8) | |
C13 | 0.4076 (5) | −0.2292 (2) | 0.3228 (4) | 0.0286 (9) | |
H13 | 0.3440 | −0.2285 | 0.3919 | 0.034* | |
C14 | 0.4607 (5) | −0.2880 (2) | 0.2787 (4) | 0.0340 (10) | |
H14 | 0.4317 | −0.3274 | 0.3169 | 0.041* | |
C15 | 0.5565 (5) | −0.2900 (2) | 0.1787 (4) | 0.0365 (10) | |
H15 | 0.5938 | −0.3304 | 0.1489 | 0.044* | |
C16 | 0.5966 (5) | −0.2323 (2) | 0.1232 (4) | 0.0351 (10) | |
H16 | 0.6629 | −0.2332 | 0.0554 | 0.042* | |
C17 | 0.5410 (5) | −0.1731 (2) | 0.1658 (4) | 0.0295 (9) | |
H17 | 0.5674 | −0.1339 | 0.1260 | 0.035* | |
C18 | 0.3273 (6) | 0.0647 (2) | 0.1034 (4) | 0.0379 (11) | |
H18A | 0.4406 | 0.0701 | 0.1380 | 0.057* | |
H18B | 0.2767 | 0.1076 | 0.0896 | 0.057* | |
H18C | 0.3302 | 0.0413 | 0.0271 | 0.057* | |
C19 | −0.0261 (6) | −0.0439 (2) | 0.1720 (4) | 0.0451 (12) | |
H19A | −0.0003 | −0.0739 | 0.1074 | 0.068* | |
H19B | −0.1158 | −0.0146 | 0.1439 | 0.068* | |
H19C | −0.0611 | −0.0688 | 0.2411 | 0.068* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Sn | 0.02822 (16) | 0.02438 (17) | 0.01860 (15) | 0.00018 (11) | 0.00060 (10) | −0.00033 (10) |
O1 | 0.0341 (15) | 0.0238 (15) | 0.0217 (14) | 0.0056 (12) | −0.0027 (10) | −0.0038 (11) |
O2 | 0.0410 (17) | 0.0274 (16) | 0.0237 (15) | 0.0055 (13) | −0.0045 (12) | −0.0050 (12) |
O3 | 0.0419 (17) | 0.0311 (16) | 0.0277 (15) | 0.0123 (14) | 0.0084 (12) | 0.0059 (13) |
N1 | 0.0271 (17) | 0.0232 (18) | 0.0222 (16) | 0.0013 (14) | 0.0008 (13) | −0.0027 (14) |
N2 | 0.0250 (16) | 0.0260 (18) | 0.0192 (16) | 0.0003 (14) | 0.0042 (13) | 0.0003 (14) |
C1 | 0.0199 (18) | 0.029 (2) | 0.0200 (19) | −0.0050 (16) | 0.0023 (14) | 0.0008 (17) |
C2 | 0.0194 (18) | 0.024 (2) | 0.0195 (18) | −0.0024 (16) | 0.0012 (14) | 0.0012 (15) |
C3 | 0.025 (2) | 0.033 (2) | 0.0200 (19) | −0.0033 (18) | −0.0027 (15) | −0.0012 (17) |
C4 | 0.029 (2) | 0.029 (2) | 0.0241 (19) | 0.0065 (18) | −0.0018 (15) | −0.0001 (17) |
C5 | 0.026 (2) | 0.025 (2) | 0.0218 (19) | −0.0037 (17) | 0.0009 (14) | −0.0006 (16) |
C6 | 0.025 (2) | 0.029 (2) | 0.0204 (18) | −0.0059 (17) | −0.0005 (15) | −0.0040 (17) |
C7 | 0.0220 (19) | 0.028 (2) | 0.0238 (19) | −0.0009 (17) | −0.0001 (14) | 0.0034 (17) |
C8 | 0.0236 (19) | 0.029 (2) | 0.0211 (19) | −0.0008 (18) | 0.0019 (14) | 0.0010 (17) |
C9 | 0.044 (2) | 0.029 (2) | 0.020 (2) | 0.002 (2) | 0.0029 (17) | −0.0001 (18) |
C10 | 0.030 (2) | 0.027 (2) | 0.0237 (19) | 0.0031 (18) | 0.0024 (15) | 0.0033 (17) |
C11 | 0.0230 (19) | 0.027 (2) | 0.026 (2) | −0.0023 (17) | 0.0008 (15) | −0.0008 (17) |
C12 | 0.0177 (18) | 0.028 (2) | 0.027 (2) | 0.0000 (16) | −0.0033 (14) | −0.0035 (17) |
C13 | 0.023 (2) | 0.032 (2) | 0.031 (2) | −0.0025 (18) | 0.0005 (16) | −0.0011 (18) |
C14 | 0.027 (2) | 0.027 (2) | 0.047 (3) | −0.0004 (19) | −0.0059 (18) | −0.001 (2) |
C15 | 0.031 (2) | 0.036 (3) | 0.041 (3) | 0.009 (2) | −0.0062 (18) | −0.011 (2) |
C16 | 0.028 (2) | 0.046 (3) | 0.031 (2) | 0.008 (2) | 0.0005 (17) | −0.004 (2) |
C17 | 0.026 (2) | 0.034 (2) | 0.028 (2) | 0.0020 (19) | 0.0032 (15) | 0.0007 (19) |
C18 | 0.043 (3) | 0.040 (3) | 0.031 (2) | −0.008 (2) | 0.0029 (18) | 0.003 (2) |
C19 | 0.045 (3) | 0.042 (3) | 0.048 (3) | −0.011 (2) | 0.006 (2) | −0.020 (2) |
Geometric parameters (Å, º) top Sn—O1 | 2.156 (3) | C8—C9 | 1.506 (5) |
Sn—O3 | 2.099 (3) | C9—H9A | 0.9800 |
Sn—N2 | 2.148 (3) | C9—H9B | 0.9800 |
Sn—C18 | 2.105 (4) | C9—H9C | 0.9800 |
Sn—C19 | 2.112 (4) | C10—C11 | 1.377 (5) |
O1—C1 | 1.317 (4) | C10—H10 | 0.9500 |
O2—C5 | 1.367 (5) | C11—C12 | 1.476 (5) |
O2—H2O | 0.8400 | C12—C13 | 1.390 (6) |
O3—C11 | 1.303 (5) | C12—C17 | 1.398 (5) |
N1—C1 | 1.300 (5) | C13—C14 | 1.380 (6) |
N1—N2 | 1.396 (4) | C13—H13 | 0.9500 |
N2—C8 | 1.313 (5) | C14—C15 | 1.393 (6) |
C1—C2 | 1.479 (5) | C14—H14 | 0.9500 |
C2—C3 | 1.391 (5) | C15—C16 | 1.384 (6) |
C2—C7 | 1.400 (5) | C15—H15 | 0.9500 |
C3—C4 | 1.384 (6) | C16—C17 | 1.388 (6) |
C3—H3 | 0.9500 | C16—H16 | 0.9500 |
C4—C5 | 1.383 (5) | C17—H17 | 0.9500 |
C4—H4 | 0.9500 | C18—H18A | 0.9800 |
C5—C6 | 1.404 (5) | C18—H18B | 0.9800 |
C6—C7 | 1.381 (5) | C18—H18C | 0.9800 |
C6—H6 | 0.9500 | C19—H19A | 0.9800 |
C7—H7 | 0.9500 | C19—H19B | 0.9800 |
C8—C10 | 1.417 (5) | C19—H19C | 0.9800 |
| | | |
O3—Sn—C18 | 90.09 (15) | C8—C9—H9B | 109.5 |
O3—Sn—C19 | 98.26 (16) | H9A—C9—H9B | 109.5 |
O1—Sn—O3 | 155.08 (10) | C8—C9—H9C | 109.5 |
C18—Sn—C19 | 124.65 (18) | H9A—C9—H9C | 109.5 |
O3—Sn—N2 | 83.82 (11) | H9B—C9—H9C | 109.5 |
C18—Sn—N2 | 123.05 (15) | C11—C10—C8 | 126.7 (4) |
C19—Sn—N2 | 112.24 (16) | C11—C10—H10 | 116.7 |
C18—Sn—O1 | 94.10 (15) | C8—C10—H10 | 116.7 |
C19—Sn—O1 | 99.46 (15) | O3—C11—C10 | 124.1 (4) |
N2—Sn—O1 | 73.31 (11) | O3—C11—C12 | 114.8 (3) |
C1—O1—Sn | 113.6 (2) | C10—C11—C12 | 121.0 (4) |
C5—O2—H2O | 109.5 | C13—C12—C17 | 118.8 (4) |
C11—O3—Sn | 125.1 (2) | C13—C12—C11 | 121.8 (3) |
C1—N1—N2 | 112.4 (3) | C17—C12—C11 | 119.3 (4) |
C8—N2—N1 | 116.8 (3) | C14—C13—C12 | 120.7 (4) |
C8—N2—Sn | 126.3 (3) | C14—C13—H13 | 119.7 |
N1—N2—Sn | 116.5 (2) | C12—C13—H13 | 119.7 |
N1—C1—O1 | 123.6 (4) | C13—C14—C15 | 120.5 (4) |
N1—C1—C2 | 118.4 (3) | C13—C14—H14 | 119.7 |
O1—C1—C2 | 118.0 (3) | C15—C14—H14 | 119.7 |
C3—C2—C7 | 118.5 (4) | C16—C15—C14 | 119.1 (4) |
C3—C2—C1 | 121.0 (3) | C16—C15—H15 | 120.4 |
C7—C2—C1 | 120.5 (3) | C14—C15—H15 | 120.4 |
C4—C3—C2 | 121.3 (4) | C15—C16—C17 | 120.6 (4) |
C4—C3—H3 | 119.3 | C15—C16—H16 | 119.7 |
C2—C3—H3 | 119.3 | C17—C16—H16 | 119.7 |
C5—C4—C3 | 119.9 (4) | C16—C17—C12 | 120.3 (4) |
C5—C4—H4 | 120.1 | C16—C17—H17 | 119.9 |
C3—C4—H4 | 120.1 | C12—C17—H17 | 119.9 |
O2—C5—C4 | 117.8 (3) | Sn—C18—H18A | 109.5 |
O2—C5—C6 | 122.6 (3) | Sn—C18—H18B | 109.5 |
C4—C5—C6 | 119.6 (4) | H18A—C18—H18B | 109.5 |
C7—C6—C5 | 120.0 (3) | Sn—C18—H18C | 109.5 |
C7—C6—H6 | 120.0 | H18A—C18—H18C | 109.5 |
C5—C6—H6 | 120.0 | H18B—C18—H18C | 109.5 |
C6—C7—C2 | 120.7 (4) | Sn—C19—H19A | 109.5 |
C6—C7—H7 | 119.7 | Sn—C19—H19B | 109.5 |
C2—C7—H7 | 119.7 | H19A—C19—H19B | 109.5 |
N2—C8—C10 | 123.3 (3) | Sn—C19—H19C | 109.5 |
N2—C8—C9 | 119.0 (4) | H19A—C19—H19C | 109.5 |
C10—C8—C9 | 117.7 (4) | H19B—C19—H19C | 109.5 |
C8—C9—H9A | 109.5 | | |
| | | |
O3—Sn—O1—C1 | −17.4 (4) | C3—C4—C5—O2 | 179.6 (3) |
C18—Sn—O1—C1 | −116.5 (3) | C3—C4—C5—C6 | −1.3 (6) |
C19—Sn—O1—C1 | 117.4 (3) | O2—C5—C6—C7 | −179.7 (3) |
N2—Sn—O1—C1 | 6.8 (2) | C4—C5—C6—C7 | 1.2 (6) |
C18—Sn—O3—C11 | 158.3 (3) | C5—C6—C7—C2 | 0.3 (6) |
C19—Sn—O3—C11 | −76.6 (3) | C3—C2—C7—C6 | −1.7 (5) |
N2—Sn—O3—C11 | 35.0 (3) | C1—C2—C7—C6 | 175.6 (3) |
O1—Sn—O3—C11 | 58.3 (4) | N1—N2—C8—C10 | 179.9 (3) |
C1—N1—N2—C8 | −168.5 (3) | Sn—N2—C8—C10 | 8.0 (5) |
C1—N1—N2—Sn | 4.2 (4) | N1—N2—C8—C9 | 1.2 (5) |
O3—Sn—N2—C8 | −24.1 (3) | Sn—N2—C8—C9 | −170.7 (3) |
C18—Sn—N2—C8 | −110.2 (3) | N2—C8—C10—C11 | 11.3 (6) |
C19—Sn—N2—C8 | 72.3 (3) | C9—C8—C10—C11 | −170.0 (4) |
O1—Sn—N2—C8 | 165.9 (3) | Sn—O3—C11—C10 | −30.7 (5) |
O3—Sn—N2—N1 | 164.0 (3) | Sn—O3—C11—C12 | 151.4 (3) |
C18—Sn—N2—N1 | 78.0 (3) | C8—C10—C11—O3 | 0.6 (6) |
C19—Sn—N2—N1 | −99.5 (3) | C8—C10—C11—C12 | 178.3 (4) |
O1—Sn—N2—N1 | −5.9 (2) | O3—C11—C12—C13 | −150.4 (4) |
N2—N1—C1—O1 | 2.4 (5) | C10—C11—C12—C13 | 31.7 (5) |
N2—N1—C1—C2 | −176.3 (3) | O3—C11—C12—C17 | 26.3 (5) |
Sn—O1—C1—N1 | −7.7 (5) | C10—C11—C12—C17 | −151.6 (4) |
Sn—O1—C1—C2 | 171.1 (2) | C17—C12—C13—C14 | −0.5 (6) |
N1—C1—C2—C3 | −167.5 (3) | C11—C12—C13—C14 | 176.2 (4) |
O1—C1—C2—C3 | 13.7 (5) | C12—C13—C14—C15 | 1.1 (6) |
N1—C1—C2—C7 | 15.3 (5) | C13—C14—C15—C16 | −0.6 (6) |
O1—C1—C2—C7 | −163.5 (3) | C14—C15—C16—C17 | −0.6 (6) |
C7—C2—C3—C4 | 1.7 (6) | C15—C16—C17—C12 | 1.3 (6) |
C1—C2—C3—C4 | −175.6 (3) | C13—C12—C17—C16 | −0.7 (6) |
C2—C3—C4—C5 | −0.2 (6) | C11—C12—C17—C16 | −177.5 (4) |
Hydrogen-bond geometry (Å, º) topCg1, Cg2 and Cg3 are the centroids of the C12–C17, Sn,O1,C1,N1,N2 and C2–C7 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2o···O1i | 0.84 | 1.91 | 2.702 (3) | 156 |
C4—H4···Cg1ii | 0.95 | 2.91 | 3.624 (4) | 133 |
C9—H9c···Cg2iii | 0.98 | 2.88 | 3.777 (4) | 152 |
C16—H16···Cg3iv | 0.95 | 2.89 | 3.668 (4) | 140 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x, −y, −z+1; (iv) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data |
Chemical formula | [Sn(CH3)2(C17H14N2O3)] |
Mr | 443.06 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 8.0784 (2), 20.5410 (5), 11.1678 (3) |
β (°) | 93.025 (2) |
V (Å3) | 1850.58 (8) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 11.15 |
Crystal size (mm) | 0.22 × 0.16 × 0.10 |
|
Data collection |
Diffractometer | Agilent SuperNova Dual diffractometer with an Atlas detector |
Absorption correction | Analytical (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.696, 0.822 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5718, 3124, 2690 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.588 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.081, 1.00 |
No. of reflections | 3124 |
No. of parameters | 230 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.76, −0.72 |
Selected geometric parameters (Å, º) topSn—O1 | 2.156 (3) | Sn—C18 | 2.105 (4) |
Sn—O3 | 2.099 (3) | Sn—C19 | 2.112 (4) |
Sn—N2 | 2.148 (3) | | |
| | | |
O1—Sn—O3 | 155.08 (10) | C18—Sn—C19 | 124.65 (18) |
Hydrogen-bond geometry (Å, º) topCg1, Cg2 and Cg3 are the centroids of the C12–C17, Sn,O1,C1,N1,N2 and C2–C7 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2o···O1i | 0.84 | 1.91 | 2.702 (3) | 156 |
C4—H4···Cg1ii | 0.95 | 2.91 | 3.624 (4) | 133 |
C9—H9c···Cg2iii | 0.98 | 2.88 | 3.777 (4) | 152 |
C16—H16···Cg3iv | 0.95 | 2.89 | 3.668 (4) | 140 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x, −y, −z+1; (iv) −x+1, y−1/2, −z+1/2. |
Acknowledgements
We thank MOSTI (grant No. 06–01-09-SF0046) and the Universiti Malaysia Sarawak for support of this work.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Affan, M. A., Foo, S. W., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031–5037. Web of Science CSD CrossRef Google Scholar
Affan, M. A., Sam, N. B., Ahmad, F. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m924. Web of Science CSD CrossRef IUCr Journals Google Scholar
Affan, M. A., Sam, N. B., Ahmad, F. B., White, F. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m963–m964. Web of Science CSD CrossRef IUCr Journals Google Scholar
Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Oxford, UK. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
The title compound, (I), was examined in connection with on-going structural studies (Affan et al., 2010) of organotin derivatives of biological interest (Affan et al., 2009), and compliments the structure of the diphenyltin analogue (Affan et al., 2011).
The Sn atom in (I), Fig. 1, is five-coordinated by the tridentate ligand and two methyl groups, Table 1. The resulting C2NO2 donor set defines a coordination geometry intermediate between square pyramidal and trigonal bipyramidal geometry. This is quantified by the value of τ = 0.51 which compare to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). For comparison, the values of τ for the two independent molecules in the structure of the diphenyltin analogue are 0.55 and 0.47 (Affan et al., 2011).
While the five-membered SnCN2O chelate ring is almost planar with a r.m.s. deviation = 0.063 Å [max. deviations of 0.039 (1) and -0.052 (2) Å for the Sn and O1 atoms, respectively], there is considerable distortion in the SnC3NO six-membered chelate [r.m.s. deviation = 0.226 Å] with the Sn and O3 atoms lying -0.209 (1) and 0.245 (3) Å out of the least-squares plane. Each of the benzene rings is twisted out of the plane from the adjacent chelate ring as seen in the O1—C1—C2—C3 and O3—C11—C12—C13 torsion angles of 13.7 (5) and -150.4 (4)°, respectively. The dihedral angle between the two benzene rings is 68.14 (18) °, indicating a twist in the tridentate ligand.
The crystal packing is dominated by O—H···O hydrogen bonding, Table 2, which leads to a zigzag supramolecular chain along the c axis, Fig. 2. These are consolidated in the crystal structure by C—H···π interactions, Table 2.